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Abstract 
This paper introduces schedulability analysis for global fixed priority scheduling with deferred pre-emption (gFPDS) 
for homogeneous multiprocessor systems. gFPDS is a superset of global fixed priority pre-emptive scheduling 
(gFPPS) and global fixed priority non-pre-emptive scheduling (gFPNS).We show how schedulability can be improved 
via appropriate choice of priority assignment and final non-pre-emptive region lengths, and we provide algorithms 
which optimize schedulability in this way. An experimental evaluation shows that gFPDS significantly outperforms 
both gFPPS and gFPNS. 
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Abstract— This paper introduces schedulability analysis for 
global fixed priority scheduling with deferred pre-emption 
(gFPDS) for homogeneous multiprocessor systems. gFPDS is a 
superset of global fixed priority pre-emptive scheduling (gFPPS) 
and global fixed priority non-pre-emptive scheduling (gFPNS). 
We show how schedulability can be improved via appropriate 
choice of priority assignment and final non-pre-emptive region 
lengths, and we provide algorithms which optimize schedulability 
in this way. An experimental evaluation shows that gFPDS 
significantly outperforms both gFPPS and gFPNS. 

I. INTRODUCTION 
A common misconception with regard to fixed priority 

scheduling of sporadic tasks is that fully pre-emptive 
scheduling is more effective in terms of schedulability than 
non-pre-emptive scheduling. The two are however 
incomparable; there are tasksets that are schedulable under 
fixed priority non-pre-emptive scheduling that are not 
schedulable under fixed priority pre-emptive scheduling and 
vice-versa. This is the case for uniprocessor scheduling [27] 
and also the case for global multiprocessor scheduling [30], 
which is the focus of this paper. 

While the blocking effect, due to long non-pre-emptive 
regions of low priority tasks degrades schedulability for 
single processor systems that have a wide range of task 
execution times and periods (as illustrated by Figure 7 in 
[27]), Guan et al. [30] showed that the same is not 
necessarily true for multiprocessor systems. With m 
processors rather than one, long non-pre-emptive regions can 
be accommodated without necessarily compromising the 
schedulability of higher priority tasks. However, this 
advantage only extends so far; with m processors then m 
long non-pre-emptive regions are enough to significantly 
compromise schedulability. In this context, limited non-pre-
emptive execution has the advantage of reducing the number 
of pre-emptions, and potentially improving the worst-case 
response time of tasks, while also keeping blocking effects 
on higher priority tasks within tolerable limits. 

In the literature, the term fixed priority scheduling with 
deferred pre-emption has been used to refer to a variety of 
different techniques by which pre-emptions may be deferred 
for some interval of time after a higher priority task becomes 
ready. These are described in a survey by Buttazzo et al. [21] 
and briefly discussed in Section II. In this paper, we assume 
a simple form of fixed priority scheduling with deferred pre-
emption where each task has a single non-pre-emptive region 
at the end of its execution. If this region is of the minimum 
possible length for all tasks, then we have fully pre-emptive 
scheduling, whereas if it constitutes all of the task’s 
execution time then we have non-pre-emptive scheduling.  

In this paper, we introduce sufficient schedulability tests 
for global fixed priority scheduling with deferred pre-

emption (gFPDS). gFPDS can be viewed as a superset of 
both global fixed priority pre-emptive scheduling (gFPPS) 
and global fixed priority non-pre-emptive scheduling 
(gFPNS) and strictly dominates both. With gFPDS, there are 
two key parameters that affect schedulability: the priority 
assigned to each task, and the length of each task’s final non-
pre-emptive region (FNR). The FNR length affects both the 
schedulability of the task itself, and the schedulability of 
tasks with higher priorities. This is a trade-off as increasing 
the FNR length can improve schedulability for the task itself 
by reducing the number of times it can be pre-empted, but 
potentially increases the blocking effect on higher priority 
tasks which may reduce their schedulability. 

In 2012, Davis and Bertogna [27] introduced an optimal 
algorithm for fixed priority scheduling with deferred pre-
emption on a single processor. This algorithm finds a 
schedulable priority assignment and set of FNR lengths 
whenever such a schedulable combination exists. In this 
paper we also build upon this work, extending it to the 
multiprocessor case. For a given priority ordering, we show 
how to find an assignment of FNR lengths that result in a 
system that is deemed schedulable under gFPDS according 
to our sufficient schedulability tests, whenever such an 
assignment exists of FNR lengths exists. We also show that 
the Final Non-pre-emptive Region and Priority Assignment 
(FNR-PA) algorithm from [27] is not optimal in the 
multiprocessor case, but nevertheless can be used as a 
heuristic for determining both priority ordering and final 
non-pre-emptive region lengths.  

II. BACKGROUND RESEARCH 
A. Deferred pre-emption 

Two different models of fixed priority scheduling with 
deferred pre-emption have been developed in the literature. 

In the fixed model, introduced by Burns in 1994 [19], the 
location of each non-pre-emptive region is statically 
determined prior to execution. Pre-emption is only permitted 
at pre-defined locations in the code of each task, referred to 
as pre-emption points. This method is also referred to as co-
operative scheduling, as tasks co-operate, providing re-
scheduling / pre-emption points to improve schedulability. 

In the floating model [7], [32], an upper bound is given 
on the length of the longest non-pre-emptive region of each 
task. However, the location of each non-pre-emptive region 
is not known a priori and may vary at run-time, for example 
under the control of the operating system. 

For uniprocessor systems: Exact schedulability analysis 
for the fixed model was derived by Bril et al. in 2009 [18]. 
Subsequently, Bertogna et al. integrated pre-emption costs 
and cache related pre-emption delays (CRPD) into analysis 
of the fixed model, considering both fixed [14] and variable 



[15] pre-emption costs. In 2011, Bertogna et al. [16] derived 
a method for computing the optimal FNR length of each task 
in order to maximize schedulability assuming a given 
priority assignment. In 2012, Davis and Bertogna [27] 
introduced an optimal algorithm that is able to find a 
schedulable combination of priority assignment and FNR 
lengths whenever such a schedulable combination exists. 
B. Global fixed priority scheduling 

In 2003, Baker [5] developed a strategy that underpins an 
extensive thread of subsequent research into schedulability 
tests for gFPPS [9], [11], [12], [13], [29], [31], and gFPNS 
[30]. (For a comprehensive survey of multiprocessor real-
time scheduling, the reader is referred to [26]). Baker’s work 
was subsequently built upon by Bertogna et al. [11] [13]. 
They developed sufficient schedulability tests for gFPPS 
based on bounding the maximum workload in a given 
interval. In 2007, Bertogna and Cirinei [12] adapted this 
approach to iteratively compute an upper bound on the 
response time of each task, using the upper bound response 
times of other tasks to limit the amount of interference 
considered. In 2009, Guan et al. [31] extended this approach 
using ideas from [8] to limit the amount of carry-in 
interference.  

In 2009 and 2010, Davis and Burns [22], [23] showed 
that priority assignment is fundamental to the effectiveness 
of gFPPS. They proved that Audsley’s optimal priority 
assignment algorithm [3], [4] is applicable to some of the 
sufficient tests developed for gFPPS, including the deadline-
based test of Bertogna et al. [13], but not to others such as 
the later response time tests [12], [31]. 

In 2011, Guan et al. [30] provided schedulability analysis 
for gFPNS based on the approach of Baker [5], and the 
techniques introduced by Bertogna et al. in [11]. 

gFPDS is broadly similar to the dynamic algorithm FPZL 
[24], [25]. FPZL resembles gFPPS until a job reaches a state 
of zero laxity i.e. when its remaining execution time is equal 
to the elapsed time to its deadline. FPZL gives such a job the 
highest priority, and hence makes it non-pre-emptable. The 
length of time each job spends executing in this zero-laxity 
state is determined dynamically by FPZL. With FPZL, 
RTOS support for this dynamic behaviour is required, 
whereas with gFPDS the transition to non-pre-emptive 
execution may be controlled either by the RTOS, or via API 
calls suitably located within the code of each task. 

III. SYSTEM MODEL, TERMINOLOGY AND NOTATION 
In this paper, we are interested in global fixed priority 

scheduling of an application on a homogeneous 
multiprocessor system with m identical processors. The 
application or taskset is assumed to consist of a static set of n 
tasks ( nττ ...1 ), with each task iτ  assigned a unique priority i, 
from 1 to n (where n is the lowest priority). We assume a 
discrete time model, where all task parameters are positive 
integers (e.g. processor clock cycles). We use the notation 

)(ihp  (and )(ilp ) to mean the set of tasks with priorities 
higher than (lower than) i. 

Tasks are assumed to comply with the sporadic task 
model. In this model, each task gives rise to a potentially 
unbounded sequence of jobs. Each job may arrive at any 
time once a minimum inter-arrival time has elapsed since the 
arrival of the previous job of the same task. 

Each task iτ  is characterised by its relative deadline iD , 
worst-case execution time iC  ( ii DC ≤ ), and minimum 
inter-arrival time or period iT . It is assumed that all tasks 
have constrained deadlines ( ii TD ≤ ). The utilisation iU  of 
each task is given by ii TC / . Under gFPDS, each task is 
assumed to have a final non-pre-emptive region of length iF  
in the range ],1[ iC  (Here, the minimum value is 1 rather 
than 0 as a task can only be pre-empted at discrete times 
corresponding to processor clock cycles). Finding an 
appropriate FNR length for each task is assumed to be part of 
the scheduling problem.  

The worst-case response time iR  of a task is the longest 
possible time from the release of the task until it completes 
execution. Thus task iτ  is schedulable if and only if ii DR ≤  
and a taskset is schedulable if and only if ii DRi ≤∀ . We 
use UB

iR  to indicate an upper bound on the worst-case 
response time of task iτ . 

Under gFPDS, at any given time, the m ready tasks with 
the highest priorities are selected for execution. Final non-
pre-emptive regions are assumed to be implemented by 
manipulating task priorities, thus a task executing its FNR 
has the highest priority and will not be pre-empted. 

The tasks are assumed to be independent and so cannot 
be blocked from executing by another task, other than due to 
contention for the processors. Further, it is assumed that once 
a job starts to execute it will not voluntarily suspend itself. 

Job parallelism is not permitted; hence, at any given time, 
each job may execute on at most one processor. As a result 
of pre-emption and subsequent resumption, a job may 
migrate from one processor to another. The cost of pre-
emption, migration, and the run-time operation of the 
scheduler are assumed to be either negligible, or subsumed 
within the worst-case execution time of each task. (Pre-
emption costs are an issue we aim to address in future work). 

A taskset is said to be schedulable with respect to some 
scheduling algorithm, if all valid sequences of jobs that may 
be generated by the taskset can be scheduled by the 
algorithm without any missed deadlines. 

A priority assignment policy P is said to be optimal with 
respect to a schedulability test for some type of fixed priority 
scheduling algorithm (e.g. gFPPS, gFPNS, or gFPDS) if 
there are no tasksets that are deemed schedulable, according 
to the test, under the scheduling algorithm using any other 
priority ordering policy, that are not also deemed schedulable 
with the priority assignment determined by policy P. 

IV. SCHEDULABILITY ANALYSIS FOR gFPDS 
In this section, we introduce sufficient schedulability 

tests for global fixed priority scheduling with deferred pre-
emption (gFPDS). 

On a uniprocessor, under fixed priority scheduling with 
deferred pre-emption, a higher priority task can only be 
blocked by a single job of a lower priority task that starts 



executing non-pre-emptively prior to the release of the 
higher priority task. The multiprocessor case is however 
significantly different. This is illustrated by Figure 1 below, 
for the case of 4 processors. Here, the task of interest kτ  
(priority 2) is released at time t=1, along with a job of the 
higher priority task 1τ . kτ  is unable to execute initially due 
to blocking from three jobs of lower priority tasks ( 3τ , 4τ , 
and 5τ ) that have entered their FNRs (shown in dark grey in 
Figure 1). At time t=4, kτ  begins executing. At t = 7, three 
further jobs of lower priority tasks ( 6τ , 7τ , and 5τ  again) 
enter their FNRs. At t=8, task kτ  is pre-empted by a second 
job of 1τ  and misses its deadline at t=12. 

 
Figure 1: Blocking effect due to FNRs of lower priority jobs. 

This example serves to illustrate the following: 
o Multiple lower priority tasks may contribute interference 

in the busy window of the task of interest. Further, the 
number of lower priority tasks that may contribute is not 
limited to m as it is in the non-pre-emptive case [30]. 

o Multiple jobs of the same lower priority task may 
contribute interference, due to the fact that the task of 
interest does not occupy all of the processors when it 
executes; unlike in the uniprocessor case. 

o If there were multiple non-pre-emptive regions within 
each lower priority task, then each of these regions 
could potentially contribute interference. (This is easy to 
see by assuming that all of the execution of task 5τ  on 
processor 1 belongs to one job rather than two). 

While no worst-case scenario is currently known, we can 
obtain an upper bound on the interference from the non-pre-
emptive execution of lower priority tasks, by modelling this 
non-pre-emptive execution as a set of virtual tasks executing 
at the highest priority. Thus for each lower priority task 

)(klpi ∈τ , we assume a virtual task ivτ  with the following 
parameters: 1−= iiv FC , iiv TT = , iiv DD = , UB

i
UB
iv RR =  and 

the highest priority. (We note that 1−= iiv FC  as the task 
must have actually entered its FNR in order to be non-pre-
emptable). 

We note the following points about gFPDS: 
1. Once a task kτ  enters its FNR it will execute to 

completion. Hence with gFPDS if we can show that the 
task is guaranteed to execute for )1(* −−= kkk FCC  
within an effective deadline of )1(* −−= kkk FDD , then 
it is guaranteed to execute for kC  by its deadline kD . 

2. In the worst-case scenario, at most m – 1 higher priority 
tasks can have carry-in jobs (Theorem 1 of [23]). 

3. Virtual tasks representing the FNRs of lower priority 
tasks can effectively be released at any point during the 

interval in which the corresponding lower priority task 
may execute, hence the argument of Theorem 1 in [23] 
relating to a maximum of m – 1 carry-in jobs does not 
apply to virtual tasks. 

A. Deadline Analysis for gFPDS 
We now extend and adapt the deadline-based, 

schedulability test of Bertogna et al. (Theorem 8 in [13]) to 
gFPDS. Under gFPPS, if task kτ  is schedulable in an 
interval of length L, with an execution time of C , then an 
upper bound on the interference over the interval due to a 
higher priority task iτ  with a carry-in job1 is given by the 
following equation [13]. 

)1),(min(),( +−= CLLWCLI D
i

D
i     (1) 

where )(LW D
i  is an upper bound on the workload of task iτ  

in an interval of length L, given by: 
))(,min()()( i

D
iiiii

D
i

D
i TLNCDLCCLNLW −−++=  (2) 

and )(LN D
i  is the maximum number of jobs of task iτ  that 

contribute all of their execution time in the interval: 
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Making use of *
kD  and *

kC  to account for the fact that task 
kτ  is schedulable under gFPDS if it is able to start its FNR 

by *
kD  results in the following schedulability test: 

Deadline Analysis (DA) test for gFPDS: A sporadic 
taskset is schedulable, if for every task kτ , inequality (4) 
holds: 
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where )(klpv  is the set of virtual tasks used to model the 
non-pre-emptive execution of tasks in )(klp . (Note the floor 
function comes from the use of integer values for all task 
parameters). 

We now improve the DA test using the approach of Guan 
et al. [31]. They showed that for gFPPS, an upper bound on 
the interference over an interval L due to a higher priority 
task iτ  without a carry in job is given by: 

)1),(min(),( +−= CLLWCLI NC
i

NC
i     (5) 

where: 
))(,min()()( i

NC
iii

NC
i

NC
i TLNLCCLNLW −+=  (6) 

and  
¬ ¼i

NC
i TLLN /) ( =       (7) 

The difference between the interference terms (1) and (5) is:  
),(),(),( CLICLICLI NC

i
D
i

DDIFF
i −=−   (8) 

Davis and Burns [23] showed that the worst-case scenario 
for gFPPS occurs when there are at most m-1 carry-in jobs. 
Thus an improved test for gFPDS is as follows: 

                                                           
1 Here, a carry-in job is defined as a job that is released strictly prior to the 
start of the interval, and causes interference within that interval. 



Deadline Analysis – Limited Carry-in (DA-LC test) 
for gFPDS: A sporadic taskset is schedulable, if for every 
task kτ , inequality (9) holds: 
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where MD(k, m-1) is the subset of at most m-1 tasks with the 
largest values of ),( kk

DDIFF
i CDI −  from hp(k). 

B. Response Time Analysis for gFPDS 
We now extend and adapt the response time test of 

Bertogna and Cirinei [12] to gFPDS. They showed that 
under gFPPS, if task kτ  is schedulable in an interval of 
length L, completing an execution time C , then an upper 
bound on the interference in that interval due to a higher 
priority task iτ  with a carry-in job is given by: 

)1),(min(),( +−= CLLWCLI R
i

R
i     (10) 

where, )(LW R
i  is an upper bound on the workload of task iτ  

in an interval of length L, taking into account the upper 
bound response time UB

iR  of task iτ : 
))(,min()()( i

R
ii
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R
i

R
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and )(LN R
i  is given by: 
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Making use of *
kD  and *

kC  to account for the fact that task 
kτ  is schedulable under gFPDS if it is able to start its FNR 

by *
kD  results in the following schedulability test. (Note, we 

return later to the order in which upper bound response times 
are computed, which is resolved by Algorithm 1). 

Response Time Analysis (RTA) test for gFPDS: A 
sporadic taskset is schedulable, if for every task kτ , the 
upper bound response time S

kR  for the start (first unit of 
execution) of the task’s FNR, computed via the fixed point 
iteration given by (13) within Algorithm 1, is less than or 
equal to the task’s effective deadline *

kD : 
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In (13), the second summation term models the blocking 
effect from lower priority tasks via the set of virtual tasks. If 
task kτ  is schedulable, then )1( −+= k

S
k

UB
k FRR . 

We now improve the RTA test using the approach of 
Guan et al. [31]. They showed that under gFPPS, if a higher 
priority task iτ  does not have a carry-in job, then the 
interference term is given by (5) rather than (10). The 
difference between the two interference terms is: 

),(),(),( CLICLICLI NC
i

R
i

RDIFF
i −=−    (14) 

Further, at most m-1 higher priority tasks with carry-in jobs 
may contribute interference in the worst-case. Thus an 
improved test for gFPDS is as follows: 

Response Time Analysis – Limited Carry-in (RTA-
LC) test for gFPDS: A sporadic taskset is schedulable, if for 
every task kτ , the upper bound response time S

kR  for the 
start (first unit of execution) of the task’s FNR, computed via 
the fixed point iteration given by (15) within Algorithm 1, is 
less than or equal to the task’s effective deadline *

kD : 
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where MR(k, m-1) is the subset of at most m-1 tasks with the 
largest values of ),( k

UB
k

RDIFF
i CRI − , given by (14), from the 

set of tasks hp(k). If task kτ  is schedulable, then 
)1( −+= k

S
k

UB
k FRR . 

1 Initialize all UB
iR = iC  

2 repeat = true 
3 while (repeat) { 
4  repeat = false 
5  for (each priority level k, highest first) { 
6   Calc. UB

kR  via RTA or RTA-LC test for gFPDS 
7   if ( UB

kR  > kD ) { 
8    Return unschedulable 
9   } 
10   if ( UB

kR differs from its previous value) { 
11    repeat = true 
12   } 
13  } 
14 } 
15 return schedulable

Algorithm 1: Response time iteration 

We note that in adapting the methods of Bertogna and 
Cirinei [12] and Guan et al. [31] to gFPDS there is a 
difficulty in accounting for the interference from virtual 
tasks. When computing the upper bound response time for 
task kτ  the upper bound response times of each higher 
priority task are required. This can easily be achieved for the 
set of tasks )(khp simply by computing response times in 
order, highest priority first, which is all that is needed for 
gFPPS. However, when considering gFPDS we also include 
interference from virtual tasks corresponding to tasks in 

)(klp . Here, the upper bound response time UB
ivR  for each 

virtual task equates to that of its corresponding (lower 
priority) task UB

i
UB
iv RR = , which itself depends on the upper 

bound response time of task kτ , leading to an apparent 
circularity. This issue can be solved by noting that the upper 
bound response time UB

ivR  of each virtual task is 
monotonically non-decreasing with respect to increases in 
the upper bound response times of all tasks in )(ihp , and 
the upper bound response time UB

kR  of each task kτ  is 
monotonically non-decreasing with respect to increases in 
the upper bound response times of all virtual tasks 



associated with tasks in )(klp . Thus we can employ a fixed 
point iteration to solve for all upper bound response times 
starting with values that are guaranteed to be no larger than 
any possible solution, for example i

UB
i CR = . The pseudo 

code in Algorithm 1 implements this approach. 
C. Complexity and comparability 

The DA and DA-LC tests for gFPDS are polynomial in 
complexity: )( 2nO  for a taskset of cardinality n. (Note, the 
(m-1) largest DIFF

iI  terms may be obtained by linear-time 
selection [17]). The RTA and RTA-LC tests are pseudo-
polynomial in complexity, )( max

2
sumDDnO  where maxD  is 

the longest task deadline, and sumD  is the sum of task 
deadlines. This derives from the fact that on each iteration of 
(13) or (15) the response time must increase by at least one 
for iteration to continue and after maxD  such iterations the 
task would be deemed unschedulable. Further, the number of 
while loop iterations in Algorithm 1 is limited to sumD , since 
on each iteration some response time must increase by at 
least one for the loop to continue iterating.  

The following comparability relationships hold between 
the various schedulability tests. The RTA-LC test dominates 
the RTA test and the DA-LC test, both of which dominate 
the DA test. The DA-LC and RTA tests are incomparable. 
D. Optimal priority assignment 

In [22] and [23], Davis and Burns showed that Audsley’s 
OPA algorithm [3], [4] can be used to obtain an optimal 
priority assignment with respect to any schedulability test 
that fulfils the following three conditions: 

Condition 1: The schedulability of a task kτ  may, 
according to test S, depend on the set of tasks with priorities 
higher than k, but not on their relative priority ordering. 

Condition 2: The schedulability of a task kτ  may, 
according to test S, depend on the set of tasks with priorities 
lower than k, but not on their relative priority ordering. 

Condition 3: When the priorities of any two tasks of 
adjacent priority are swapped, the task being assigned the 
higher priority cannot become unschedulable according to 
test S, if it was previously schedulable at the lower priority. 
(As a corollary, the task being assigned the lower priority 
cannot become schedulable according to test S, if it was 
previously unschedulable at the higher priority). 

Inspection of the DA and DA-LC tests for gFPDS 
shows that these conditions hold (assuming fixed values of 

iF ) and so these tests are OPA-compatible. Whereas the 
dependency on the upper bound response time UB

iR  of 
higher priority tasks in (11) means that the RTA and RTA-
LC tests are not OPA-compatible. 
E. Example of gFPDS 

We now provide an example comparing gFPDS with 
gFPPS and gFPNS. The example is based on the taskset in 
TABLE I. This taskset is trivially unschedulable on two 
processors with any form of fixed priority scheduling unless 
task Cτ  has the lowest priority. Since task Aτ  and task Bτ  
are equivalent, placing either of them at the lowest priority 
would make that task have a response time of 6 and so be 

unschedulable. Thus, there is only one viable priority 
ordering: Aτ , Bτ , Cτ . 

TABLE I: TASK PARAMETERS 

Task Execution time Period Deadline 
Aτ  3 10 5
Bτ  3 10 5
Cτ  8 25 12

With pre-emptive scheduling (gFPPS), if tasks Aτ  and 
Bτ  are released simultaneously, then task Cτ  misses its 

deadline, as shown in Figure 2. 

 
Figure 2: Schedule with gFPPS. 

Similarly, with non-pre-emptive scheduling (gFPNS), if task 
Cτ  is released just before tasks Aτ  and Bτ , as shown in 

Figure 3, then task Bτ  misses its deadline. 

 
Figure 3: Schedule with gFPNS. 

However, if we use deferred pre-emption and let 1=AF ,
1=BF , and 3=CF , then using the RTA test, we obtain 

31 =UBR , 52 =UBR , and 113 =UBR ; proving that the taskset 
is schedulable. Here, the FNR of task Cτ  is enough to ensure 
that there can be no second pre-emption by task Aτ , yet task 

Cτ  only blocks tasks Aτ  and Bτ  for a maximum of 2 time 
units enabling their deadlines to be met. This example 
illustrates the strict dominance, rather than equivalence, of 
gFPDS over gFPPS and gFPNS. 

Note, this example has been deliberately constructed with 
Deadline Monotonic Priority Ordering (DMPO) as the only 
feasible priority ordering; however, it is well known that 
DMPO is not optimal for global fixed priority scheduling, 
and is not even a good heuristic [22], [23]. 

V. OPTIMAL gFPDS 
In this section, we build upon the ideas and techniques 

developed in [27] which provide optimal algorithms for 
fixed priority scheduling with deferred pre-emption for 
uniprocessor systems. We pose the same two problems 
relating to the assignment of FNR lengths and priorities for 
the multiprocessor case, i.e. under gFPDS. We show that the 
first of these problems can be solved in a similar way to the 
uniprocessor case, and via a counterexample, that the second 
problem cannot. 
Problem 1: Final Non-pre-emptive Region length Problem 
(FNR Problem). For a given taskset complying with the task 



model described in Section III, and a given priority ordering 
X, find a length for the FNR of each task such that the taskset 
is deemed schedulable under gFPDS by schedulability test S. 
Definition 1: An algorithm A is said to be optimal for the 
FNR Problem with respect to a schedulability test S, if there 
are no taskset / priority assignment combinations that are 
deemed schedulable under gFPDS by test S with some set of 
FNR lengths, that are not also deemed schedulable by the 
test using the set of FNR lengths determined by algorithm A. 
Problem 2: Final Non-pre-emptive Region Length and 
Priority Assignment Problem (FNR-PA Problem). For a 
given taskset complying with the task model described in 
Section III, find both (i) a priority assignment, and (ii) a set 
of FNR lengths that makes the taskset schedulable under 
gFPDS according to schedulability test S. 
Definition 2: An algorithm B is said to be optimal for the 
FNR-PA Problem with respect to a schedulability test S, if 
there are no tasksets compliant with the task model that are 
deemed schedulable under gFPDS by test S with some 
priority assignment X and some set of FNR lengths, that are 
not also deemed schedulable using the priority assignment 
and set of FNR lengths determined by algorithm B. 
A. Sustainability with respect to FNR lengths 

In order to be able to solve Problems 1 and 2 efficiently, 
we need to use schedulability tests that are sustainable [6], 
[20] with respect to changes in the length of a task’s FNR. 
With a sustainable test, we can use binary search to help 
solve the problems. In contrast with an unsustainable test, we 
would potentially need to check every possible value for the 
FNR length of each task which is not practical. 
Theorem 1: The DA and DA-LC schedulability tests for task 

kτ  under gFPDS are sustainable with respect to increases in 
the length kF  of the task’s FNR.  
Proof: To prove the theorem, it suffices to show that if (4) or 
(9) hold for some pair of values ( *

kC , *
kD ), then they 

continue to hold for the pair of values ( zCk −* , zDk −* ) 
where z is a positive integer ( *

kCz ≤ ). Substituting zCk −*  
for *

kC  and zDk −*  for *
kD  in (4) and (9), we need to show 

that the summation terms do not increase. By inspecting the 
component equations (1) – (3), and (5) – (8), we observe that 
the interference within a window of length L is 
monotonically non-decreasing with respect to the length of 
the window (i.e. it is no larger for an interval of length 

zDk −*  than it is for an interval of length *
kD ). Further, we 

must also consider the dependence of component equations 
(1) and (5) on C . C appears in the expression 1+− CL . 
which is unchanged by subtracting z from both L and C. The 
summation terms in (4) and (9) are therefore monotonically 
non-increasing with respect to increasing values of z Ƒ 
Corollary 1: The schedulability of a task is, according to the 
DA and DA-LC tests, a monotonically non-decreasing 
function of the length of its FNR.  
Theorem 2: (Negative result) The RTA and RTA-LC 
schedulability tests for task kτ  under gFPDS are not 
sustainable [6], [20] with respect to increases in the length 

kF  of the task’s FNR.  

Proof: Increasing the FNR length kF  of task kτ  increases 
the execution time of its associated virtual task kvτ  (as 

1−= kkv FC ). With the RTA and RTA-LC tests this can 
result in a large increase in the upper bound response time 

UB
iR  of some higher priority task iτ  due to the inclusion of 

interference from an extra job of a yet higher priority task, as 
well as the extra interference from kvτ  (i.e. blocking). The 
increase in UB

iR  can cause an extra job of task iτ  to interfere 
in the busy window of task kτ  making it unschedulable. 

This scenario occurs with the taskset described in TABLE 
II below, assuming two processors. In this case, if task Dτ  is 
fully pre-emptive, then the computed upper bound response 
times are 10, 5, 10 and 23 for tasks Aτ , Bτ , Cτ , and Dτ  
respectively; however, increasing the FNR length of task Dτ
, so that 2=DF , results in upper bound response times of 10, 
6, 15, and 27, which would make task Dτ  unschedulable if it 
had a deadline of 25. This increase in the upper bound 
response time of task Dτ  is due to the large increase in the 
upper bound response time of task Cτ  from 10 to 15, and the 
subsequent inclusion of an extra job of task Cτ  in the busy 
window of task Dτ . It is easy to construct examples where 
decreasing the FNR length of a task kτ  can result in the task 
becoming unschedulable due to additional pre-emptions 
from higher priority tasks Ƒ 

TABLE II: EXAMPLE TASK PARAMETERS 

Task Execution time Period Deadline 
Aτ  10 100 10
Bτ  5 10 10
Cτ  5 15 15
Dτ  7 100 100

B. Solving the FNR and FNR-PA Problems 
Due to the fact that the RTA and RTA-LC tests are 

unsustainable with respect to changes in FNR lengths, we 
now focus solely on the DA and DA-LC tests. 

To aid in solving the FNR and FNR-PA problems, we 
introduce the concept of a blocking vector. For a given 
taskset and priority ordering X, we use )(kB  to represent the 
blocking vector at priority k, where the blocking vector 
relates to the set of FNR lengths of the ordered set of lower 
priority tasks )(klp . Hence: 

))1)...(1(),1(()( 11 −−−= +− knn FFFkB    (16) 
We define a ‘greater than or equal to’ ( ≥ ) and similarly a 
‘less than or equal to’ ( ≤ ) relationship between blocking 
vectors with the meaning 21 BB ≥  if every element in 2B  is 
no larger than the corresponding element in 1B . 

We now state two corollaries about the DA and DA-LC 
tests for gFPDS. 
Corollary 2: Task schedulability under gFPDS according to 
the DA and DA-LC tests is sustainable with respect to 
decreases in the blocking vector. Stated otherwise, according 
to the DA and DA-LC tests, a task that is schedulable at 
priority k with a blocking vector )(kB  remains schedulable 
when the blocking vector is reduced (e.g. by reducing the 
FNR length of one or more lower priority tasks) and the sets 

)(klp  and )(khp  of lower and higher priority tasks remain 
unchanged. 



Corollary 3: Using the DA and DA-LC schedulability tests 
for gFPDS, the minimum schedulable FNR length kF  for a 
task kτ  is monotonically non-increasing with respect to 
decreases in the blocking vector. Stated otherwise, a smaller 
blocking vector at priority k cannot result in a larger 
minimum length for the FNR of the task at that priority level.  

We now investigate using the FNR and FNR-PA 
algorithms presented in [27] to solve Problems 1 and 2 for 
multiprocessor systems. The two algorithms are the same as 
those used in the uniprocessor case with the exception that 
the schedulability tests used are the DA or DA-LC tests for 
gFPDS and due to Theorem 1, a binary search may be used 
to determine the smallest FNR length commensurate with 
task schedulability. 

The proof of Theorem 3 uses the techniques from the 
uniprocessor case with minor adjustments for the way in 
which lower priority tasks now impinge on the schedulability 
of higher priority tasks. 
for each priority level k, lowest first { 
 determine the smallest value for the final 
 non-pre-emptive region length F(k) such that 
 the task at priority k is schedulable 
 according to test S. 
 Set the length of the final non-pre-emptive 
 region of the task to this value. 
} 

Algorithm 2: FNR Algorithm 

Theorem 3: The FNR algorithm (Algorithm 2) is optimal for 
the FNR problem (see Problem 1 and Definition 1).  
Proof: We assume (for contradiction) that there exists a 
taskset τ  and priority ordering X that is schedulable 
according to schedulability test S, with some set of FNR 
lengths kF '  for k = 1 to n, and that the FNR algorithm fails 
to determine a set of FNR lengths kF  for k = 1 to n, that 
results in the taskset being schedulable according to the test. 

Let )(' kB  be the blocking vector at priority k with the 
schedulable set of FNR lengths, and )(kB  be the blocking 
vector at priority k with the set of FNR lengths computed by 
the FNR Algorithm. At each priority level, we will show that 

kk FF '≤  and hence that )(')( kBkB ≤  thus proving via 
Corollary 2 sustainability of task schedulability with respect 
to blocking vectors that the taskset is schedulable according 
to test S, with priority ordering X and the FNR lengths 
determined by the FNR Algorithm, thus contradicting the 
original assumption. The proof is by induction over each 
priority level k from n to 1.  

Initial step: At the lowest priority level n, trivially we 
have φ== )(')( nBnB . At priority n, the FNR Algorithm 
(Algorithm 2) computes, according to test S, the minimum 
schedulable FNR length nF  for task nτ  hence nn FF '≤ . 

Inductive step: We assume that at priority k, 
)(')( kBkB ≤  and kk FF '≤ , hence )1(')1( −≤− kBkB  and 

thus via Corollary 3, 11 ' −− ≤ kk FF  
Iterating over all of the priority levels shows that for all k 

from n to 1, )(')( kBkB ≤  and so by Corollary 2, the taskset 
is schedulable, according to test S, with the set of FNR 
lengths kF  obtained by Algorithm 2 Ƒ 

Corollary 4: (Follows from the proof of Theorem 3). For a 
given taskset and fixed priority ordering X, that is 
schedulable according to the DA or DA-LC schedulability 
test under gFPDS with some set of FNR lengths, Algorithm 
2 minimises the FNR length of every task, and hence 
minimises the blocking vector at every priority level. 
for each priority level k, lowest first { 

for each unassigned task τ { 
  determine the smallest value for the  

  final non-pre-emptive region length F(k) 
  such that task τ is schedulable at  
  priority k, according to test S assuming 
  all other unassigned tasks have higher 
  priorities.  

  Record as task Z the unassigned task  
  with the minimum value for the length of 
  its final non-pre-emptive region F(k). 

} 
if no tasks are schedulable at priority k { 
  return unschedulable 
} 
else { 
  assign priority k to task Z and use the  
  value of F(k) as the length of its final 

  non–pre-emptive region. 
} 

} 
return schedulable

Algorithm 3: FNR-PA Algorithm 

In contrast to the FNR problem, the FNR-PA problem 
requires a schedulable priority ordering to be established as 
part of the solution to the problem. Algorithm 3 which 
provides a solution to the FNR-PA problem in the 
uniprocessor case is based on Audsley’s Optimal Priority 
Assignment (OPA) algorithm and uses a greedy bottom up 
approach. Hence it is in any case only compatible with the 
DA and DA-LC tests, and not the RTA and RTA-LC tests. 
Theorem 4: (Negative result) The Final Non-pre-emptive 
Region Priority Assignment (FNR-PA) algorithm 
(Algorithm 3) is not optimal for the FNR-PA problem (see 
Problem 2 and Definition 2) in the multiprocessor case i.e. 
gFPDS using the DA or DA-LC schedulability tests. 
Proof: Proof is via a counterexample where the FNR-PA 
algorithm fails to find a schedulable combination of priority 
assignment and FNR lengths, when such a combination 
exists. The example is for the DA test, similar tasksets can be 
constructed for the DA-LC test. We assume a system with 
two processors and the taskset given in TABLE III. With four 
tasks, there are 24 distinct priority orderings (n! = 24); 
however, in this case only two are schedulable given 
appropriate choices of FNR lengths. Attempting to build a 
schedulable priority ordering from the lowest priority 
upwards, we find that neither task Aτ  nor task Bτ  is 
schedulable at the lowest priority (priority 4) even if they are 
made completely non-pre-emptable. 

Case 1: If we assign task Dτ  priority 4, then it requires a 
minimum FNR length of 42=DF  to be schedulable. Then at 
priority level 3, we find that tasks Aτ  and Bτ  are again not 
schedulable, but task Cτ  is schedulable with a minimum 
FNR length of 38=CF . However, now due to the large 
combined blocking effect modelled as the virtual tasks Dvτ  



and Cvτ  (i.e. 41 + 37 = 78) neither task Aτ  nor Bτ  is 
schedulable at priority 2 and hence there is no schedulable 
priority assignment with task Dτ  at the lowest priority. 

Case 2: If we assign task Cτ  the lowest priority, then it 
requires a minimum FNR length of 58=CF  to be 
schedulable. Again we find that tasks Aτ  and Bτ  are not 
schedulable at priority 3. Now assigning task Dτ  to priority 
3, we find that it is schedulable with 1=DF  (i.e. fully pre-
emptive). Now, the blocking effect on whichever task, Aτ  or 

Bτ , we choose for priority 2 is only 57, and hence either task 
is schedulable at that priority with the other at priority 1. In 
both cases we have 1=AF  and 1=BF . 

The behaviour of the FNR-PA algorithm corresponds to 
Case 1 and so using the DA test, it would fail to find a 
schedulable combination of priority ordering and FNR 
lengths for this taskset; however, such a schedulable 
combination exists as shown in Case 2 Ƒ 

TABLE III: COUNTEREXAMPLE TASK PARAMETERS 

Task Execution time Period Deadline 
Aτ  36 207 110
Bτ  86 178 141
Cτ  93 525 195
Dτ  62 767 195

We note that the optimality of the FNR-PA algorithm 
breaks down in the multiprocessor case, because the 
blocking effect depends on a summation over the FNR 
lengths of lower priority tasks rather than a maximum, as in 
the single processor case. Minimising the FNR length at a 
given priority level does not necessarily minimise this 
summation, as shown in the above counterexample. 

VI. EXPERIMENTAL EVALUATION 
In this section, we evaluate the performance of gFPDS 

with respect to gFPPS and gFPNS. We compared the 
scheduling algorithms under the following priority 
assignment policies: (i) Deadline Monotonic (DMPO), (ii) 
DkC [22], [23], and (iii) Audsley’s Optimal Priority 
Assignment (OPA) algorithm for gFPPS and gFPNS. In the 
case of gFPDS, we used the FNR algorithm to obtain 
optimum final non-pre-emptive region lengths in conjunction 
with the heuristic priority assignment policies, and the FNR-
PA Algorithm to provide both priority and FNR length 
assignment. We also made comparisons with the dynamic 
scheduling algorithm FPZL [24], [25] which has some 
similarities in its behaviour to gFPDS. The lines on the 
graphs are labelled according to the scheduling algorithm 
and priority assignment policy used, e.g. gFPDS (DkC). In 
all cases, we used the appropriate DA-LC test. 
A. Parameter generation 

The task parameters used in our experiments were 
randomly generated as follows: 
o First, an unbiased set of n utilisation values 1≤iU , were 

generated with a total utilisation of U , (see [28] and 
[23] for how to generate an unbiased set of such values). 

o Task periods were generated according to a log-uniform 
distribution (i.e. such that )ln(T has a uniform 

distribution). Here the ratio between the maximum and 
the minimum permissible task period was given by r10 . 
By default, this range was 100, i.e. r = 2. 

o Task execution times were set based on the task 
utilisation and period selected: iii TUC = . 

o Task deadlines were implicit: ii TD =  
o Taskset cardinality was z times the number of 

processors. By default, z = 5. 
We examined systems with m = 2, 4, and 8 processors. In 
each experiment, the taskset utilisation was varied from 
0.025m to 0.975m in steps of 0.025m. For each utilisation 
value, 1000 tasksets were generated and their schedulability 
determined according to the various scheduling algorithms. 
Note due to the large number of lines on the graphs, the 
figures are best viewed online in colour. 
B. Success ratio 

In our first set of experiments, we compared the 
performance of the scheduling algorithms via the success 
ratio; the proportion of randomly generated tasksets that are 
deemed schedulable in each case. 

Figure 4: Success ratio for m = 8, n = 40, implicit deadlines 

Figure 4 shows the results of this experiment for an 8 
processor system with an implicit deadline taskset of 
cardinality 40, and a range of task periods of 100. We 
observe that the performance of gFPNS (dotted lines) was 
relatively poor for all priority assignment policies, due to the 
difficulty in accommodating tasks with long execution times. 
As expected, the results for gFPPS (solid lines with 
markers), show that optimal priority assignment 
outperformed the various heuristic priority assignment 
policies. Using gFPDS substantially better results were 
obtained for the various heuristic priority assignment policies 
as compared to gFPPS, with the best performance obtained 
using the FNR-PA algorithm. In all cases, gFPDS 
significantly outperformed gFPPS and gFPNS assuming a 
like-for-like priority assignment policy. gFPDS using the 
FNR-PA algorithm resulted in performance roughly half-
way between that of gFPPS and the dynamic FPZL 
algorithm (solid line, no markers) assuming optimal priority 
assignment. 
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C. Weighted schedulability 
In our second set of experiments we compared how the 

overall performance of each of the scheduling algorithms 
varies with respect to changes in a specific parameter via 
weighted schedulability [10].  

 
Figure 5: Weighted schedulability as a function of taskset size 

The first parameter examined was taskset cardinality. 
Figure 5 shows how the weighted schedulability varies with 
increasing taskset size (from 2 to 20 tasks per processor, i.e. 
from 16 to 160 tasks on an 8 processor system) for each of 
the algorithms. We observe that increasing taskset cardinality 
results in tasks that have smaller utilisation on average and 
are therefore easier to schedule in the multiprocessor case, as 
noted in [22], [23]. As the ratio of tasks to processors 
increases, the advantage conferred by deferred pre-emption 
(and the dynamic FPZL algorithm) gradually decreases. This 
is because the individual utilisation of each task is becoming 
quite small reducing the benefits that can be obtained over 
fully pre-emptive scheduling. 

 
Figure 6: Weighted schedulability as a function of period range, D ≤ T 

The second parameter we examined was the range of task 
periods. Figure 6 shows how the weighted schedulability 
varies with the log-range r of task periods given by the ratio 

r10  between the maximum and the minimum permissible 
task period. Here, the value of r was varied from r = 0.5 (

16.310 5.0 = ) to r = 4 ( 000,10104 = ). Figure 6 shows that 
gFPDS shows the largest improvement over gFPPS when the 
range of task periods is relatively small. This is because with 
all task periods and deadlines of a similar duration, all of the 
tasks can typically tolerate significant blocking and so there 
is scope to choose FNR lengths that improve schedulability. 

As expected, both gFPPS and gFPDS show improved 
performance as the range of task periods increases, while 
gFPNS shows rapidly declining performance. This is 
because tasks with relatively long periods tend to have large 
execution times which may be longer than the deadlines of 
other tasks. Once there are more of these tasks than 
processors, non-pre-emptive scheduling becomes infeasible. 
(It is interesting to note that for very small ranges of task 
periods, gFPNS, and hence also gFPDS can be more 
effective than FPZL). 

VII. SUMMARY AND CONCLUSIONS 
Global fixed priority scheduling with deferred pre-

emption (gFPDS), dominates both global fixed priority fully 
pre-emptive (gFPPS) and global fixed priority non-pre-
emptive scheduling (gFPNS). In this paper we provided 
analysis for a simple model of gFPDS on homogeneous 
multiprocessors, where each task has a single non-pre-
emptive region at the end of its execution. We showed that 
an appropriate choice of the length of this region can 
enhance schedulability.  

The main contributions of this paper are as follows: 
o Introduction of sufficient schedulability tests for gFPDS. 
o Proof that the FNR algorithm [27] is compatible with 

the DA and DA-LC tests for gFPDS, and can be used to 
obtain the optimal final non-preemptive region lengths 
for a given priority ordering. 

o Proof via a counterexample, that the joint problem of 
priority and FNR length assignment cannot be solved 
optimally via a greedy, bottom-up approach using the 
FNR-PA Algorithm from [27]. 

o An experimental evaluation of the performance benefits 
of gFPDS over gFPPS and gFPNS. We note that the 
additional comparisons with FPZL could be interpreted 
as suggesting that the dynamic algorithm FPZL is 
preferable; however, we have shown that much of the 
improvement FPZL obtains over gFPPS can be achieved 
by the simple adaptation of Final Non-pre-emptive 
regions (gFPDS). This approach fits better with the 
current fixed priority scheduling approaches used for 
example in the automotive electronics industry, and 
raises fewer issues for resource locking as under gFPDS, 
the priority of a task can only increase when it is 
actually running.. 

Building on this work, there are two key areas which we 
aim to explore. Firstly, in single processor systems, tasks 
often execute as a series of non-pre-emptive regions with 
pre-emption points between them [16]. However, with the 
normal fixed priority scheduling policy, such an arrangement 
is ineffective in the multiprocessor case. This is illustrated in 
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Figure 1, which shows that there is the potential for every 
non-pre-emptive region of every lower priority task to 
interfere with the execution of a higher priority task, making 
the approach unworkable. To address this problem, we 
intended to investigate simple modifications to the fixed 
priority scheduling policy that reduce such blocking effects. 

Secondly, our simple model assumes that task execution 
times are independent of pre-emption and pre-emption and 
migration costs are negligible; however, in many real-time 
systems each pre-emption and migration incurs a significant 
cost, particularly in systems using cache. For large tasksets, 
allowing arbitrary pre-emption can result in lower priority 
tasks being pre-empted a large number of times, significantly 
increasing cache-related pre-emption delays (CRPD) to the 
detriment of schedulability [1], [2]. The integration of CRPD 
and schedulability analysis is a key area which we intend to 
explore further.  
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APPENDIX 
We note that while our schedulability tests for gFPDS 

dominate the equivalent tests for gFPPS, they do not 
dominate the equivalent tests for gFPNS which include 
blocking from a most m lower priority tasks [30]. We can 
however apply specific schedulability tests for gFPDS for 
the special case of a task kτ  which is fully non-pre-emptive, 
as set out below. 

A. Special case of a fully non-pre-emptive task in a gFPDS 
system 
In the case of gFPDS scheduling where a task kτ  is fully 

non-pre-emptive, i.e. when kk CF = , )1(* −−= kkk CDD , 
and 1* =kC , then more precise analysis is possible. This 
analysis is based on the approach of Guan et al. [30] for 
gFPNS (where all tasks are fully non-pre-emptive). 
For a fully non-pre-emptive task kτ  we note that: 

(i) A lower priority task jτ  can only delay the 
execution of task kτ  if it begins to execute its final 
non-pre-emptive region prior to the release of task 

kτ . Hence the maximum interference from a lower 
priority task jτ  is zero if it does not have a carry-in 
job2 and 1−jF  if it has a carry-in job. So, for the 
virtual task jvτ  representing jτ , we have 

1),(),( −== j
R
jv

D
jv FCLICLI , and 0),( =CLI NC

jv . 
(ii) With m processors, at most m lower priority tasks 

can be in non-pre-emptive regions when task kτ  is 
released (see Lemma 5.2 of [30]). So at most m 
virtual tasks can have carry-in jobs. 

(iii) In the worst-case scenario, at most m –1 higher 
priority tasks can have carry-in jobs (Theorem 1 of 
[23]). 

DA test: for a fully non-pre-emptive task kτ  under 
gFPDS: 
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where MB(k) is the subset of at most m tasks with the largest 
values of 1−jF , from the set of tasks lp(k). 

The DA test for gFPDS takes account of points (i), and 
(ii) above, but not point (iii).  

The DA-LC test below combines points (ii) and (iii). 
DA-LC test: for a fully non-pre-emptive task kτ  under 
gFPDS: 
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(A.2) 
where MDB(k) is the subset of the m tasks with the largest 
values of ),( **

kk
DDIFF

i CDI −  from the set of tasks 
)()( klpvkhp ∪  provided at least one of those tasks is from 

                                                           
2 We refer to a lower priority task as having a carry-in job if it enters  its 
final non-pre-emptive region (effectively releasing its corresponding virtual 
task) before the release of the task of interest (start of the busy window). 

)(klpv , otherwise MDB(k) equates to the subset of at most 
m-1 tasks with the largest values of ),( **

kk
DDIFF

i CDI −  given 
by (8), from the set of tasks hp(k), and the single virtual task 
from )(klpv  that has the largest value of ),( **

kk
DDIFF

i CDI − . 
RTA test: The upper bound response time S

kR  for the 
start (first unit of execution) of a fully non-pre-emptive task 

kτ  under gFPDS, may be computed via the fixed point 
iteration given by (A.3) within Algorithm 1. The task is 
schedulable if *

k
S
k DR ≤ , where *

kD  is the task’s effective 
deadline )1(* −−= kkk CDD . 
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If the task is schedulable, then an upper bound on its worst-
case response time is given by )1( −+= k

S
k

UB
k CRR . 

RTA-LC test: The upper bound response time S
kR  for 

the start (first unit of execution) of a fully non-pre-emptive 
task kτ  under gFPDS, may be computed via the fixed point 
iteration given by (A.4) within Algorithm 1. The task is 
schedulable if *

k
S
k DR ≤ , where *

kD  is the task’s effective 
deadline )1(* −−= kkk CDD . 
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 (A.4) 
where MRB(k) is the subset of the m tasks with the largest 
values of ),( *

k
S
k

RDIFF
i CRI −  from the set of tasks 
)()( klpvkhp ∪  provided at least one of those tasks is from 

)(klp , otherwise MDB(k) equates to the subset of at most m-
1 tasks with the largest values of ),( *

k
S
k

RDIFF
i CRI −  given by 

(14), from the set of tasks hp(k), and the single virtual task 
from )(klpv  that has the largest value of ),( *

k
S
k

RDIFF
i CRI − . 

If the task is schedulable, then an upper bound on its worst-
case response time is given by )1( −+= k

S
k

UB
k CRR . 

We note that the RTA and RTA-LC tests given by (A.3) 
and (A.4) do not depend on the upper bound response times 
of lower priority tasks, and so the iteration of Algorithm 1 is 
unnecessary if all tasks are fully non-pre-emptive. In that 
case, upper bound response times may be evaluated highest 
priority first.  

We observe that the schedulability tests given in this 
section for the special case of a fully non-pre-emptive task 
dominate the equivalent tests for the general case of deferred 
pre-emption with kk CF =  given in section IV. This means 
that the DA and DA-LC tests retain their monotonic 
behaviour with respect to increasing values of kF  if in the 
special case of kk CF =  we use the specific tests given by 
(A.1) and (A.2) instead of the more general ones given by (4) 
and (9). This was done in our experimental evaluation. 

 


