

Global Fixed Priority Scheduling with
Deferred Pre-emption

Technical Report

CISTER-TR-130602

Version:

Date: 6/11/2013

Robert Davis

Alan Burns

José Marinho

Vincent Nelis

Stefan M. Petters

Marko Bertogna

Technical Report CISTER-TR-130602 Global Fixed Priority Scheduling with Deferred Pre-emption

© CISTER Research Unit
www.cister.isep.ipp.pt 1

Global Fixed Priority Scheduling with Deferred Pre-emption
Robert Davis, Alan Burns, José Marinho, Vincent Nelis, Stefan M. Petters, Marko Bertogna

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: , burns@cs.york.ac.uk, jmssm@isep.ipp.pt, nelis@isep.ipp.pt, smp@isep.ipp.pt,

http://www.cister.isep.ipp.pt

Abstract
This paper introduces schedulability analysis for global fixed priority scheduling with deferred pre-emption (gFPDS)
for homogeneous multiprocessor systems. gFPDS is a superset of global fixed priority pre-emptive scheduling
(gFPPS) and global fixed priority non-pre-emptive scheduling (gFPNS).We show how schedulability can be improved
via appropriate choice of priority assignment and final non-pre-emptive region lengths, and we provide algorithms
which optimize schedulability in this way. An experimental evaluation shows that gFPDS significantly outperforms
both gFPPS and gFPNS.

Global Fixed Priority Scheduling with Deferred Pre-emption

R.I. Davis, A. Burns
University of York, UK.

{rob.davis, alan.burns}@york.ac.uk

J. Marinho, V. Nelis, S.M. Petters
CISTER/INESC-TEC, ISEP, Porto, Portugal.

{jmsm, nelis, smp}@isep.ipp.pt

M. Bertogna
University of Modena, Italy.
marko.bertogna@unimore.it

Abstract— This paper introduces schedulability analysis for
global fixed priority scheduling with deferred pre-emption
(gFPDS) for homogeneous multiprocessor systems. gFPDS is a
superset of global fixed priority pre-emptive scheduling (gFPPS)
and global fixed priority non-pre-emptive scheduling (gFPNS).
We show how schedulability can be improved via appropriate
choice of priority assignment and final non-pre-emptive region
lengths, and we provide algorithms which optimize schedulability
in this way. An experimental evaluation shows that gFPDS
significantly outperforms both gFPPS and gFPNS.

I. INTRODUCTION
A common misconception with regard to fixed priority

scheduling of sporadic tasks is that fully pre-emptive
scheduling is more effective in terms of schedulability than
non-pre-emptive scheduling. The two are however
incomparable; there are tasksets that are schedulable under
fixed priority non-pre-emptive scheduling that are not
schedulable under fixed priority pre-emptive scheduling and
vice-versa. This is the case for uniprocessor scheduling [27]
and also the case for global multiprocessor scheduling [30],
which is the focus of this paper.

While the blocking effect, due to long non-pre-emptive
regions of low priority tasks degrades schedulability for
single processor systems that have a wide range of task
execution times and periods (as illustrated by Figure 7 in
[27]), Guan et al. [30] showed that the same is not
necessarily true for multiprocessor systems. With m
processors rather than one, long non-pre-emptive regions can
be accommodated without necessarily compromising the
schedulability of higher priority tasks. However, this
advantage only extends so far; with m processors then m
long non-pre-emptive regions are enough to significantly
compromise schedulability. In this context, limited non-pre-
emptive execution has the advantage of reducing the number
of pre-emptions, and potentially improving the worst-case
response time of tasks, while also keeping blocking effects
on higher priority tasks within tolerable limits.

In the literature, the term fixed priority scheduling with
deferred pre-emption has been used to refer to a variety of
different techniques by which pre-emptions may be deferred
for some interval of time after a higher priority task becomes
ready. These are described in a survey by Buttazzo et al. [21]
and briefly discussed in Section II. In this paper, we assume
a simple form of fixed priority scheduling with deferred pre-
emption where each task has a single non-pre-emptive region
at the end of its execution. If this region is of the minimum
possible length for all tasks, then we have fully pre-emptive
scheduling, whereas if it constitutes all of the task’s
execution time then we have non-pre-emptive scheduling.

In this paper, we introduce sufficient schedulability tests
for global fixed priority scheduling with deferred pre-

emption (gFPDS). gFPDS can be viewed as a superset of
both global fixed priority pre-emptive scheduling (gFPPS)
and global fixed priority non-pre-emptive scheduling
(gFPNS) and strictly dominates both. With gFPDS, there are
two key parameters that affect schedulability: the priority
assigned to each task, and the length of each task’s final non-
pre-emptive region (FNR). The FNR length affects both the
schedulability of the task itself, and the schedulability of
tasks with higher priorities. This is a trade-off as increasing
the FNR length can improve schedulability for the task itself
by reducing the number of times it can be pre-empted, but
potentially increases the blocking effect on higher priority
tasks which may reduce their schedulability.

In 2012, Davis and Bertogna [27] introduced an optimal
algorithm for fixed priority scheduling with deferred pre-
emption on a single processor. This algorithm finds a
schedulable priority assignment and set of FNR lengths
whenever such a schedulable combination exists. In this
paper we also build upon this work, extending it to the
multiprocessor case. For a given priority ordering, we show
how to find an assignment of FNR lengths that result in a
system that is deemed schedulable under gFPDS according
to our sufficient schedulability tests, whenever such an
assignment exists of FNR lengths exists. We also show that
the Final Non-pre-emptive Region and Priority Assignment
(FNR-PA) algorithm from [27] is not optimal in the
multiprocessor case, but nevertheless can be used as a
heuristic for determining both priority ordering and final
non-pre-emptive region lengths.

II. BACKGROUND RESEARCH
A. Deferred pre-emption

Two different models of fixed priority scheduling with
deferred pre-emption have been developed in the literature.

In the fixed model, introduced by Burns in 1994 [19], the
location of each non-pre-emptive region is statically
determined prior to execution. Pre-emption is only permitted
at pre-defined locations in the code of each task, referred to
as pre-emption points. This method is also referred to as co-
operative scheduling, as tasks co-operate, providing re-
scheduling / pre-emption points to improve schedulability.

In the floating model [7], [32], an upper bound is given
on the length of the longest non-pre-emptive region of each
task. However, the location of each non-pre-emptive region
is not known a priori and may vary at run-time, for example
under the control of the operating system.

For uniprocessor systems: Exact schedulability analysis
for the fixed model was derived by Bril et al. in 2009 [18].
Subsequently, Bertogna et al. integrated pre-emption costs
and cache related pre-emption delays (CRPD) into analysis
of the fixed model, considering both fixed [14] and variable

[15] pre-emption costs. In 2011, Bertogna et al. [16] derived
a method for computing the optimal FNR length of each task
in order to maximize schedulability assuming a given
priority assignment. In 2012, Davis and Bertogna [27]
introduced an optimal algorithm that is able to find a
schedulable combination of priority assignment and FNR
lengths whenever such a schedulable combination exists.
B. Global fixed priority scheduling

In 2003, Baker [5] developed a strategy that underpins an
extensive thread of subsequent research into schedulability
tests for gFPPS [9], [11], [12], [13], [29], [31], and gFPNS
[30]. (For a comprehensive survey of multiprocessor real-
time scheduling, the reader is referred to [26]). Baker’s work
was subsequently built upon by Bertogna et al. [11] [13].
They developed sufficient schedulability tests for gFPPS
based on bounding the maximum workload in a given
interval. In 2007, Bertogna and Cirinei [12] adapted this
approach to iteratively compute an upper bound on the
response time of each task, using the upper bound response
times of other tasks to limit the amount of interference
considered. In 2009, Guan et al. [31] extended this approach
using ideas from [8] to limit the amount of carry-in
interference.

In 2009 and 2010, Davis and Burns [22], [23] showed
that priority assignment is fundamental to the effectiveness
of gFPPS. They proved that Audsley’s optimal priority
assignment algorithm [3], [4] is applicable to some of the
sufficient tests developed for gFPPS, including the deadline-
based test of Bertogna et al. [13], but not to others such as
the later response time tests [12], [31].

In 2011, Guan et al. [30] provided schedulability analysis
for gFPNS based on the approach of Baker [5], and the
techniques introduced by Bertogna et al. in [11].

gFPDS is broadly similar to the dynamic algorithm FPZL
[24], [25]. FPZL resembles gFPPS until a job reaches a state
of zero laxity i.e. when its remaining execution time is equal
to the elapsed time to its deadline. FPZL gives such a job the
highest priority, and hence makes it non-pre-emptable. The
length of time each job spends executing in this zero-laxity
state is determined dynamically by FPZL. With FPZL,
RTOS support for this dynamic behaviour is required,
whereas with gFPDS the transition to non-pre-emptive
execution may be controlled either by the RTOS, or via API
calls suitably located within the code of each task.

III. SYSTEM MODEL, TERMINOLOGY AND NOTATION
In this paper, we are interested in global fixed priority

scheduling of an application on a homogeneous
multiprocessor system with m identical processors. The
application or taskset is assumed to consist of a static set of n
tasks (nττ ...1), with each task iτ assigned a unique priority i,
from 1 to n (where n is the lowest priority). We assume a
discrete time model, where all task parameters are positive
integers (e.g. processor clock cycles). We use the notation

)(ihp (and)(ilp) to mean the set of tasks with priorities
higher than (lower than) i.

Tasks are assumed to comply with the sporadic task
model. In this model, each task gives rise to a potentially
unbounded sequence of jobs. Each job may arrive at any
time once a minimum inter-arrival time has elapsed since the
arrival of the previous job of the same task.

Each task iτ is characterised by its relative deadline iD ,
worst-case execution time iC (ii DC ≤), and minimum
inter-arrival time or period iT . It is assumed that all tasks
have constrained deadlines (ii TD ≤). The utilisation iU of
each task is given by ii TC / . Under gFPDS, each task is
assumed to have a final non-pre-emptive region of length iF
in the range],1[iC (Here, the minimum value is 1 rather
than 0 as a task can only be pre-empted at discrete times
corresponding to processor clock cycles). Finding an
appropriate FNR length for each task is assumed to be part of
the scheduling problem.

The worst-case response time iR of a task is the longest
possible time from the release of the task until it completes
execution. Thus task iτ is schedulable if and only if ii DR ≤
and a taskset is schedulable if and only if ii DRi ≤∀ . We
use UB

iR to indicate an upper bound on the worst-case
response time of task iτ .

Under gFPDS, at any given time, the m ready tasks with
the highest priorities are selected for execution. Final non-
pre-emptive regions are assumed to be implemented by
manipulating task priorities, thus a task executing its FNR
has the highest priority and will not be pre-empted.

The tasks are assumed to be independent and so cannot
be blocked from executing by another task, other than due to
contention for the processors. Further, it is assumed that once
a job starts to execute it will not voluntarily suspend itself.

Job parallelism is not permitted; hence, at any given time,
each job may execute on at most one processor. As a result
of pre-emption and subsequent resumption, a job may
migrate from one processor to another. The cost of pre-
emption, migration, and the run-time operation of the
scheduler are assumed to be either negligible, or subsumed
within the worst-case execution time of each task. (Pre-
emption costs are an issue we aim to address in future work).

A taskset is said to be schedulable with respect to some
scheduling algorithm, if all valid sequences of jobs that may
be generated by the taskset can be scheduled by the
algorithm without any missed deadlines.

A priority assignment policy P is said to be optimal with
respect to a schedulability test for some type of fixed priority
scheduling algorithm (e.g. gFPPS, gFPNS, or gFPDS) if
there are no tasksets that are deemed schedulable, according
to the test, under the scheduling algorithm using any other
priority ordering policy, that are not also deemed schedulable
with the priority assignment determined by policy P.

IV. SCHEDULABILITY ANALYSIS FOR gFPDS
In this section, we introduce sufficient schedulability

tests for global fixed priority scheduling with deferred pre-
emption (gFPDS).

On a uniprocessor, under fixed priority scheduling with
deferred pre-emption, a higher priority task can only be
blocked by a single job of a lower priority task that starts

executing non-pre-emptively prior to the release of the
higher priority task. The multiprocessor case is however
significantly different. This is illustrated by Figure 1 below,
for the case of 4 processors. Here, the task of interest kτ
(priority 2) is released at time t=1, along with a job of the
higher priority task 1τ . kτ is unable to execute initially due
to blocking from three jobs of lower priority tasks (3τ , 4τ ,
and 5τ) that have entered their FNRs (shown in dark grey in
Figure 1). At time t=4, kτ begins executing. At t = 7, three
further jobs of lower priority tasks (6τ , 7τ , and 5τ again)
enter their FNRs. At t=8, task kτ is pre-empted by a second
job of 1τ and misses its deadline at t=12.

Figure 1: Blocking effect due to FNRs of lower priority jobs.

This example serves to illustrate the following:
o Multiple lower priority tasks may contribute interference

in the busy window of the task of interest. Further, the
number of lower priority tasks that may contribute is not
limited to m as it is in the non-pre-emptive case [30].

o Multiple jobs of the same lower priority task may
contribute interference, due to the fact that the task of
interest does not occupy all of the processors when it
executes; unlike in the uniprocessor case.

o If there were multiple non-pre-emptive regions within
each lower priority task, then each of these regions
could potentially contribute interference. (This is easy to
see by assuming that all of the execution of task 5τ on
processor 1 belongs to one job rather than two).

While no worst-case scenario is currently known, we can
obtain an upper bound on the interference from the non-pre-
emptive execution of lower priority tasks, by modelling this
non-pre-emptive execution as a set of virtual tasks executing
at the highest priority. Thus for each lower priority task

)(klpi ∈τ , we assume a virtual task ivτ with the following
parameters: 1−= iiv FC , iiv TT = , iiv DD = , UB

i
UB
iv RR = and

the highest priority. (We note that 1−= iiv FC as the task
must have actually entered its FNR in order to be non-pre-
emptable).

We note the following points about gFPDS:
1. Once a task kτ enters its FNR it will execute to

completion. Hence with gFPDS if we can show that the
task is guaranteed to execute for)1(* −−= kkk FCC
within an effective deadline of)1(* −−= kkk FDD , then
it is guaranteed to execute for kC by its deadline kD .

2. In the worst-case scenario, at most m – 1 higher priority
tasks can have carry-in jobs (Theorem 1 of [23]).

3. Virtual tasks representing the FNRs of lower priority
tasks can effectively be released at any point during the

interval in which the corresponding lower priority task
may execute, hence the argument of Theorem 1 in [23]
relating to a maximum of m – 1 carry-in jobs does not
apply to virtual tasks.

A. Deadline Analysis for gFPDS
We now extend and adapt the deadline-based,

schedulability test of Bertogna et al. (Theorem 8 in [13]) to
gFPDS. Under gFPPS, if task kτ is schedulable in an
interval of length L, with an execution time of C , then an
upper bound on the interference over the interval due to a
higher priority task iτ with a carry-in job1 is given by the
following equation [13].

)1),(min(),(+−= CLLWCLI D
i

D
i (1)

where)(LW D
i is an upper bound on the workload of task iτ

in an interval of length L, given by:
))(,min()()(i

D
iiiii

D
i

D
i TLNCDLCCLNLW −−++= (2)

and)(LN D
i is the maximum number of jobs of task iτ that

contribute all of their execution time in the interval:

»
¼

»
«
¬

« −+=
i

iiD
i T

CDLLN)((3)

Making use of *
kD and *

kC to account for the fact that task
kτ is schedulable under gFPDS if it is able to start its FNR

by *
kD results in the following schedulability test:

Deadline Analysis (DA) test for gFPDS: A sporadic
taskset is schedulable, if for every task kτ , inequality (4)
holds:

»
»
¼

»

«
«
¬

«

¸
¸
¹

·
¨
¨
©

§
++≥ ¦ ¦

∈∀ ∈∀)()(

******),(),(1

khpi klpvi
kk

D
ikk

D
ikk CDICDI

m
CD (4)

where)(klpv is the set of virtual tasks used to model the
non-pre-emptive execution of tasks in)(klp . (Note the floor
function comes from the use of integer values for all task
parameters).

We now improve the DA test using the approach of Guan
et al. [31]. They showed that for gFPPS, an upper bound on
the interference over an interval L due to a higher priority
task iτ without a carry in job is given by:

)1),(min(),(+−= CLLWCLI NC
i

NC
i (5)

where:
))(,min()()(i

NC
iii

NC
i

NC
i TLNLCCLNLW −+= (6)

and
¬ ¼i

NC
i TLLN /) (= (7)

The difference between the interference terms (1) and (5) is:
),(),(),(CLICLICLI NC

i
D
i

DDIFF
i −=− (8)

Davis and Burns [23] showed that the worst-case scenario
for gFPPS occurs when there are at most m-1 carry-in jobs.
Thus an improved test for gFPDS is as follows:

1 Here, a carry-in job is defined as a job that is released strictly prior to the
start of the interval, and causes interference within that interval.

Deadline Analysis – Limited Carry-in (DA-LC test)
for gFPDS: A sporadic taskset is schedulable, if for every
task kτ , inequality (9) holds:

»
»
»
»
»
»
»
»

¼

»

«
«
«
«
«
«
«
«

¬

«

¸̧
¸
¸
¸
¸
¸
¸

¹

·

¨̈
¨
¨
¨
¨
¨
¨

©

§

+

+

+≥

¦

¦

¦

∈∀

−∈

−
∈∀

)(

**

)1,(

**

)(

**

**

),(

),(

),(

1

klpvj
kk

D
j

mkMDi
kk

DDIFF
i

khpi
kk

NC
i

kk

CDI

CDI

CDI

m
CD (9)

where MD(k, m-1) is the subset of at most m-1 tasks with the
largest values of),(kk

DDIFF
i CDI − from hp(k).

B. Response Time Analysis for gFPDS
We now extend and adapt the response time test of

Bertogna and Cirinei [12] to gFPDS. They showed that
under gFPPS, if task kτ is schedulable in an interval of
length L, completing an execution time C , then an upper
bound on the interference in that interval due to a higher
priority task iτ with a carry-in job is given by:

)1),(min(),(+−= CLLWCLI R
i

R
i (10)

where,)(LW R
i is an upper bound on the workload of task iτ

in an interval of length L, taking into account the upper
bound response time UB

iR of task iτ :
))(,min()()(i

R
ii

UB
iii

R
i

R
i TLNCRLCCLNLW −−++= (11)

and)(LN R
i is given by:

»
»
¼

»

«
«
¬

« −+
=

i

i
UB

R
i T

CRL
LN i)((12)

Making use of *
kD and *

kC to account for the fact that task
kτ is schedulable under gFPDS if it is able to start its FNR

by *
kD results in the following schedulability test. (Note, we

return later to the order in which upper bound response times
are computed, which is resolved by Algorithm 1).

Response Time Analysis (RTA) test for gFPDS: A
sporadic taskset is schedulable, if for every task kτ , the
upper bound response time S

kR for the start (first unit of
execution) of the task’s FNR, computed via the fixed point
iteration given by (13) within Algorithm 1, is less than or
equal to the task’s effective deadline *

kD :

»
»
¼

»

«
«
¬

«

¸
¸
¹

·
¨
¨
©

§
++← ¦¦

∈∀∈∀)(

*

)(

**),(),(1

klpvi
k

S
k

R
i

khpi
k

S
k

R
ik

S
k CRICRI

m
CR (13)

In (13), the second summation term models the blocking
effect from lower priority tasks via the set of virtual tasks. If
task kτ is schedulable, then)1(−+= k

S
k

UB
k FRR .

We now improve the RTA test using the approach of
Guan et al. [31]. They showed that under gFPPS, if a higher
priority task iτ does not have a carry-in job, then the
interference term is given by (5) rather than (10). The
difference between the two interference terms is:

),(),(),(CLICLICLI NC
i

R
i

RDIFF
i −=− (14)

Further, at most m-1 higher priority tasks with carry-in jobs
may contribute interference in the worst-case. Thus an
improved test for gFPDS is as follows:

Response Time Analysis – Limited Carry-in (RTA-
LC) test for gFPDS: A sporadic taskset is schedulable, if for
every task kτ , the upper bound response time S

kR for the
start (first unit of execution) of the task’s FNR, computed via
the fixed point iteration given by (15) within Algorithm 1, is
less than or equal to the task’s effective deadline *

kD :

»
»
»
»
»
»
»
»

¼

»

«
«
«
«
«
«
«
«

¬

«

¸̧
¸
¸
¸
¸
¸
¸

¹

·

¨̈
¨
¨
¨
¨
¨
¨

©

§

+

+

+←

¦

¦

¦

∈∀

−∈

−
∈∀

)(

*

)1,(

*

)(

*

*

),(

),(

),(

1

klpvj
k

S
k

R
j

mkMRi
k

S
k

RDIFF
i

khpi
k

S
k

NC
i

k
S
k

CRI

CRI

CRI

m
CR (15)

where MR(k, m-1) is the subset of at most m-1 tasks with the
largest values of),(k

UB
k

RDIFF
i CRI − , given by (14), from the

set of tasks hp(k). If task kτ is schedulable, then
)1(−+= k

S
k

UB
k FRR .

1 Initialize all UB
iR = iC

2 repeat = true
3 while (repeat) {
4 repeat = false
5 for (each priority level k, highest first) {
6 Calc. UB

kR via RTA or RTA-LC test for gFPDS
7 if (UB

kR > kD) {
8 Return unschedulable
9 }
10 if (UB

kR differs from its previous value) {
11 repeat = true
12 }
13 }
14 }
15 return schedulable

Algorithm 1: Response time iteration

We note that in adapting the methods of Bertogna and
Cirinei [12] and Guan et al. [31] to gFPDS there is a
difficulty in accounting for the interference from virtual
tasks. When computing the upper bound response time for
task kτ the upper bound response times of each higher
priority task are required. This can easily be achieved for the
set of tasks)(khp simply by computing response times in
order, highest priority first, which is all that is needed for
gFPPS. However, when considering gFPDS we also include
interference from virtual tasks corresponding to tasks in

)(klp . Here, the upper bound response time UB
ivR for each

virtual task equates to that of its corresponding (lower
priority) task UB

i
UB
iv RR = , which itself depends on the upper

bound response time of task kτ , leading to an apparent
circularity. This issue can be solved by noting that the upper
bound response time UB

ivR of each virtual task is
monotonically non-decreasing with respect to increases in
the upper bound response times of all tasks in)(ihp , and
the upper bound response time UB

kR of each task kτ is
monotonically non-decreasing with respect to increases in
the upper bound response times of all virtual tasks

associated with tasks in)(klp . Thus we can employ a fixed
point iteration to solve for all upper bound response times
starting with values that are guaranteed to be no larger than
any possible solution, for example i

UB
i CR = . The pseudo

code in Algorithm 1 implements this approach.
C. Complexity and comparability

The DA and DA-LC tests for gFPDS are polynomial in
complexity:)(2nO for a taskset of cardinality n. (Note, the
(m-1) largest DIFF

iI terms may be obtained by linear-time
selection [17]). The RTA and RTA-LC tests are pseudo-
polynomial in complexity,)(max

2
sumDDnO where maxD is

the longest task deadline, and sumD is the sum of task
deadlines. This derives from the fact that on each iteration of
(13) or (15) the response time must increase by at least one
for iteration to continue and after maxD such iterations the
task would be deemed unschedulable. Further, the number of
while loop iterations in Algorithm 1 is limited to sumD , since
on each iteration some response time must increase by at
least one for the loop to continue iterating.

The following comparability relationships hold between
the various schedulability tests. The RTA-LC test dominates
the RTA test and the DA-LC test, both of which dominate
the DA test. The DA-LC and RTA tests are incomparable.
D. Optimal priority assignment

In [22] and [23], Davis and Burns showed that Audsley’s
OPA algorithm [3], [4] can be used to obtain an optimal
priority assignment with respect to any schedulability test
that fulfils the following three conditions:

Condition 1: The schedulability of a task kτ may,
according to test S, depend on the set of tasks with priorities
higher than k, but not on their relative priority ordering.

Condition 2: The schedulability of a task kτ may,
according to test S, depend on the set of tasks with priorities
lower than k, but not on their relative priority ordering.

Condition 3: When the priorities of any two tasks of
adjacent priority are swapped, the task being assigned the
higher priority cannot become unschedulable according to
test S, if it was previously schedulable at the lower priority.
(As a corollary, the task being assigned the lower priority
cannot become schedulable according to test S, if it was
previously unschedulable at the higher priority).

Inspection of the DA and DA-LC tests for gFPDS
shows that these conditions hold (assuming fixed values of

iF) and so these tests are OPA-compatible. Whereas the
dependency on the upper bound response time UB

iR of
higher priority tasks in (11) means that the RTA and RTA-
LC tests are not OPA-compatible.
E. Example of gFPDS

We now provide an example comparing gFPDS with
gFPPS and gFPNS. The example is based on the taskset in
TABLE I. This taskset is trivially unschedulable on two
processors with any form of fixed priority scheduling unless
task Cτ has the lowest priority. Since task Aτ and task Bτ
are equivalent, placing either of them at the lowest priority
would make that task have a response time of 6 and so be

unschedulable. Thus, there is only one viable priority
ordering: Aτ , Bτ , Cτ .

TABLE I: TASK PARAMETERS

Task Execution time Period Deadline
Aτ 3 10 5
Bτ 3 10 5
Cτ 8 25 12

With pre-emptive scheduling (gFPPS), if tasks Aτ and
Bτ are released simultaneously, then task Cτ misses its

deadline, as shown in Figure 2.

Figure 2: Schedule with gFPPS.

Similarly, with non-pre-emptive scheduling (gFPNS), if task
Cτ is released just before tasks Aτ and Bτ , as shown in

Figure 3, then task Bτ misses its deadline.

Figure 3: Schedule with gFPNS.

However, if we use deferred pre-emption and let 1=AF ,
1=BF , and 3=CF , then using the RTA test, we obtain

31 =UBR , 52 =UBR , and 113 =UBR ; proving that the taskset
is schedulable. Here, the FNR of task Cτ is enough to ensure
that there can be no second pre-emption by task Aτ , yet task

Cτ only blocks tasks Aτ and Bτ for a maximum of 2 time
units enabling their deadlines to be met. This example
illustrates the strict dominance, rather than equivalence, of
gFPDS over gFPPS and gFPNS.

Note, this example has been deliberately constructed with
Deadline Monotonic Priority Ordering (DMPO) as the only
feasible priority ordering; however, it is well known that
DMPO is not optimal for global fixed priority scheduling,
and is not even a good heuristic [22], [23].

V. OPTIMAL gFPDS
In this section, we build upon the ideas and techniques

developed in [27] which provide optimal algorithms for
fixed priority scheduling with deferred pre-emption for
uniprocessor systems. We pose the same two problems
relating to the assignment of FNR lengths and priorities for
the multiprocessor case, i.e. under gFPDS. We show that the
first of these problems can be solved in a similar way to the
uniprocessor case, and via a counterexample, that the second
problem cannot.
Problem 1: Final Non-pre-emptive Region length Problem
(FNR Problem). For a given taskset complying with the task

model described in Section III, and a given priority ordering
X, find a length for the FNR of each task such that the taskset
is deemed schedulable under gFPDS by schedulability test S.
Definition 1: An algorithm A is said to be optimal for the
FNR Problem with respect to a schedulability test S, if there
are no taskset / priority assignment combinations that are
deemed schedulable under gFPDS by test S with some set of
FNR lengths, that are not also deemed schedulable by the
test using the set of FNR lengths determined by algorithm A.
Problem 2: Final Non-pre-emptive Region Length and
Priority Assignment Problem (FNR-PA Problem). For a
given taskset complying with the task model described in
Section III, find both (i) a priority assignment, and (ii) a set
of FNR lengths that makes the taskset schedulable under
gFPDS according to schedulability test S.
Definition 2: An algorithm B is said to be optimal for the
FNR-PA Problem with respect to a schedulability test S, if
there are no tasksets compliant with the task model that are
deemed schedulable under gFPDS by test S with some
priority assignment X and some set of FNR lengths, that are
not also deemed schedulable using the priority assignment
and set of FNR lengths determined by algorithm B.
A. Sustainability with respect to FNR lengths

In order to be able to solve Problems 1 and 2 efficiently,
we need to use schedulability tests that are sustainable [6],
[20] with respect to changes in the length of a task’s FNR.
With a sustainable test, we can use binary search to help
solve the problems. In contrast with an unsustainable test, we
would potentially need to check every possible value for the
FNR length of each task which is not practical.
Theorem 1: The DA and DA-LC schedulability tests for task

kτ under gFPDS are sustainable with respect to increases in
the length kF of the task’s FNR.
Proof: To prove the theorem, it suffices to show that if (4) or
(9) hold for some pair of values (*

kC , *
kD), then they

continue to hold for the pair of values (zCk −* , zDk −*)
where z is a positive integer (*

kCz ≤). Substituting zCk −*
for *

kC and zDk −* for *
kD in (4) and (9), we need to show

that the summation terms do not increase. By inspecting the
component equations (1) – (3), and (5) – (8), we observe that
the interference within a window of length L is
monotonically non-decreasing with respect to the length of
the window (i.e. it is no larger for an interval of length

zDk −* than it is for an interval of length *
kD). Further, we

must also consider the dependence of component equations
(1) and (5) on C . C appears in the expression 1+− CL .
which is unchanged by subtracting z from both L and C. The
summation terms in (4) and (9) are therefore monotonically
non-increasing with respect to increasing values of z Ƒ
Corollary 1: The schedulability of a task is, according to the
DA and DA-LC tests, a monotonically non-decreasing
function of the length of its FNR.
Theorem 2: (Negative result) The RTA and RTA-LC
schedulability tests for task kτ under gFPDS are not
sustainable [6], [20] with respect to increases in the length

kF of the task’s FNR.

Proof: Increasing the FNR length kF of task kτ increases
the execution time of its associated virtual task kvτ (as

1−= kkv FC). With the RTA and RTA-LC tests this can
result in a large increase in the upper bound response time

UB
iR of some higher priority task iτ due to the inclusion of

interference from an extra job of a yet higher priority task, as
well as the extra interference from kvτ (i.e. blocking). The
increase in UB

iR can cause an extra job of task iτ to interfere
in the busy window of task kτ making it unschedulable.

This scenario occurs with the taskset described in TABLE
II below, assuming two processors. In this case, if task Dτ is
fully pre-emptive, then the computed upper bound response
times are 10, 5, 10 and 23 for tasks Aτ , Bτ , Cτ , and Dτ
respectively; however, increasing the FNR length of task Dτ
, so that 2=DF , results in upper bound response times of 10,
6, 15, and 27, which would make task Dτ unschedulable if it
had a deadline of 25. This increase in the upper bound
response time of task Dτ is due to the large increase in the
upper bound response time of task Cτ from 10 to 15, and the
subsequent inclusion of an extra job of task Cτ in the busy
window of task Dτ . It is easy to construct examples where
decreasing the FNR length of a task kτ can result in the task
becoming unschedulable due to additional pre-emptions
from higher priority tasks Ƒ

TABLE II: EXAMPLE TASK PARAMETERS

Task Execution time Period Deadline
Aτ 10 100 10
Bτ 5 10 10
Cτ 5 15 15
Dτ 7 100 100

B. Solving the FNR and FNR-PA Problems
Due to the fact that the RTA and RTA-LC tests are

unsustainable with respect to changes in FNR lengths, we
now focus solely on the DA and DA-LC tests.

To aid in solving the FNR and FNR-PA problems, we
introduce the concept of a blocking vector. For a given
taskset and priority ordering X, we use)(kB to represent the
blocking vector at priority k, where the blocking vector
relates to the set of FNR lengths of the ordered set of lower
priority tasks)(klp . Hence:

))1)...(1(),1(()(11 −−−= +− knn FFFkB (16)
We define a ‘greater than or equal to’ (≥) and similarly a
‘less than or equal to’ (≤) relationship between blocking
vectors with the meaning 21 BB ≥ if every element in 2B is
no larger than the corresponding element in 1B .

We now state two corollaries about the DA and DA-LC
tests for gFPDS.
Corollary 2: Task schedulability under gFPDS according to
the DA and DA-LC tests is sustainable with respect to
decreases in the blocking vector. Stated otherwise, according
to the DA and DA-LC tests, a task that is schedulable at
priority k with a blocking vector)(kB remains schedulable
when the blocking vector is reduced (e.g. by reducing the
FNR length of one or more lower priority tasks) and the sets

)(klp and)(khp of lower and higher priority tasks remain
unchanged.

Corollary 3: Using the DA and DA-LC schedulability tests
for gFPDS, the minimum schedulable FNR length kF for a
task kτ is monotonically non-increasing with respect to
decreases in the blocking vector. Stated otherwise, a smaller
blocking vector at priority k cannot result in a larger
minimum length for the FNR of the task at that priority level.

We now investigate using the FNR and FNR-PA
algorithms presented in [27] to solve Problems 1 and 2 for
multiprocessor systems. The two algorithms are the same as
those used in the uniprocessor case with the exception that
the schedulability tests used are the DA or DA-LC tests for
gFPDS and due to Theorem 1, a binary search may be used
to determine the smallest FNR length commensurate with
task schedulability.

The proof of Theorem 3 uses the techniques from the
uniprocessor case with minor adjustments for the way in
which lower priority tasks now impinge on the schedulability
of higher priority tasks.
for each priority level k, lowest first {
 determine the smallest value for the final
 non-pre-emptive region length F(k) such that
 the task at priority k is schedulable
 according to test S.
 Set the length of the final non-pre-emptive
 region of the task to this value.
}

Algorithm 2: FNR Algorithm

Theorem 3: The FNR algorithm (Algorithm 2) is optimal for
the FNR problem (see Problem 1 and Definition 1).
Proof: We assume (for contradiction) that there exists a
taskset τ and priority ordering X that is schedulable
according to schedulability test S, with some set of FNR
lengths kF ' for k = 1 to n, and that the FNR algorithm fails
to determine a set of FNR lengths kF for k = 1 to n, that
results in the taskset being schedulable according to the test.

Let)(' kB be the blocking vector at priority k with the
schedulable set of FNR lengths, and)(kB be the blocking
vector at priority k with the set of FNR lengths computed by
the FNR Algorithm. At each priority level, we will show that

kk FF '≤ and hence that)(')(kBkB ≤ thus proving via
Corollary 2 sustainability of task schedulability with respect
to blocking vectors that the taskset is schedulable according
to test S, with priority ordering X and the FNR lengths
determined by the FNR Algorithm, thus contradicting the
original assumption. The proof is by induction over each
priority level k from n to 1.

Initial step: At the lowest priority level n, trivially we
have φ==)(')(nBnB . At priority n, the FNR Algorithm
(Algorithm 2) computes, according to test S, the minimum
schedulable FNR length nF for task nτ hence nn FF '≤ .

Inductive step: We assume that at priority k,
)(')(kBkB ≤ and kk FF '≤ , hence)1(')1(−≤− kBkB and

thus via Corollary 3, 11 ' −− ≤ kk FF
Iterating over all of the priority levels shows that for all k

from n to 1,)(')(kBkB ≤ and so by Corollary 2, the taskset
is schedulable, according to test S, with the set of FNR
lengths kF obtained by Algorithm 2 Ƒ

Corollary 4: (Follows from the proof of Theorem 3). For a
given taskset and fixed priority ordering X, that is
schedulable according to the DA or DA-LC schedulability
test under gFPDS with some set of FNR lengths, Algorithm
2 minimises the FNR length of every task, and hence
minimises the blocking vector at every priority level.
for each priority level k, lowest first {

for each unassigned task τ {
 determine the smallest value for the

 final non-pre-emptive region length F(k)
 such that task τ is schedulable at
 priority k, according to test S assuming
 all other unassigned tasks have higher
 priorities.

 Record as task Z the unassigned task
 with the minimum value for the length of
 its final non-pre-emptive region F(k).

}
if no tasks are schedulable at priority k {
 return unschedulable
}
else {
 assign priority k to task Z and use the
 value of F(k) as the length of its final

 non–pre-emptive region.
}

}
return schedulable

Algorithm 3: FNR-PA Algorithm

In contrast to the FNR problem, the FNR-PA problem
requires a schedulable priority ordering to be established as
part of the solution to the problem. Algorithm 3 which
provides a solution to the FNR-PA problem in the
uniprocessor case is based on Audsley’s Optimal Priority
Assignment (OPA) algorithm and uses a greedy bottom up
approach. Hence it is in any case only compatible with the
DA and DA-LC tests, and not the RTA and RTA-LC tests.
Theorem 4: (Negative result) The Final Non-pre-emptive
Region Priority Assignment (FNR-PA) algorithm
(Algorithm 3) is not optimal for the FNR-PA problem (see
Problem 2 and Definition 2) in the multiprocessor case i.e.
gFPDS using the DA or DA-LC schedulability tests.
Proof: Proof is via a counterexample where the FNR-PA
algorithm fails to find a schedulable combination of priority
assignment and FNR lengths, when such a combination
exists. The example is for the DA test, similar tasksets can be
constructed for the DA-LC test. We assume a system with
two processors and the taskset given in TABLE III. With four
tasks, there are 24 distinct priority orderings (n! = 24);
however, in this case only two are schedulable given
appropriate choices of FNR lengths. Attempting to build a
schedulable priority ordering from the lowest priority
upwards, we find that neither task Aτ nor task Bτ is
schedulable at the lowest priority (priority 4) even if they are
made completely non-pre-emptable.

Case 1: If we assign task Dτ priority 4, then it requires a
minimum FNR length of 42=DF to be schedulable. Then at
priority level 3, we find that tasks Aτ and Bτ are again not
schedulable, but task Cτ is schedulable with a minimum
FNR length of 38=CF . However, now due to the large
combined blocking effect modelled as the virtual tasks Dvτ

and Cvτ (i.e. 41 + 37 = 78) neither task Aτ nor Bτ is
schedulable at priority 2 and hence there is no schedulable
priority assignment with task Dτ at the lowest priority.

Case 2: If we assign task Cτ the lowest priority, then it
requires a minimum FNR length of 58=CF to be
schedulable. Again we find that tasks Aτ and Bτ are not
schedulable at priority 3. Now assigning task Dτ to priority
3, we find that it is schedulable with 1=DF (i.e. fully pre-
emptive). Now, the blocking effect on whichever task, Aτ or

Bτ , we choose for priority 2 is only 57, and hence either task
is schedulable at that priority with the other at priority 1. In
both cases we have 1=AF and 1=BF .

The behaviour of the FNR-PA algorithm corresponds to
Case 1 and so using the DA test, it would fail to find a
schedulable combination of priority ordering and FNR
lengths for this taskset; however, such a schedulable
combination exists as shown in Case 2 Ƒ

TABLE III: COUNTEREXAMPLE TASK PARAMETERS

Task Execution time Period Deadline
Aτ 36 207 110
Bτ 86 178 141
Cτ 93 525 195
Dτ 62 767 195

We note that the optimality of the FNR-PA algorithm
breaks down in the multiprocessor case, because the
blocking effect depends on a summation over the FNR
lengths of lower priority tasks rather than a maximum, as in
the single processor case. Minimising the FNR length at a
given priority level does not necessarily minimise this
summation, as shown in the above counterexample.

VI. EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of gFPDS

with respect to gFPPS and gFPNS. We compared the
scheduling algorithms under the following priority
assignment policies: (i) Deadline Monotonic (DMPO), (ii)
DkC [22], [23], and (iii) Audsley’s Optimal Priority
Assignment (OPA) algorithm for gFPPS and gFPNS. In the
case of gFPDS, we used the FNR algorithm to obtain
optimum final non-pre-emptive region lengths in conjunction
with the heuristic priority assignment policies, and the FNR-
PA Algorithm to provide both priority and FNR length
assignment. We also made comparisons with the dynamic
scheduling algorithm FPZL [24], [25] which has some
similarities in its behaviour to gFPDS. The lines on the
graphs are labelled according to the scheduling algorithm
and priority assignment policy used, e.g. gFPDS (DkC). In
all cases, we used the appropriate DA-LC test.
A. Parameter generation

The task parameters used in our experiments were
randomly generated as follows:
o First, an unbiased set of n utilisation values 1≤iU , were

generated with a total utilisation of U , (see [28] and
[23] for how to generate an unbiased set of such values).

o Task periods were generated according to a log-uniform
distribution (i.e. such that)ln(T has a uniform

distribution). Here the ratio between the maximum and
the minimum permissible task period was given by r10 .
By default, this range was 100, i.e. r = 2.

o Task execution times were set based on the task
utilisation and period selected: iii TUC = .

o Task deadlines were implicit: ii TD =
o Taskset cardinality was z times the number of

processors. By default, z = 5.
We examined systems with m = 2, 4, and 8 processors. In
each experiment, the taskset utilisation was varied from
0.025m to 0.975m in steps of 0.025m. For each utilisation
value, 1000 tasksets were generated and their schedulability
determined according to the various scheduling algorithms.
Note due to the large number of lines on the graphs, the
figures are best viewed online in colour.
B. Success ratio

In our first set of experiments, we compared the
performance of the scheduling algorithms via the success
ratio; the proportion of randomly generated tasksets that are
deemed schedulable in each case.

Figure 4: Success ratio for m = 8, n = 40, implicit deadlines

Figure 4 shows the results of this experiment for an 8
processor system with an implicit deadline taskset of
cardinality 40, and a range of task periods of 100. We
observe that the performance of gFPNS (dotted lines) was
relatively poor for all priority assignment policies, due to the
difficulty in accommodating tasks with long execution times.
As expected, the results for gFPPS (solid lines with
markers), show that optimal priority assignment
outperformed the various heuristic priority assignment
policies. Using gFPDS substantially better results were
obtained for the various heuristic priority assignment policies
as compared to gFPPS, with the best performance obtained
using the FNR-PA algorithm. In all cases, gFPDS
significantly outperformed gFPPS and gFPNS assuming a
like-for-like priority assignment policy. gFPDS using the
FNR-PA algorithm resulted in performance roughly half-
way between that of gFPPS and the dynamic FPZL
algorithm (solid line, no markers) assuming optimal priority
assignment.

0%

20%

40%

60%

80%

100%

120%

0.2 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 4.2 4.6 5.0 5.4 5.8 6.2 6.6 7.0 7.4 7.8

Pe
rc

en
ta

ge
 o

f t
as

ks
et

s
sc

he
du

la
bl

e

Utilisation

FPZL (OPA)
gFPDS (FNR-PA)
gFPDS (DkC)
gFPDS (DMPO)
gFPPS (OPA)
gFPPS (DkC)
gFPPS (DMPO)
gFPNS (OPA)
gFPNS (DkC)
gFPNS (DMPO)

C. Weighted schedulability
In our second set of experiments we compared how the

overall performance of each of the scheduling algorithms
varies with respect to changes in a specific parameter via
weighted schedulability [10].

Figure 5: Weighted schedulability as a function of taskset size

The first parameter examined was taskset cardinality.
Figure 5 shows how the weighted schedulability varies with
increasing taskset size (from 2 to 20 tasks per processor, i.e.
from 16 to 160 tasks on an 8 processor system) for each of
the algorithms. We observe that increasing taskset cardinality
results in tasks that have smaller utilisation on average and
are therefore easier to schedule in the multiprocessor case, as
noted in [22], [23]. As the ratio of tasks to processors
increases, the advantage conferred by deferred pre-emption
(and the dynamic FPZL algorithm) gradually decreases. This
is because the individual utilisation of each task is becoming
quite small reducing the benefits that can be obtained over
fully pre-emptive scheduling.

Figure 6: Weighted schedulability as a function of period range, D ≤ T

The second parameter we examined was the range of task
periods. Figure 6 shows how the weighted schedulability
varies with the log-range r of task periods given by the ratio

r10 between the maximum and the minimum permissible
task period. Here, the value of r was varied from r = 0.5 (

16.310 5.0 =) to r = 4 (000,10104 =). Figure 6 shows that
gFPDS shows the largest improvement over gFPPS when the
range of task periods is relatively small. This is because with
all task periods and deadlines of a similar duration, all of the
tasks can typically tolerate significant blocking and so there
is scope to choose FNR lengths that improve schedulability.

As expected, both gFPPS and gFPDS show improved
performance as the range of task periods increases, while
gFPNS shows rapidly declining performance. This is
because tasks with relatively long periods tend to have large
execution times which may be longer than the deadlines of
other tasks. Once there are more of these tasks than
processors, non-pre-emptive scheduling becomes infeasible.
(It is interesting to note that for very small ranges of task
periods, gFPNS, and hence also gFPDS can be more
effective than FPZL).

VII. SUMMARY AND CONCLUSIONS
Global fixed priority scheduling with deferred pre-

emption (gFPDS), dominates both global fixed priority fully
pre-emptive (gFPPS) and global fixed priority non-pre-
emptive scheduling (gFPNS). In this paper we provided
analysis for a simple model of gFPDS on homogeneous
multiprocessors, where each task has a single non-pre-
emptive region at the end of its execution. We showed that
an appropriate choice of the length of this region can
enhance schedulability.

The main contributions of this paper are as follows:
o Introduction of sufficient schedulability tests for gFPDS.
o Proof that the FNR algorithm [27] is compatible with

the DA and DA-LC tests for gFPDS, and can be used to
obtain the optimal final non-preemptive region lengths
for a given priority ordering.

o Proof via a counterexample, that the joint problem of
priority and FNR length assignment cannot be solved
optimally via a greedy, bottom-up approach using the
FNR-PA Algorithm from [27].

o An experimental evaluation of the performance benefits
of gFPDS over gFPPS and gFPNS. We note that the
additional comparisons with FPZL could be interpreted
as suggesting that the dynamic algorithm FPZL is
preferable; however, we have shown that much of the
improvement FPZL obtains over gFPPS can be achieved
by the simple adaptation of Final Non-pre-emptive
regions (gFPDS). This approach fits better with the
current fixed priority scheduling approaches used for
example in the automotive electronics industry, and
raises fewer issues for resource locking as under gFPDS,
the priority of a task can only increase when it is
actually running..

Building on this work, there are two key areas which we
aim to explore. Firstly, in single processor systems, tasks
often execute as a series of non-pre-emptive regions with
pre-emption points between them [16]. However, with the
normal fixed priority scheduling policy, such an arrangement
is ineffective in the multiprocessor case. This is illustrated in

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Tasks per processor

FPZL (OPA)
gFPDS (FNR-PA)
gFPDS (DkC)
gFPDS (DMPO)
gFPPS (OPA)
gFPPS (DkC)
gFPPS (DMPO)
gFPNS (OPA)
gFPNS (DkC)
gFPNS (DMPO)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

W
ei

gh
te

d
Sc

he
du

la
bi

lit
y

Range of task periods 10r

FPZL(OPA)
gFPDS (FNR-PA)
gFPDS (DkC)
gFPDS (DMPO)
gFPPS (OPA)
gFPPS (DkC)
gFPPS (DMPO)
gFPNS (OPA)
gFPNS (DkC)
gFPNS (DMPO)

Figure 1, which shows that there is the potential for every
non-pre-emptive region of every lower priority task to
interfere with the execution of a higher priority task, making
the approach unworkable. To address this problem, we
intended to investigate simple modifications to the fixed
priority scheduling policy that reduce such blocking effects.

Secondly, our simple model assumes that task execution
times are independent of pre-emption and pre-emption and
migration costs are negligible; however, in many real-time
systems each pre-emption and migration incurs a significant
cost, particularly in systems using cache. For large tasksets,
allowing arbitrary pre-emption can result in lower priority
tasks being pre-empted a large number of times, significantly
increasing cache-related pre-emption delays (CRPD) to the
detriment of schedulability [1], [2]. The integration of CRPD
and schedulability analysis is a key area which we intend to
explore further.

ACKNOWLEDGEMENTS
This work was partially funded by the UK EPSRC Tempo
project (EP/G055548/1), the UK EPSRC MCC project
(EP/K011626/1), and by Portuguese National Funds through
FCT (Portuguese Foundation for Science and Technology),
and by ERDF (European Regional Development Fund)
through COMPETE (Operational Programme 'Thematic
Factors of Competitiveness'), within the RePoMuC project,
(FCOMP-01-0124-FEDER-015050).

REFERENCES
[1] S. Altmeyer, R.I. Davis, C. Maiza “Cache related Pre-emption Delay

aware response time analysis for fixed priority pre-emptive systems”.
In proceedings Real-Time Systems Symposium, pp. 261-271, 2011.

[2] S. Altmeyer, R.I. Davis, C. Maiza “Improved cache related pre-
emption delay aware response time analysis for fixed priority pre-
emptive systems” . Real-Time Systems, 48 (5), pp. 499-526, 2012

[3] N.C. Audsley, "Optimal priority assignment and feasibility of static
priority tasks with arbitrary start times", Technical Report YCS 164,
Dept. Computer Science, University of York, UK, 1991.

[4] N.C. Audsley, “On priority assignment in fixed priority scheduling”,
Information Processing Letters, 79(1): 39-44, May 2001.

[5] T.P. Baker. “Multiprocessor EDF and deadline monotonic
schedulability analysis”. In proceedings. Real-Time Systems
Symposium (RTSS), pp. 120–129, 2003.

[6] S.K. Baruah, A. Burns, “Sustainable Scheduling Analysis”. In
proceedings Real-Time Systems Symposium, pp. 159-168, 2006.

[7] S.K. Baruah. “The limited-preemption uniprocessor scheduling of
sporadic task systems”. In Proceedings Euromicro Conference on
Real-Time Systems, pp. 137–144, 2005.

[8] S.K. Baruah, “Techniques for Multiprocessor Global
Schedulability Analysis”. In proceedings Real-Time Systems
Symposium, pp. 119-128, 2007.

[9] .S.K. Baruah, N. Fisher. “Global Fixed-Priority Scheduling of
Arbitrary-Deadline Sporadic Task Systems” In proceedings
International Conference on Distributed Computing and
Networking, pp. 215-226, Jan 2008.

[10] A. Bastoni, B. Brandenburg, and J. Anderson, "Cache-Related
Preemption and Migration Delays: Empirical Approximation and
Impact on Schedulability" In Proceedings of OSPERT, , pp. 33-44,
Brussels, Belgum, 2010.

[11] M. Bertogna, M. Cirinei, G. Lipari, “New schedulability tests for
real-time task sets scheduled by deadline monotonic on
multiprocessors”. In proceedings International Conf. on
Principles of Distributed Systems, pp. 306-321, Dec. 2005.

[12] M. Bertogna, M. Cirinei, “Response Time Analysis for global
scheduled symmetric multiprocessor platforms”. In proceedings Real-
Time Systems Symposium, pp. 149-158, 2007.

[13] M. Bertogna, M. Cirinei, G. Lipari. “Schedulability analysis of global
scheduling algorithms on multiprocessor platforms”. IEEE
Transactions on parallel and distributed systems, 20(4): 553-566.
April 2009.

[14] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, Francesco Esposito,
Marco Caccamo. "Preemption points placement for sporadic task
sets", In Proceedings Euromicro Conference on Real-Time Systems,
Bruxelles, Belgium, June 2010.

[15] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, G. Buttazzo.
"Optimal Selection of Preemption Points to Minimize Preemption
Overhead", In Proceedings Euromicro Conference on Real-Time
Systems, Porto, Portugal, July 2011.

[16] M. Bertogna, G. Buttazzo, G. Yao. "Improving Feasibility of Fixed
Priority Tasks using Non-Preemptive Regions", In proceedings Real-
Time Systems Symposium, 2011.

[17] M. Blum, R..W. Floyd, V. Pratt, R.L. Rivest, R.E. Tarjan, ‘‘Time
bounds for selection’’. Journal of Computer and System Sciences 7, 4
(Aug. 1973), 448---461.

[18] R. Bril, J. Lukkien, and W. Verhaegh. Worst-case response time
analysis of real-time tasks under fixed-priority scheduling with
deferred preemption. Real-Time Systems, 42(1-3):63–119, 2009.

[19] A. Burns. “Preemptive priority based scheduling: An appropriate
engineering approach”. S. Son, editor, Advances in Real-Time
Systems, pp. 225–248, 1994.

[20] A. Burns, S.K. Baruah “Sustainability in real-time scheduling”.
Journal of Computing Science and Engineering 2 (1), pp 74-97. 2008.

[21] G.C. Buttazzo, M. Bertogna, G. Yao. "Limited Preemptive
Scheduling for Real-Time Systems: A Survey". IEEE Transactions on
Industrial Informatics, 9(1) pp. 3-15 Feb 2013.

[22] R.I. Davis, A. Burns, “Priority Assignment for Global Fixed Priority
Pre-emptive Scheduling in Multiprocessor Real-Time Systems”. In
proceedings Real-Time Systems Symposium, pp. 398-409, 2009.

[23] R.I. Davis, A. Burns, “Improved Priority Assignment for Global
Fixed Priority Pre-emptive Scheduling in Multiprocessor Real-Time
Systems”. Real-Time Systems 47 (1) pp1-40, 2011.

[24] R.I. Davis, A. Burns, “FPZL Schedulability Analysis”, In
proceedings Real-Time Applications and embedded Technology
Symposium (RTAS), pp. 245-256, 2011.

[25] R.I. Davis and S. Kato "FPSL, FPCL and FPZL schedulability
analysis." Real-Time Systems, 48 (12), pp 750-788, 2012.

[26] R.I. Davis, A. Burns, “A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems”, ACM Computing Surveys, 43, 4, Article 35
44 pages, October 2011,

[27] R.I. Davis, M. Bertogna "Optimal Fixed Priority Scheduling with
Deferred Pre-emption”. In proceedings Real-Time Systems
Symposium, 2012.

[28] P. Emberson, R. Stafford, R.I. Davis “Techniques For The Synthesis
Of Multiprocessor Tasksets”. In proceedings 1st International
Workshop on Analysis Tools and Methodologies for Embedded and
Real-time Systems (WATERS 2010) , pp. 6-11, July 6th, 2010.

[29] N. Fisher, S.K. Baruah. “Global Static-Priority Scheduling of
Sporadic Task Systems on Multiprocessor Platforms.” In
procedings. IASTED International Conference on Parallel and
Distributed Computing and Systems. Nov. 2006.

[30] N. Guan, W. Yi, Q. Deng, Z. Gu, G. Yu, “Schedulability analysis for
non-preemptive fixed-priority multiprocessor scheduling”. Journal of
Systems Architecture - Embedded Systems Design 57(5), pp. 536-
546, 2011.

[31] N. Guan, M. Stigge, W.Yi, G. Yu, “New Response Time Bounds for
Fixed Priority Multiprocessor Scheduling”. In proceedings of the
Real-Time Systems Symposium, pp. 388-397, 2009.

[32] G. Yao, G. Buttazzo, M. Bertogna. "Bounding the Maximum Length
of Non-Preemptive Regions Under Fixed Priority Scheduling", In
proceedings RTCSA 2009, Beijing, China, August 2009.

APPENDIX
We note that while our schedulability tests for gFPDS

dominate the equivalent tests for gFPPS, they do not
dominate the equivalent tests for gFPNS which include
blocking from a most m lower priority tasks [30]. We can
however apply specific schedulability tests for gFPDS for
the special case of a task kτ which is fully non-pre-emptive,
as set out below.

A. Special case of a fully non-pre-emptive task in a gFPDS
system
In the case of gFPDS scheduling where a task kτ is fully

non-pre-emptive, i.e. when kk CF = ,)1(* −−= kkk CDD ,
and 1* =kC , then more precise analysis is possible. This
analysis is based on the approach of Guan et al. [30] for
gFPNS (where all tasks are fully non-pre-emptive).
For a fully non-pre-emptive task kτ we note that:

(i) A lower priority task jτ can only delay the
execution of task kτ if it begins to execute its final
non-pre-emptive region prior to the release of task

kτ . Hence the maximum interference from a lower
priority task jτ is zero if it does not have a carry-in
job2 and 1−jF if it has a carry-in job. So, for the
virtual task jvτ representing jτ , we have

1),(),(−== j
R
jv

D
jv FCLICLI , and 0),(=CLI NC

jv .
(ii) With m processors, at most m lower priority tasks

can be in non-pre-emptive regions when task kτ is
released (see Lemma 5.2 of [30]). So at most m
virtual tasks can have carry-in jobs.

(iii) In the worst-case scenario, at most m –1 higher
priority tasks can have carry-in jobs (Theorem 1 of
[23]).

DA test: for a fully non-pre-emptive task kτ under
gFPDS:

»
»
¼

»

«
«
¬

«

¸
¸
¹

·
¨
¨
©

§
−++≥ ¦¦

∈∀∈∀)()(

****)1(),(1

kMBj
j

khpi
kk

D
ikk FCDI

m
CD (A.1)

where MB(k) is the subset of at most m tasks with the largest
values of 1−jF , from the set of tasks lp(k).

The DA test for gFPDS takes account of points (i), and
(ii) above, but not point (iii).

The DA-LC test below combines points (ii) and (iii).
DA-LC test: for a fully non-pre-emptive task kτ under
gFPDS:

»
»
¼

»

«
«
¬

«

¸
¸
¹

·
¨
¨
©

§
++≥ ¦¦

∈

−

∈∀)(

**

)(

****),(),(1

kMDBi
kk

DDIFF
i

khpi
kk

NC
ikk CDICDI

m
CD

(A.2)
where MDB(k) is the subset of the m tasks with the largest
values of),(**

kk
DDIFF

i CDI − from the set of tasks
)()(klpvkhp ∪ provided at least one of those tasks is from

2 We refer to a lower priority task as having a carry-in job if it enters its
final non-pre-emptive region (effectively releasing its corresponding virtual
task) before the release of the task of interest (start of the busy window).

)(klpv , otherwise MDB(k) equates to the subset of at most
m-1 tasks with the largest values of),(**

kk
DDIFF

i CDI − given
by (8), from the set of tasks hp(k), and the single virtual task
from)(klpv that has the largest value of),(**

kk
DDIFF

i CDI − .
RTA test: The upper bound response time S

kR for the
start (first unit of execution) of a fully non-pre-emptive task

kτ under gFPDS, may be computed via the fixed point
iteration given by (A.3) within Algorithm 1. The task is
schedulable if *

k
S
k DR ≤ , where *

kD is the task’s effective
deadline)1(* −−= kkk CDD .

»
»
¼

»

«
«
¬

«

¸
¸
¹

·
¨
¨
©

§
−++← ¦¦

∈∀∈∀)()(

**)1(),(1

kMBj
j

khpi
k

S
k

R
ik

S
k FCRI

m
CR (A.3)

If the task is schedulable, then an upper bound on its worst-
case response time is given by)1(−+= k

S
k

UB
k CRR .

RTA-LC test: The upper bound response time S
kR for

the start (first unit of execution) of a fully non-pre-emptive
task kτ under gFPDS, may be computed via the fixed point
iteration given by (A.4) within Algorithm 1. The task is
schedulable if *

k
S
k DR ≤ , where *

kD is the task’s effective
deadline)1(* −−= kkk CDD .

»
»
¼

»

«
«
¬

«

¸
¸
¹

·
¨
¨
©

§
++← ¦¦

∈

−

∈∀)(

*

)(

**),(),(1

kMRBi
k

S
k

RDIFF
i

khpi
k

S
k

NC
ik

S
k CRICRI

m
CR

 (A.4)
where MRB(k) is the subset of the m tasks with the largest
values of),(*

k
S
k

RDIFF
i CRI − from the set of tasks
)()(klpvkhp ∪ provided at least one of those tasks is from

)(klp , otherwise MDB(k) equates to the subset of at most m-
1 tasks with the largest values of),(*

k
S
k

RDIFF
i CRI − given by

(14), from the set of tasks hp(k), and the single virtual task
from)(klpv that has the largest value of),(*

k
S
k

RDIFF
i CRI − .

If the task is schedulable, then an upper bound on its worst-
case response time is given by)1(−+= k

S
k

UB
k CRR .

We note that the RTA and RTA-LC tests given by (A.3)
and (A.4) do not depend on the upper bound response times
of lower priority tasks, and so the iteration of Algorithm 1 is
unnecessary if all tasks are fully non-pre-emptive. In that
case, upper bound response times may be evaluated highest
priority first.

We observe that the schedulability tests given in this
section for the special case of a fully non-pre-emptive task
dominate the equivalent tests for the general case of deferred
pre-emption with kk CF = given in section IV. This means
that the DA and DA-LC tests retain their monotonic
behaviour with respect to increasing values of kF if in the
special case of kk CF = we use the specific tests given by
(A.1) and (A.2) instead of the more general ones given by (4)
and (9). This was done in our experimental evaluation.

