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Abstract 

Federated learning (FL) is increasingly considered to circumvent the disclosure of private data in mobile edge 

computing (MEC) systems. Training with large data can enhance FL learning accuracy, which is associated with 

non-negligible energy use. Scheduled edge devices with small data save energy but decrease FL learning accuracy 

due to a reduction in energy consumption. A trade-off between the energy consumption of edge devices and the 

learning accuracy of FL is formulated in this proposed work. The FL-enabled twin-delayed deep deterministic policy 

gradient (FL-TD3) framework is proposed as a solution to the formulated problem because its state and action 

spaces are large in a continuous domain. This framework provides the maximum accuracy ratio of FL divided by 

the device's energy consumption. A comparison of the numerical results with the state-of-the-art demonstrates 

that the ratio has been improved significantly. 
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Abstract—Federated learning (FL) is increasingly considered
to circumvent the disclosure of private data in mobile edge
computing (MEC) systems. Training with large data can enhance
FL learning accuracy, which is associated with non-negligible
energy use. Scheduled edge devices with small data save energy
but decrease FL learning accuracy due to a reduction in energy
consumption. A trade-off between the energy consumption of
edge devices and the learning accuracy of FL is formulated in this
proposed work. The FL-enabled twin-delayed deep deterministic
policy gradient (FL-TD3) framework is proposed as a solution
to the formulated problem because its state and action spaces
are large in a continuous domain. This framework provides the
maximum accuracy ratio of FL divided by the device’s energy
consumption. A comparison of the numerical results with the
state-of-the-art demonstrates that the ratio has been improved
significantly.

Index Terms—Federated learning, mobile edge computing,
online resource allocation, deep reinforcement learning.

I. INTRODUCTION

Edge servers with powerful computing capabilities can
handle compute-intensive tasks offloaded by mobile edge com-
puting (MEC) devices [1]. This task offloading is vulnerable
to wireless communication attacks, such as eavesdropping
[2], denial of service attack [3], or blackhole attacks [4].
To avoid divulging edge devices’ private data, the authors
[5] firstly developed federated learning (FL) to train a global
shared model on the edge server, which aggregates local model
updates instead of original training data of the edge devices.

Fig. 1 depicts that the selected edge devices concurrently
compute updates of the local models based on their private
source data, e.g., pulse rate, body temperature, and blood
pressure. The server collects the local models instead of
the source data from the edge devices and updates a global
model that comprehensively combines all the local models.
The global model is eventually sent to all devices. The above

* Corresponding author.

Fig. 1. Framework of FL-enabled edge devices. Each selected edge device
downloads the global model from the edge server, then uses its source data to
update a local model. The edge server aggregates the local models to update
the global model, which is distributed to the edge devices.

process is called one communication round. In particular,
scheduling edge devices with large training data is capable
of ameliorating the learning accuracy of FL. This results
in non-negligible energy consumption. But, on the flip side,
scheduling edge devices with small data for FL can reduce
energy consumption, which leads to a decrease in the learning
accuracy of FL. In this work, we propose a new online
resource allocation optimization, which is a trade-off between
the learning accuracy of FL and the energy consumption of
edge devices in each communication round.

The local training data and bandwidth have a dynamic



behavior and change instantaneously. The edge server is blind
to the remaining energy of the respective edge devices and
time-varying channel conditions amidst the base station and
the edge device. Therefore, the online resource allocation prob-
lem is formulated as a partially observable Markov decision
process (POMDP). The network state, in detail, is composed
of the data size, bandwidth and remaining battery energy of the
edge devices, and channel gains amid the base station and the
edge devices. FL-TD3 is proposed for learning the dynamic
behavior of the network state in the context of its state and
action space, maximizing the ratio, i.e., FL’s learning accuracy
divided by the energy consumption of the edge device of
choice in every communication round (a ratio discussed in this
paper). As part of FL-TD3, the edge devices are scheduled and
transmitted to maximize their power efficiency.

The rest of this paper is organized as follows. In Section II,
we introduce the literature on FL-based resource allocation in
MEC. Section III presents the system model. Section IV details
the proposed FL-TD3 framework. The evaluations of FL-TD3
are presented in Section V. Finally, Section VI concludes this
work.

II. RELATED WORK

Assume that all the edge devices have the same amount of
data and computing resources. Federated Averaging (FedAvg)
algorithm [6] randomly selects the edge devices in one training
iteration to participate in local training and synchronously
aggregates local models. Considering inconsistent data quan-
tity and computing resources at the edge devices, FedCS, an
FL protocol, was developed [7] to improve the FL accuracy.
FedCS enables the server to collect a maximum number of
local models, which is allowed by the bandwidth capability.

To decrease the training latency of FL systems, the authors
in [8] develop a multi-armed bandit-based algorithm to sched-
ule the devices’ local model offloading given unknown chan-
nels and computing power of the edge devices. The authors of
[9] study three scheduling policies, namely, random scheduling
(RS), round robin (RR), and proportional fair (PF), to figure
out the convergence rate for FL in the presence of limited
bandwidth and wireless inter-cell interference. According to
the analysis, FL with PF is faster than RS or RR under high
SINR thresholds, while RR outperforms RS and PF under
low SINR thresholds. To decrease the energy consumption
of edge devices and the training time of the FL, a deep
Q-learning-based resource concerning data, energy, and CPU
cycle allocation for the edge devices is developed in [10].

Since the optimization problem is NP-hard, our previous
work [11] presented a heuristic algorithm, federated learning
for energy-accuracy-based client selection (FedAECS), to ap-
proximate the optimal client scheduling policy offline, subject
to the constraints of the energy consumption and the FL
accuracy. Distinctively, this work focuses on an online edge
device scheduling policy in an actual case, where the edge
server is blind to the remaining energy of the respective edge
devices and time-varying channel gains amidst the base station
and the heterogeneous edge device. Taking into account the

large state and action space in a continuous domain, a new
online FL-TD3 framework is proposed to trade-off between
the FL accuracy against energy consumption of the selected
edge devices. We, in addition, compare the performance of
the proposed FL-TD3 with the state-of-the-art FedAECS [11],
FedCS [7] and FedAvg [6].

III. SYSTEM MODEL

A. Energy Model
Each chosen edge device’s energy consumption consists

of two parts, one is local model training, and the other is
local model transmission [12], [13]. Assuming that there are
I number of edge devices, each edge device i ∈ [1, I] requires
ci CPU cycles per bit to train a data sample. The local model
training for Dt,i data samples require ciDt,i number of CPU
cycles. In the t-th communication round, the time consumed
by the edge device i to train the local model is

τ traint,i =
LciDt,i

fi
, (1)

where L is the number of epochs of FL local model training
at the edge device i, fi is the computation capacity of edge
device i and gauged in CPU cycles per second. Furthermore,
the energy consumption of local model training is

Ecmp
t,i = LζiciDt,if

2
i , (2)

where ζi represents the effective capacitance coefficient of the
computing chipset of the edge device i.

Let bt,i, Pt,i, and Gt,i denote the bandwidth, transmit power
assigned by the edge server to the edge device i, and the uplink
channel gain of edge device i, respectively. The achievable
uplink transmit rate, rupt,i , can be written as

rupt,i = bt,i log2(1 +
Pt,iGt,i

N0bt,i
), (3)

where N0 stands for the Gaussian noise, Pt,i is a continuous
variable within the range of Pmin

i and Pmax
i .

Let F s
t and Ht,i denote the edge server’s transmit power and

downlink channel gain, respectively. The downlink transmit
rate of device i can be represented by

rdown
t,i = bt,i log2(1 +

F s
t Ht,i

N0bt,i
). (4)

The download time of the FL global model is

τdown
t,i =

Sg

rdown
t,i

, (5)

where Sg represents the global model size. Similarly, given
the size of total local parameters, S, the required transmission
time of the local parameters can be given by

τupt,i =
S

rupt,i
. (6)

By replacing (3) with (6), the energy consumption of trans-
mitting the local parameters can be further written as

Eup
t,i = Pt,iτ

up
t,i =

Pt,iS

bt,i log2(1 +
Pt,iGt,i

N0bt,i
)
. (7)



The chosen edge device’s total energy consumption in the
t-th communication round is given by

Ec
t,i = Ecmp

t,i + Eup
t,i . (8)

Moreover, we denote ∆Et,i as the amount of energy harvest-
ing of each edge device i. In t-th communication round, the
remaining energy of the selected edge device is

Et,i = Et−1,i − Ec
t−1,i +∆Et,i. (9)

It is noted that the total energy consumption of the selected
edge device in each communication round must be less than
or equal to its remaining energy, namely, Ec

t,i ≤ Et,i.

B. Accuracy of FL

Clearly, if at,i = 1, namely device i is scheduled in t-th
communication round, otherwise, at,i = 0. According to [14],
the accuracy of FL, Γ(at,i), can be denoted by

Γ(at,i) = log(1 +

I∑
i=1

µiat,iDt,i) ∀t ∈ T , (10)

where µi > 0 is a system parameter [14].

C. Evenness of Edge Devices Scheduling

To measure the data size evenness of the chosen edge de-
vices, according to literature [15], we calculate the expectation
of the subtraction value amidst the whole data volume of all
edge devices and the data volume of the chosen edge devices,
the evenness of edge device scheduling can be defined as the
normalized expectation, i.e.,

∆t =
E
[
ν
∑I

i=1 Dt,i − at,iDt,i

]
∑I

i=1 Dt,i

∀t ∈ T , (11)

where ν ∈ (0, 1] is a weighted parameter, and Dt,i follows
normal or uniform distribution.

IV. DRL-BASED EDGE DEVICES SCHEDULING AND
RESOURCE ALLOCATION

The local training data and bandwidth have a dynamic
behavior and change instantaneously. The edge server is blind
to the remaining energy of the respective edge devices and
time-varying channel gains amidst the base station and the
edge devices. Therefore, a POMDP is formulated for resource
allocation.

Action and State Space: The action space of the POMDP
includes two optimization variables, that is, the selection of
the edge devices and the transmission power of the selected
edge devices, which is given by

A ∈ {(aϕ,i, Pϕ,i), i = 1, · · · , I}, (12)

where aϕ,i ∈ {0, 1} and Pϕ,i ∈ [Pmin
i , Pmax

i ].
The state space, Sϕ, is composed of data size, remaining

battery energy and bandwidth of the edge devices, and channel
gains of both the edge devices and the edge server, i.e.,

Sϕ = {Dϕ,i, Eϕ,i, Bϕ,i, Gϕ,i, Hϕ,i}. (13)

Observation Space: The edge server partially observes the
network state, which means the state of the unselected edge
devices is unable to be observed. The state observation So

ϕ is
packed in the local model and uploaded to the edge server.
Particularly, So

ϕ ∈ Sϕ is presented as

So
ϕ = {(Dϕ,i, Eϕ,i, Bϕ,i, Gϕ,i, Hϕ,i)o, i = 1, · · · , I}. (14)

Reward: The instant reward as the objective function of
optimization, also called AE (Accuracy to Energy) gain,
consists of two terms, the first term is the ratio, the second
term is the penalty factor caused by the unevenness of edge
devices scheduling, i.e.,

Rϕ =
Γ(aϕ,i)∑I

i=1 aϕ,iE
c
ϕ,i

−∆ϕ. (15)

To assess the action chosen by a policy πω with parameters
ω, we denote the optimal action-value function as

Qπω
(So

ϕ, Aϕ) = max
π∈Π

Eπω

So
ϕ

{ ∞∑
n=0

γnRϕ

}
, (16)

where Π and γ ∈ [0, 1] are the set of all policies and
the discount factor, respectively. Eπω

So
ϕ
{·} refers to take the

expectation with respect to πω and So
ϕ. Following the Bellman

equation [16], we can rewrite (16) as

Qπω
(So

ϕ, Aϕ) = max
πω∈Π

Eπω

So
ϕ

{
Rϕ + γQπω

(So
ϕ′ , Aϕ′ )

}
, (17)

where So
ϕ′ and Aϕ′ are the next state observation and next

action, respectively. The optimal action guarantees the maxi-
mized AE gain, which is given by

A∗
ϕ = arg max

πω∈Π
Eπω

So
ϕ

{
Rϕ + γQπω

(So
ϕ′ , Aϕ′ )

}
. (18)

A. TD3 on the Edge Server

In view of the large continuous action space, an actor-critic
method is used to solve the POMDP problem, where the edge
server simultaneously learns a policy function and a value
function. The actor, also called policy, will take action in a
continuous domain. The critic is taken to evaluate how well
the actor takes action. The policy πω utilizes the deterministic
policy gradient algorithm [17] and takes the gradient of the
expected return concerning ω to optimally update,

∇ωJ(ω) = Eπω

[
∇Aϕ

Qπω (S
o
ϕ, Aϕ)|aϕ=π(So

ϕ)
∇ωπω(S

o
ϕ)
]
,

(19)
where Qπω (S

o
ϕ, Aϕ) is estimated by the critic neural network

[18] of a differentiable function Qβ(S
o
ϕ, βϕ) with parameters

β. To update Qβ(S
o
ϕ, Aϕ), the critic neural network by ma-

nipulating the parameter β to minimize the loss between the
target value and Qβ(S

o
ϕ, Aϕ), i.e.,

min
β

E
[(

Rϕ + γQβ′
(
So
ϕ′ , πω(S

o
ϕ′ )

)
−Qβ(S

o
ϕ, Aϕ)

)2]
, (20)



where β
′

is the periodical update parameter of the target critic
network, πω(S

o
ϕ′ ) stands for the action taken by the target

policy network in the next state observation So
ϕ′ .

However, to address the overestimation bias issue caused
by updating the critic networks with the value function, TD3
adopted two approximately independent target critic networks
{Qβ1

, Qβ2
} to evaluate the value function, i.e.,

ztarϕ,1 = Rϕ + γQβ
′
1
(So

ϕ′ , πω(S
o
ϕ′ )),

ztarϕ,2 = Rϕ + γQβ
′
2
(So

ϕ′ , πω(S
o
ϕ′ )),

(21)

where the smaller target critic network value is selected for
updating the value function, ztarϕ = min

m=1,2
{ztarϕ,m}.

B. The Proposed Framework of FL Resource Allocation

The TD3-based edge devices scheduling and resource allo-
cation in a continuous action space constitute the proposed FL-
TD3 framework, as depicted in Fig. 2. The edge server (a.k.a.
agent) randomly selects the edge devices and allocates the
transmission power to them in the first K steps to participate
in FL training. The environment returns the reward Rϕ and
transforms new state So

ϕ′ . Meanwhile, the edge server takes
policies randomly in the first K steps and stores the transition,
previous action of the agent, current state observation, current
action of the agent, reward, next state observation, namely,
{(Aϕ− , So

ϕ, Aϕ, Rϕ, S
o
ϕ′ )}, into the replay bufferM. After K

steps, the server samples random mini-batch of transitions
{(Aϕ− , So

ϕ, Aϕ, Rϕ, S
o
ϕ′ )} from M to train the actor and

critic networks. The actor network with exploration noise can
ascertain the action.

Moreover, FL-TD3 also follows another trick of TD3 that
renews both actor and critic target network every l inter-
vals. Algorithm 1 details the proposed FL-TD3 edge devices
scheduling and transmit allocation policy. Given the I quantity
of edge devices, each state observation has five elements, and
T iterations are required before FL-TD3 terminates. In sum,
the complexity of FL-TD3 is O

(
T [(Npc1− 1)n2

pc1 + (Npc2−
1)n2

pc2 + (Npa − 1)n2
pa + 7I × (npa + npc1 + npc2) + 12 ×

((7I)2 + 7I)]
)
, where Npa, Npc1 and Npc2 are the quantity

of the hidden layers of the respective actor network, critic
network 1 and critic network 2; npa, npc1 and npc2 are the
quantity of neurons in the hidden layer of the respective actor
network, critic network 1 and critic network 2.

V. NUMERICAL RESULTS

In this section, the proposed FL-TD3 is implemented with
Python 3.9. All experiments are conducted using the PyTorch
framework, which is installed on an open-source Linux kernel
working environment with Ubuntu 16.04 system. All experi-
ments are done on 2 Nvidia GPUs (graphics processing units),
i.e., GeForce GTX 1060 and GeForce RTX 2060 with 3 GB
memory and 6 GB memory, respectively.

A. Simulation parameters

In our simulation, let T = 1000, L = 4 and ci = 20
cycles/bit, respectively. I increases from 10 to 80 in intervals

Algorithm 1: The proposed FL-TD3 edge devices
scheduling and transmit power allocation
Initialize {Qβ1(S

o
ϕ, Aϕ, Aϕ−), Qβ2(S

o
ϕ, Aϕ, Aϕ−)} and

πω(S
o
ϕ, Aϕ−) with random parameters β1, β2, ω.

Initialize β
′

1 ← β1, β
′

2 ← β2, ω
′ ← ω.

Initialize So
ϕ, Aϕ− ← 0, M.

for ϕ = 1, · · · , T do
if ϕ ≤ K then

Explore K steps haphazardly, get Rϕ and So
ϕ′ ,

and store (Aϕ− , So
ϕ, Aϕ, Rϕ, S

o
ϕ′ ) of the K

steps into M.
else

Take Aϕ ∼ πω(S
o
ϕ, Aϕ−) + ȷ, ȷ ∼ N (0, σ).

Assigns Pϕ,k to the selected devices.
Server observes So

ϕ′ , calculates Rϕ, and stores
(Aϕ− , So

ϕ, Aϕ, Rϕ, S
o
ϕ′ ) into M.

Sample {(Aϕ− , So
ϕ, Aϕ, Rϕ, S

o
ϕ′ )k}Kk=1 from

M.
Obtain Âϕ′ ← πω′ (So

ϕ′ , Aϕ) + ȷ̂, ȷ̂ ∼
clip(N (0, σ̂),−ρ, ρ).

ztarϕ ← min
m=1,2

{ztarϕ,m}.
Update critic value
βm ← argmin

βm

E[ztarϕ −Qβm(So
ϕ, Aϕ−)]2.

if ϕ mod l = 0 then
Renew ω according to (19).
Renew target networks:
βm′ ← θβm + (1− θ)βm′ .
ω

′ ← θω + (1− θ)ω
′
.

end
end

end

of 10. fi of the edge device follows uniform distribution in
[2, 4] GHz. Pt,i and F s

t follow uniform distribution in [0.1,
60] W and [100,1000] W, respectively. Gt,i and Ht,i follow
uniform distribution in [10−3, 10−1] dB and [10−1, 10] dB,
respectively. The amount of harvested energy ∆Et,i follows
uniform distribution in [50, 200] J. The global model’s size and
local parameters’ size Sg = 1 × 104 bits and S = 5 × 104

bits, respectively. System parameter µi = 4.2 × 10−9, ϵi =
1.2×10−28, N0 = 1.0×10−8, ν = 1.0. Both critic networks’
and actor networks’ learning rates are 3 × 10−4. The rest of
the parameters, θ = 5 × 10−3, l = 10, γ = 0.99, K = 45,
|M| = 5× 105, σ = 0.5, and ρ = 0.5.

B. Performance Analysis

For the evaluation of FL-TD3, three latest edge devices
scheduling approaches of FL as benchmarks are compared;
namely, FedAECS [11], FedCS [7] and FedAvg [6].

• FedAECS: The server schedules the edge devices to
meet the preset ratio, as well as the requirements of FL
accuracy and limited bandwidth in each communication
round.



Fig. 2. The proposed FL-TD3 framework.

• FedCS: Considering the limited bandwidth, the server
aggregates as many edge devices as possible for FL in
each communication round.

• FedAvg: Considering the limited bandwidth, the server
determines the quantity of the edge devices, and indis-
criminately schedules the devices.

Fig. 3 depicts the AE gains vary with the t-th communica-
tion round, which ranges from 1 to 1000 with 40 edge devices.
The data size Dt,i varies in [2, 10] MB, the bandwidth bt,i
varies in [10, 50] KHz. The biggest AE gain of FL-TD3
improved, on average, by 19.87%, 70.73% and 75.15% as
compared with FedAECS, FedCS and FedAvg, respectively.
This is because FL-TD3 can leverage experience replay to
select the edge device. Nevertheless, FedAECS, FedCS, and
FedAvg advantage of historical information.

Fig. 3. Comparison of AE gains obtained by FL-TD3 with those obtained
by three latest methods

Fig. 4 shows the AE gains obtained by FL-TD3, where I
increases from 10 to 80. Generally, AE gains decrease as the

Fig. 4. AE gains comparison with different number of edge devices using
FL-TD3, FedAECS, FedCs and FedAvg

quantity of edge devices increases, and FL-TD3 obtains higher
AE gain than others. Specifically, while the number of devices
is 40, 60 and 80, the AE gains of FL-TD3 increase mainly
because accuracy dominates it.

Fig. 5 describes AE gains that vary with the average data
size while maintaining the invariant variance. On the whole,
the AE gains of benchmarks rise with the increment of the
data size. However, the AE gains of FL-TD3 decrease while
the average data size is 6, 8 and 10 MB. This is because energy
consumption dominates. In addition, the AE gains achieved by
FL-TD3 are about twice the AE gains obtained by FedAECS,
while the average data size is 1, 2 and 5 MB. The reason is
that the FL-TD3 deliberates transmission power allocation.

Fig. 6 depicts the AE gains vary with the average bandwidth
while maintaining the invariant variance. Generally, the AE
gain of benchmarks increases as average bandwidth increases.
A decrease in AE gain occurs when the average bandwidth



Fig. 5. Comparison of AE gains, where the data size is uniformly distributed
and the constant variance is 0.2 MB

Fig. 6. AE gains change with bandwidth following a normal distribution
while maintaining the invariant variance (4 kHz)

drops to 36, 44, and 56 kHz. This is due to the fact that
the increase in energy consumption is more significant than
the increase in FL accuracy. Moreover, FL-TD3 obtains the
highest AE gain whatever the bandwidth is.

VI. CONCLUSION

In this work, we have proposed FL-TD3, which is a new
DRL-based online resource allocation for FL in MEC. The
optimization of the edge devices scheduling and the transmit
power allocation has been formulated as a POMDP, where the
network state is composed of data size, the remaining battery
energy and bandwidth of the edge devices, and channel gains
of both the edge devices and the edge server. The proposed FL-
TD3 optimally selects the edge devices in each communication
round of FL training at the edge server while allocating the
transmit power to the selected edge devices. Compared with

the state-of-the-art works, numerical results have demonstrated
that the ratio has been significantly improved.
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