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Abstract 

With the reduction in size and cost of sensor nodes, dense sensor networks are becoming more popular in a wide 

range of applications. Many such applications with dense deployments are geared towards finding various 

patterns or features such as peaks, boundaries and shapes in the spread of sensed physical quantities over an 

area. However, collecting all the data from individual sensor nodes can be impractical both in terms of timing 

requirements and the overall resource consumption. Hence, it is imperative to devise distributed information 

processing techniques that can help in identifying such features with ahigh accuracy and within certain time 

constraints. In this paper, we exploit the prioritized channel-access mechanism of dominance-based Medium 

Access Control (MAC) protocols to efficiently obtain extrema of the sensed quantities. We show how by the use of 

simple transforms that sensor nodes employ on local data it is also possible to efficiently extract certain features 

such as local extrema and boundaries of events. Using these transformations, we show through extensive 

evaluations that our proposed technique is fast and efficient at retrieving only sensor data point with the most 

constructive information, independent of the number of sensor nodes in the network. 
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Abstract—With the reduction in size and cost of sensor nodes,
dense sensor networks are becoming more popular in a wide-
range of applications. Many such applications with dense de-
ployments are geared towards finding various patterns or features
such as peaks, boundaries and shapes in the spread of sensed
physical quantities over an area. However, collecting all the data
from individual sensor nodes can be impractical both in terms
of timing requirements and the overall resource consumption.
Hence, it is imperative to devise distributed information process-
ing techniques that can help in identifying such features with a
high accuracy and within certain time constraints.

In this paper, we exploit the prioritized channel-access mech-
anism of dominance-based Medium Access Control (MAC) pro-
tocols to efficiently obtain extrema of the sensed quantities. We
show how by the use of simple transforms that sensor nodes
employ on local data it is also possible to efficiently extract certain
features such as local extrema and boundaries of events.

Using these transformations, we show through extensive eval-
uations that our proposed technique is fast and efficient at
retrieving only sensor data point with the most constructive
information, independent of the number of sensor nodes in the
network.

I. INTRODUCTION

Sensor network applications are designed to monitor various
physical quantities like temperature, pressure and acceleration.
This monitoring process is required to accurately alert the
occurrence of certain features such as peaks, boundaries and
shapes in the distribution of the physical quantities that are
being measured. Based on application requirements, it might
be important to extract these features by performing in-
network processing.

While feature extraction may not be an issue for a small
density network (for example tens of sensor nodes), it is
still a challenging problem for a high density network. In
applications where measurement constraints are required to
have a high spatial granularity, covering even a small area
(say, one-square meter), may require hundreds to thousands
of sensor nodes. Some examples of densely deployed sensing
applications, where features of physical quantity need to be
monitored frequently, are sleep monitoring for health [1],
smart-surfaces for space and aviation [2] and the food indus-
try [3]. The advances in Micro-Electro-Mechanical Systems
(MEMS) [4] and large-scale integration, makes it possible
to deploy large number of tiny sensors for such emerging
applications. Hence, it is necessary to develop algorithms
that tackle the problem of feature extraction in high density
networks.

Figure 1 shows a distribution of a physical quantity (known
as a field) with three active regions. An active region is
a physical area populated by sensor nodes that sense some
activity (values of interest).

For example, in Figure 1 we are interested in finding an
estimate of the boundaries of active regions. A naive approach
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Fig. 1. An example of a 2-D physical quantity field with 10,000 sensor nodes.
Each data point corresponds to a value sensed by an individual node.

to obtain this information is to collect readings from all sensor
nodes and process them centrally. This is inefficient since
typical channel access techniques do not scale with increase
in number of sensor nodes [5]. It is then advantageous to
devise techniques that perform feature extraction irrespective
of network density.

Computing even simple aggregate quantities such as ex-
trema (minimum or maximum) is not trivial for a dense
network as it may require collecting data, in the worst case,
from all nodes [6] (even if some sort of spatial sub-sampling
is employed [7]). Dominance-based, or binary-countdown,
MAC protocols help in finding the minimum value in constant
time [8]–[10]. Furthermore, finding peaks and their boundaries
in a distributed network, where each data point is measured
by individual sensor nodes, is computationally expensive, time
consuming and typically does not linearly scalable with an
increase in network size.

In this work, we first establish that finding the local extrema
is a challenge even after the global maximum is known.
Once the global maximum is identified in constant time, we
propose a few transforms that nodes employ on local data,
which helps in identifying other peaks (local maxima) and
their boundaries in the spread of the physical quantity being
measured. Our proposed transforms, referred to as augmenting
functions, allow the identification of local extrema in constant
time. Moreover, instead of collecting all data as in the naive
case, these augmenting functions result in fewer number of
measurements being collected.

The main contributions of this paper are:
• Scalable distributed information processing approach that

exploits dominance-based protocols to identify certain
features of a field over a two-dimensional (2-D) deploy-



ment of dense sensor network.
• Estimation of the shape and the location of active regions

in a field with a communication cost that is dependent
only on the properties of the field, and independent of
the number of sensor nodes.

• Extensive evaluations on example scenarios that show our
proposed technique is fast and efficient at retrieving only
the sensor data with the most constructive information.

This paper is organized as follows. We give an outline of
the other works related to our approach in Section II. The
architecture and the system description based on an aggregate
quantity function are provided in Section III. In Section IV,
we describe various augmenting functions that transform the
sensor value such that local extrema or boundaries in various
directions become the global extrema. The evaluation of our
work is then presented in Section V. Finally, we conclude this
paper in Section VI.

II. BACKGROUND AND RELATED WORK

Detection of events in sensor networks is a major application
domain and a very broad topic. There are different approaches
to address the problem of boundary detection in dense sensor
networks. To the best of our knowledge, this is the first
boundary detection technique that utilizes dominance-based
MAC protocols. To this end, we provide a detailed explanation
of this MAC paradigm followed by an outline of the related
work.

A. Dominance-based Approach

This work is inspired from dominance-based or binary-
countdown protocols [11] implemented for wired networks
in the widely used CAN bus [9] as well as its wireless
version, called WiDom [10]. The major reason for using a
dominance-based MAC protocol is its scalability and constant
time-complexity even for very dense networks.

In dominance-based MAC protocols, each node is as-
sociated with a priority value that is used to resolve the
medium contention. All nodes “simultaneously” start a conflict
resolution phase (tournament) by transmitting synchronously
their priority values bit-by-bit. Since the medium acts as a
logical AND operator, the node with the smallest priority value
(winner) gains access to the medium .

By using sensed physical quantities (like temperature or ac-
celeration) as the message priority, various aggregate quantities
can be obtained in dense networks. For instance, the minimum
of sensed value (MIN) can be found in only one tournament
of the protocol (that is in constant time) [12].

In fact, simultaneous transmissions are a key to the time-
efficiency of dominance-based MAC protocols. With carrier-
sense or time-division based MAC protocols, computing the
MIN value depends on the number of sensor nodes. Studies
show that the computation of MIN value with standard IEEE
802.15.4 MAC linearly increases with the growth of network
density (e.g. 80 ms for a 40-node network size) [6], [13].
Instead, the WiDom implementation [6] guarantees a constant
time (10 ms) for calculating the MIN value regardless of
network density.

The process of finding the MIN has been leveraged in the
past to find an approximate interpolation and other aggregate

quantities [5], [6]. Interpolated values are computed through an
iterative process by integration of local information available
in each sensor node (its own location information and mea-
sured value plus the location information and the measured
value of the winner received after each tournament). Each
sensor node computes the error between its measurement and
the corresponding computed interpolation value. The error is
then used as the priority value in the conflict resolution phase.
After a number of iterations (defined by user), an approximate
interpolation of the physical quantity is obtained. However,
instead of getting the complete interpolated image, in this
work, we aim at detecting certain features of the physical
quantity field by selecting a set of sensor nodes that hold the
most constructive information.

B. Boundary Detection

The problem of boundary detection and determining the
extent of an event in sensor networks has been investigated
in [7], [14]–[16]. Chintalapudi and Govindan presented lo-
calized edge detection techniques based on statistics, image
processing, and classification [14]. Nowak and Mitra described
a method for hierarchical boundary estimation using recursive
dyadic partitioning [7]. They developed an inverse propor-
tionality relation between energy consumption and the mean-
square error in boundary detection and showed that their
method is near-optimal with respect to this fundamental trade-
off.

Other schemes represent the boundary of an event or the
signal landscape of a sensor network compactly using in-
network aggregation [17]–[19]. Gandhi et al. studied the
problem of monitoring the events of sensor networks using
sparse sampling [18]. However, their algorithm requires the
prior knowledge of the event geometry (e.g. circle, ellipse, or
rectangle) for computational efficiency.

There are also contour-based methods for deciding the type
of an event [20], [21]. They consider energy-efficient tech-
niques to construct and incrementally update a number of 2-D
contour maps in a sensor network. Another field of research
involves detecting holes and topological features in a sensor
network are presented in [22], [23]. In these approaches, local
connectivity graphs are used to infer static features of an event
and require the involvement of all the nodes in the network.
By contrast, our approach is quite different from the above
mentioned techniques, as we exploit an underlying dominance-
based MAC protocol for very sparse spatial sampling through
a strategic selection of sensors.

III. SYSTEM MODEL

We consider a sensor network where each sensor node has
a unique id, i, and measures a particular physical quantity,
si, using a sensing unit. Each sensor node knows its 2-D
coordinates (x, y) in the plane of deployment. We assume
that the feature extraction mechanism can either be carried
out periodically as a part of a sense-process-actuate control-
loop, or sporadically initiated by an external controller, like a
data sink or a master node.

The collection of all the sensor values across the total sensed
area is referred to as a field, as shown in Figure 1. Each
data point in the field corresponds to a true (or non-faulty)



sensor reading value, sensed by an individual sensor node at
its physical location. The spatial granularity and the size of
the field is directly correlated to the distribution of the nodes
and their spread. We also define active region as a physical
area populated by sensor nodes that sense some activity.
The overarching goal of our technique is to find location,
boundaries and shape of an active region, which we referred
to as features, in the physical environment. For illustrating
our approach and its evaluation, we generated various sample
fields by a summation of 2-D Gaussian functions (explained
in Appendix A).

Function M(vi) represents the process of finding the MIN
over values vi published by independent sensor nodes in a
broadcast medium where i ∈ {1, 2, ...N} and N is the number
of sensor nodes in a broadcast domain. We exploit the property
of simultaneous transmissions in dominance-based protocols
to devise this function. vi is the scaled value that each sensor
node computes based on its measured value si and the global
maximum smax measured in the field. Each application of
M(vi) is referred to as a round. After each round, all the
other sensor nodes know the id and the location of the sensor
node with the MIN value. This sensor node is known as the
winner of the round. We use î to denote the id of the winner.
Hence, the function M can be formally represented as:

{v̂, î, x̂, ŷ} =M(vi) ∀i ∈ {1, 2, ...N}

where x̂ and ŷ are the x and y coordinates of the sensor node
with the global minimum value v̂.

The choice of vi values used by an ith sensor node in
the application of function M depends on the requirements
of the application. It should be noted that a sensor node
can only use its local information (such as id, sensor value
and physical location) and other global data available from
previous iterations of M. For our goal of identifying various
features, we augment (or transform) these input values such
that the global minimum returned by M corresponds to one
of the local minima or an edge of an active region.

The function M can be applied to the value computed by
φi, which is a function of the sensor values and their location.
The codomain of the function φi denotes a set of values it can
take. We assume that the cardinality of the codomain of φi is
large enough that the probability of computing the same φi
by two sensor nodes is negligible and thus an unique sensor
node î is chosen. The time-complexity ofM is proportional to
the number of bits used to encode φi hence, it is proportional
to the logarithm of the cardinality of the codomain. However,
as all sensor nodes transmit simultaneously in a dominance-
based MAC protocol, the time required for the application of
M over a network is independent of the number of sensor
nodes. Table I summarizes the notations and symbols that we
use in the following sections where we define a set of functions
to extract different features of the field.

IV. FEATURE EXTRACTION USING AUGMENTING
FUNCTIONS

We now describe in detail a set of augmenting functions
that can extract an approximate but faithful representation of
various features in the field by applying simple transforms on

TABLE I
SUMMARY OF THE SYMBOLS AND NOTATIONS

Symbols Description

si sensor value measured by sensor node i

smax maximum value collected by sensor nodes

νi = 1+si
smax

scaled sensor value with respect to the
maximum value over all sensor nodes

Aβ , Aγ , Aδ
augmenting functions used for different
feature extraction techniques

M(vi) finding the MIN over all vi values

M(−vi) finding the MAX over all vi values

φ(νi, xi, yi) function computed by sensor nodes

πs termination condition
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Fig. 2. An example of augmented function Aβ of the normalized input signal
with various β in range of [0.11, 0.5) in 1-D domain.

the property of sensor values. We show that this process can
be done with limited number of broadcast messages.

A. Aβ Distance Augmenting Function
As described earlier, a global maximum value in a sensor

field can be easily found with function M. However, finding
the spread or boundaries of this peak (local maximum) is not
trivial. If we modify the MAC protocol such that the sensor
node with the global maximum does not participate in the
next round, there is still a high chance that one of the adjacent
sensor nodes to the peak will become the next local maximum.
On the other hand, we might have to predefine a neighborhood
range around the peak that should be excluded in the next cycle
to make sure that another local maximum be the new global
maximum. In this case, choosing the size and shape of the
neighborhood is also a challenge.

We demonstrate the process of finding an adjacent local
minimum with a simple 1-D Gaussian field example, shown
in Figure 2. Using this example we show that, by utilizing the
augmenting function over the input signal, the adjacent local
minimum becomes the global minimum.

In this example, the field consists of three peaks and the
highest peak (the global maximum) lies in the center. Finding
the spread of this global maximum is not trivial as the global



minimum point can be one of those sensor nodes near the
borders of the field. It is important to suitably modify the
process of identifying the extrema such that a local minimum
adjacent to a peak (adjacent valley) can be found. For this
purpose, we observe that an adjacent valley should have a
low value and its distance from the peak should also be small.
Hence, each value in the field is transformed (multiplied) with
the distance from the peak. With this transformation, the points
located farther from the peak are associated with higher values
(compared with its sensed value) and only points with lowest
sensed value and smallest distance from the peak can become
the global minimum in the augmented field. It is possible
that this global minimum is a point in an adjacent valley.
The boundary of this peak is found with just two rounds of
executing M function: (i) finding the global maximum in the
original field, and (ii) identifying the global minimum in the
augmented field.

For 2-D Gaussian fields, the 1-D approach described above
can be directly applied. Different active regions of the field
are found by excluding the sensor nodes lying inside the
identified active region from participating in the next rounds.
The process of finding active regions is shown in Algorithm 1.
Initially, function M is used to find the global maximum,
then a circular area around the identified peak is filtered out.
The radius of this filtering circle is set as the distance of an
adjacent valley from the peak.

Each sensor node uses a function φβ as an input to M.
The function φβ takes into account two properties of the field;
sensed value s, and sensor’s proximity to the peak d and is
defined as follows:

φβ = ν ×Aβ(d) (1)

ν is the scaled value and is defined as:

ν =
1 + s

smax
(2)

and smax is the value of the global maximum. Aβ(d) is the
augmenting function, which is formulated as follows:

Aβ(d) = eβ(
d

dmax
)
2

(3)

where dmax is the diameter of the monitored area, and it is
used to normalize the distance from the peak, and β is a
parameter to control the impact of distance on the augmented
field with respect to the scaled value ν. To ensure that the
winning sensor node is located at the adjacent local minimum
of the field, the priority function φβ is computed so that the
distance is exponentially penalized.

Finally, by finding the global minimum over φβ values at
all the sensor nodes, we can find a point that lies in the
adjacent valley with high probability. The distance between
the adjacent valley point and the peak determines the filtering
radius, Rf (line 10 in Algorithm 1). Sensor nodes that are
located within the filtering circle refrain from participating in
the next iterations. Repeating this procedure helps in finding
all the peaks in the region. The algorithm stops when the next
peak is less than a certain user defined threshold πs, which is
a fraction of the global maximum. By finding the peaks and
their spread, this approach helps in identifying the location
and the number of circular active regions in a field.

Algorithm 1: Distance augmenting function Aβ , executed
on each sensor node ni

1 begin
2 Silent← 0;
3 smax ←M(−φs) ; // find global MAX
4 πs ← a fraction of smax ; // termination

condition setting
5 while snext−peak > πs do
6 if Silent 6= 1 then // not filtered out
7 snext−peak ←M(−φs) ; // find the new

peak
8 Compute φ based on Equation 1;
9 < sadj−valley, dadj−valley >←M(φβ);

10 Rf ← dadj−valley ;
11 di ← distance between next-peak and node ni;
12 if di < Rf then
13 Silent← 1;

B. Aγ Vector Augmenting Function

Our second augmenting function is used for cases where we
are interested in finding a boundary around all active regions.
This approach can be used for a range of applications such
as crowd monitoring for smart cities or sleep monitoring for
health care. In this approach, if we assign larger values of φ to
sensor nodes that lie on the boundary of an active region, then
the result of applying the M function over the negation of φ
value corresponds to the boundary of active regions. This is
implemented by augmenting the sensor values with a function
that grows in a particular direction.

The vector augmenting function Aγ , is designed to work
with binary fields, where the input signal is not smoothly
distributed, and two neighboring sensor nodes may have very
close or very different measurements. By applying Aγ , each
sensor node multiplies its measurement with a vector ~u. The
rationale behind using a direction is to find sensor nodes that
sense a high value and are located as far as possible in the
direction given by ~u, which corresponds to the edge of an
active region in that direction. To compute the function φ,
sensor nodes transform their locations with a direction as:

φγ = vp ×Aγ(x, y, θ) (4)

where vp is a participation value which is either 0 or 1 de-
pending on the sensed value being below or above a threshold.
Sensor nodes with vp = 1 are part of the active region. The
augmenting function is defined as:

Aγ(x, y, θ) = eγ(x. cos(θ)+y. sin(θ)) (5)

x and y are the coordinates of the sensor location and θ is the
direction given by vector ~u.

By using Aγ , the value is “projected” in a direction given
by the vector ~u. The sensor node that has the largest value has
a high probability of being located on the border of an active
region in the direction of ~u.

The working of this approach is outlined in Algorithm 2.
The algorithm explores the region by choosing random di-
rections defined in a set {v̄θ}. We assume that the seed for



Algorithm 2: Vector augmenting function Aγ , executed on
each sensor node ni

1 begin
2 smax ←M(−φs) ; // find global MAX
3 πs ← a fraction of smax ; // termination

condition setting
4 {fθ} ← ∅ ; // filtered direction set
5 if s < πs then
6 vp ← 1;
7 else
8 vp ← 0;
9 {v̄θ} ← a set of θ directions ;

10 foreach θ ∈ {v̄θ} do
11 if θ /∈ {fθ} then
12 Compute φγ based on Equation 4;
13 < sedge, (x, y)edge, θedge >←M(−φγ);
14 if (x, y)edge was found with other direction, θx

then
15 {fθ} ← {fθ} ∪ θ̂xθ + 2ε;
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Fig. 3. An example of boundary detection for a hexagonal-shape event.

generating this pseudo random directions is generated by the
initiator of the boundary detection process (thus, all the sensor
nodes will use the same {v̄θ} in each iteration). Repeating this
procedure in different directions makes it possible to find the
boundary of an active region by computing the convex hull of
the collected locations.

If two angles lead to a same point, it means that any angle
over the arc confined by these two angles would result in
that point. Thus, this arc can be filtered out from further
investigation. Figure 3 shows an example where two angles
of θ1 = 31 ◦ and θ2 = 89 ◦ lead to find the same location P2.
In this case, there is no need to examine more directions in
the region of 31 ◦ ≤ θ ≤ 89 ◦. We also use marginal extension
ε to limit further the redundant directions in the arc denoted
by θi ± ε. We discuss the impact of ε in SectionV.

More iterations of the algorithm leads to more accurate
boundaries, but at the cost of more resource consumption. We
show in Section V that with above filtering strategy, we are
able to reduce the number of dominance rounds, while still
building a good description of the active region. The worst
case for our algorithm happens when the event boundary looks
like a perfect circle where new directions will always give new
points (considering a very dense deployment of sensors and a
marginal extension of ε = 1 ◦, in this case, up to 359 individual
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Fig. 4. An example of boundary detection around the peaks with non-uniform
distribution.

readings will be collected). However, the results show that the
number of readings is usually much less in practice.

C. Aδ Joint Augmenting Function

As described earlier, the distance augmenting function Aβ
identifies circular active regions. For complex fields, Aβ may
need several circular active regions to cover a non-circular
shape. On the other hand, vector augmenting function Aγ only
provides a convex hull of all the active regions. So, a field with
several isolated active regions is identified as one large shape,
which may not provide enough insights regarding the structure
of the active regions.

To find the boundary of an active region with non-circular
distribution, we devised a new augmenting function Aδ , that
is a composition of Aβ and Aγ . By applying Aδ sensor nodes
that identified with M function should have the following
properties: (i) lie close to the peak, and (ii) locate on the edge
of the local boundary in a given direction. The value used by
each sensor node is then defined as follows:

φδ = Aδ ×
Aβ(d)

Aγ(x, y, θ)
(6)

where Aδ is given by:
Aδ = ν−δ

Aδ is an inverse polynomial of degree δ of the scaled sensed
value ν, and δ is a parameter to guarantee that the low values
lying far away from a peak bring a stronger contribution to
the φ values. As a consequence, for a given value of θ, the
point that has the minimum value of φδ is more likely to lie
on the boundary in the θ direction. We sweep the area around
a peak with different values of θ. In our evaluation, for θ,
we used equal intervals of π/4 (θ ∈ {0, π/4, ...2π})1. Thus,
after finding a new peak, the locations of the nearest adjacent
valleys in eight directions are found and the convex hull of all
these readings represents the area around that active region.
This enables us to find complex geometric shapes according
to the shape of active regions instead of only circles, as shown
with an example in Figure 4.

V. EVALUATION

We evaluated our proposed approaches in various simulated
scenarios by considering two metrics:

1Smaller intervals will result in better accuracy of boundary at the cost
of higher number of broadcast messages.



Number of Rounds: A sensor node gets channel-access
permit to broadcast a message in one round of dominance-
based protocol if its value is the global minimum. Hence,
the number of rounds corresponds to the number of message
transmissions.

Accuracy: Accuracy represents the fraction of sensor nodes,
that declared themselves to be located in the active region(s)
Ndet to the number of sensor nodes that truly lie in the active
region(s) Ntrue:

Accuracy =
Ndet
Ntrue

× 100. (7)

In cases where the detected area is larger than the actual
active region, (Ndet > Ntrue), accuracy is more than 100%,
which signifies the overestimation of the active region.

We now present the results of the augmenting functions in
six example scenarios.

A. Identifying the Active Regions
We considered a network of size 100 × 100 sensor nodes

in a shared medium, either a bus or a “single” wireless
broadcast domain. First, we show the performance of distance
augmenting function to identify circular active regions. For
evaluating our approach, we generated various scenarios with
several active regions. The active regions may or may not
overlap resulting in complex fields. The details of the scenarios
are provided in Figure 14 in Appendix A.

In each round of execution, after finding the global max-
imum, all the sensor nodes compute local values of φβ
according to the Equation 1. Figure 5 illustrates the number
of circular active regions with different termination rules for
scenario sc1. Increasing the threshold level helps the algorithm
to converge faster in smaller number of rounds, but at the cost
of reduced accuracy.

Figure 6 shows number of rounds and the corresponding
obtained accuracy for different threshold values. In some
scenarios, increasing the termination threshold reduces the
number of rounds as well as the overestimated area. This
happens for scenarios sc1, sc3 and sc6, where the active
regions can overlap. However, for scenarios sc2, sc4 and sc5,
where either few active regions exist or the active regions
are far apart, the number of rounds and accuracy remains
almost the same for all termination conditions. The existence
of isolated peaks in the field results in identifying all active
regions by a fixed number of circular sections. The high value
of overestimation in sc4 and sc5 is due to the steepness of the
peak in the field. This steepness causes an overestimation in
the filtering radius which in turn leads to much larger (squared)
overestimation of the circle’s area.

The choice of the exponential coefficient β in Equation 3
impacts the relative weight of distance from the peak with
respect to the value of the field at a given point. Choosing an
optimal value of β is not possible without the prior knowledge
of the field, but the order of β can be chosen based on the
size of the field such that a proper trade-off between the sensor
value at a given sensor node and its distance from the peak
is maintained. Particularly, β should be chosen such that the
impact of distance can be pronounced compared to the distance
normalization (dmax in Equation 3). For an area of 100×100,
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Fig. 5. The effect of termination threshold, πs on the detection of active
regions. The algorithm terminates when a new detected peak is (a) 20% and
(b) 30% of the global maximum value.
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Fig. 6. The number of rounds and the accuracy of active region estimation
in different scenarios for various πs = {10%, 20%, 30%} of the global
maximum.

we found that suitable values of β are in the order of 10.
Specific results on the accuracy for three scenarios sc2, sc4 and
sc5 are shown in Figure 7. For scenarios with isolated peaks,
higher values of β improve the coverage estimation accuracy,
but for scenarios where the spread of peaks can overlap, the
effect of changing β is less pronounced, as in the case of
scenario sc2.

B. Convex-hull around Active Regions

For evaluating the convex-hull approach described in Sec-
tion IV-B, we convert the field to a binary field by thresholding,
such that a sensor node’s value is 1 if the sensed value is
greater than 10% of the maximum value, and 0 otherwise.
The details of the scenarios are also provided in Figure 15 in
Appendix A. We set the marginal extension angle to ε = 1◦

and γ = 1. We compared our technique with a TDMA
approach, where a fixed number of randomly chosen sensor
nodes send their measurements. For the random approach, the
number of readings was set to 150.

Figure 8 shows the accuracy of our second approach in
terms of average percentage of coverage area by running
the simulation over 100 iterations. As shown, our technique
covers more than 97% of the area in all the scenarios through
transmitting 26 to 33 broadcast messages compared with 36%
to 72% coverage by 150 randomly chosen packets. Hence, we
acquire a more accurate boundary estimation with 77% less
broadcast messages.

Increasing the marginal extension angle, ε, still provides a
satisfactory coverage area estimation, while reducing the num-
ber of messages. We tested the performance of our proposed
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Fig. 8. The number of rounds and the average of coverage area estimation
for Aγ and random approach in different scenarios.

algorithm with different marginal extension angles in all the
mentioned scenarios. As shown in Figure 9, by increasing ε,
the number of dominance rounds decreases, since by enlarging
the angle, more search space is filtered out and consequently
less packets are needed to be broadcast.

However, increasing ε might diminish the performance of
the algorithm in terms of estimated coverage area. Figure 10
shows the performance degradation by increasing the ε up to
90◦. Under the latter setting, the proposed algorithm is able
to cover around 70% of the active region. In addition to the
shown value of ε in the graph, we also ran the simulation
for ε = {5◦, 10◦} and took the standard deviation of the
average coverage area for ε = (1◦ : ε). Since the results for
ε = {5◦, 10◦} were very close to the case where ε = 1◦,
the coverage area computed by these values are not shown
in the figure. As can be seen in Figure 10, ε = 15◦ has the
smallest standard deviation (smaller than 0.65), which suggests
that the coverage area computed by ε = 15◦ leads to the same
coverage area as given by ε = 1◦, while at the same time using
ε = 15◦, requires much smaller number of rounds compared
with ε = 1◦ setting, as shown in Figure 9.

C. Non-circular Active Regions
As discussed in Section IV-C, Aδ helps in finding the

boundary of a non-circular active region, instead of identifying
circular active regions from a complex shape.

Figure 11 shows the comparison of the performance of dis-
tance augmenting function with the joint augmenting function.
For scenarios where a number of active regions lie very close
to each other, the number of rounds required by Aβ is 20%
more than that for Aδ . For more sparse events, the number of
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ε.
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Fig. 10. The average of estimated coverage area with different marginal
extension angle, ε and its standard deviation.

rounds required by Aβ is 50% less compared with Aδ . This
happens due to the higher number of iterations that are needed
to be performed by Aδ to find the boundary of more than one
complex shape. It should be noted that Aδ is able to find the
boundary of a non-circular active region and detects it as one
region instead of a group of several close active regions.

Comparison of vector augmenting function and joint aug-
mentation is shown in Figure 12. It is evident that the com-
bined approach helps in demarcating different active regions
while Aγ detects the overall outer boundary.

D. The Impact of Network Density
Finally, we compared our techniques under various network

densities. As our approaches only depend on collecting the
global extrema of various augmenting functions, the results
indicate that increasing the network density has almost no
impact on the number of rounds. Figure 13 shows the number
of rounds required in each technique with respect to the
network size. The slight variation in the number of rounds
is due to the effect of termination condition in Aβ and the
randomness in the choice of θ in Aγ .

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented a set of techniques that identify
various features in the distribution of sensed physical quanti-
ties over a dense deployment of sensor nodes, confined in a
single broadcast coverage area.

With such simple-yet-effective modifications we can obtain
the location and shapes of active regions with a number of
messages proportional to the properties of the field.
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Fig. 11. Aβ versus Aδ , dash lines show the boundaries provided by Aδ and
solid lines refer to active regions detected by Aβ ; (a) β = 30, γ = 0.3; (b)
β = 30, γ = 0.2; with β = 10 for Aβ .
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Fig. 12. Aγ versus Aδ , dash lines show the boundaries provided by Aδ and
solid lines refer to that given by Aγ (a) β = 30, γ = 0.3; (b) β = 30,
γ = 0.2; with ε = 15◦ for Aγ .

For the future, our primary objective is to extend the devised
approaches for a larger dense network, where sensor nodes
do not necessarily lie in a single broadcast area. This will
require dividing the area into several single broadcast areas and
then carefully combining the information from each broadcast
area to identify active regions within certain time constraint.
We are also studying feature extraction in 3-D deployment of
sensor network. The 3-D monitoring raises nontrivial issues
in abstracting the environment. In this context, efficient data
gathering and further enhancements on augmenting functions
are required.

ACKNOWLEDGMENTS

The authors would like to thank Raghuraman Rangarajan
for his valuable comments and suggestions. This work
was partially supported by the North Portugal Regional
Operational Program (ON.2 – O Novo Norte), under the
National Strategic Reference Framework (NSRF), through
the European Regional Development Fund (ERDF), and
by National Funds through FCT (Portuguese Founda-
tion for Science and Technology), within project ref.
NORTE-07-0124-FEDER-000063 (BEST-CASE, New Fron-
tiers); by National Funds through FCT and by ERDF (Eu-
ropean Regional Development Fund) through COMPETE
(Operational Programme ‘Thematic Factors of Competi-
tiveness’), within projects FCOMP-01-0124-FEDER-037281
(CISTER), FCOMP-01-0124-FEDER-020312 (SMARTSKIN)
and FCOMP-01-0124-FEDER-028990 (PATTERN); by FCT
and the EU ARTEMIS JU under grant nr. 621353 (DEWI);
also by FCT and ESF (European Social Fund) through POPH
(Portuguese Human Potential Operational Program) under
PhD grant SFRH/BD/67096/2009.

0

5

10

15

20

25

30

Techniques

N
u

m
b

e
r 

o
f 

ro
u

n
d

s

 

 

100x100

300x300

500x500

A
γ

A
β

A
δ

Fig. 13. The impact of density on the performance of each technique for
scenario sc2.

REFERENCES

[1] J. Liu, W. Xu, M.-C. Huang, N. Alshurafa, M. Sarrafzadeh, N. Raut, and
B. Yadegar, “A dense pressure sensitive bedsheet design for unobtrusive
sleep posture monitoring,” in IEEE PerCom, 2013.

[2] J. A. Paradiso, J. Lifton, and M. Broxton, “Sensate media-multimodal
electronic skins as dense sensor networks,” BT Technology Journal,
vol. 22, no. 4, 2004.

[3] M. Connolly and F. O’Reilly, “Sensor networks and the food industry,”
in Workshop on REALWSN, 2005.

[4] J. W. Gardner, V. K. Varadan, and O. O. Awadelkarim, Microsensors,
MEMS, and smart devices. Wiley Online Library, 2001, vol. 1.

[5] A. Ehyaei, E. Tovar, N. Pereira, and B. Andersson, “Scalable data
acquisition for densely instrumented cyber-physical systems,” in IEEE
ICCPS, 2011.

[6] N. Pereira, R. Gomes, B. Andersson, and E. Tovar, “Efficient aggregate
computations in large-scale dense wsn,” in IEEE RTAS, 2009.

[7] R. Nowak and U. Mitra, “Boundary estimation in sensor networks:
Theory and methods,” in ACM/IEEE IPSN, 2003.

[8] A. K. Mok and S. Ward, “Distributed broadcast channel access,”
Computer Networks, vol. 3, 1979.

[9] “Can specification version 2.0,” Bosch Gmbh, Stuttgart, Germany, 1991.
[10] N. Pereira, B. Andersson, and E. Tovar, “Widom: A dominance protocol

for wireless medium access,” IEEE Trans. on Industrial Informatics,
vol. 3, no. 2, 2007.

[11] A. K. Mok and S. A. Ward, “Distributed broadcast channel access,”
Computer Networks, vol. 3, no. 5, 1979.

[12] B. Andersson, N. Pereira, W. Elmenreich, E. Tovar, F. Pacheco, and
N. Cruz, “A scalable and efficient approach for obtaining measurements
in can-based control systems,” IEEE Trans. on Industrial Informatics,
vol. 4, no. 2, 2008.

[13] N. Pereira and B. Andersson, “Widom vs ieee 802.15.4 for computing
min in a single broadcast domain,” IPP Hurray, Tech. Rep., 2008.

[14] K. K. Chintalapudi and R. Govindan, “Localized edge detection in
sensor fields,” Ad Hoc Networks, vol. 1, no. 2, 2003.

[15] Y. Wang, J. Gao, and J. S. Mitchell, “Boundary recognition in sensor
networks by topological methods,” in ACM MobiCom, 2006.

[16] M. Singh, A. Bakshi, and V. K. Prasanna, “Constructing topographic
maps in networked sensor systems,” in IEEE ASWAN, 2004.

[17] C. Buragohain, S. Gandhi, J. Hershberger, and S. Suri, “Contour
approximation in sensor networks,” in DCOSS. Springer, 2006.

[18] S. Gandhi, S. Suri, and E. Welzl, “Catching elephants with mice:
sparse sampling for monitoring sensor networks,” ACM Trans. on Sensor
Networks, vol. 6, no. 1, 2009.

[19] J. M. Hellerstein, W. Hong, S. Madden, and K. Stanek, “Beyond average:
Toward sophisticated sensing with queries,” in ACM/IEEE IPSN, 2003.

[20] W. Xue, Q. Luo, L. Chen, and Y. Liu, “Contour map matching for event
detection in sensor networks,” in ACM SIGMOD, 2006.

[21] M. Li and Y. Liu, “Iso-map: Energy-efficient contour mapping in
wireless sensor networks,” IEEE Trans. on Knowledge and Data En-
gineering, vol. 22, no. 5, 2010.

[22] S. Funke, “Topological hole detection in wireless sensor networks and
its applications,” in ACM DIALM-POMC, 2005.
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Fig. 14. Six scenarios with different active regions; each sensor node sets
the value of β = 10 to compute its priority —see Equation (1-3). Each
circle represents one filtering zone that is computed by two readings from
the sensor network and excludes sensor nodes located inside the circle from
participation in the future iteration(s) of the algorithm. πs is set to 10% of
the global maximum value.

APPENDIX A
EXAMPLE SCENARIOS

The field is assumed to be sum of the signals generated by
a set of active sources (like a heater or a car exhaust). The
spread from each source is assumed to be Gaussian with the
following representation:

f(xi) = kie
−α(x−xi)

2+(y−yi)2 (8)

The field is then represented by:

f(x) =
n∑
i=1

f(xi) +N (0, σ2). (9)

An example of a 2-D field is shown in Figure 1, where
the z-axis corresponds to sensor values and the spread of
the field is assumed to be the sum of several 2-D Gaussian
signals. The scenarios for evaluation are generated by varying
the parameters n and ki in the signal model given by (8) and
(9).

x−axis

y
−

a
x

is

0 20 40 60 80 100
0

20

40

60

80

100

x−axis

y
−

a
x

is

0 20 40 60 80 100
0

20

40

60

80

100

(sc1) (sc2)

x−axis

y
−

a
x
is

0 20 40 60 80 100
0

20

40

60

80

100

x−axis

y
−

a
x
is

0 20 40 60 80 100
0

20

40

60

80

100

(sc3) (sc4)

x−axis

y
−

a
x

is

0 20 40 60 80 100
0

20

40

60

80

100

x−axis

y
−

a
x

is

0 20 40 60 80 100
0

20

40

60

80

100

(sc5) (sc6)
Fig. 15. Six scenarios with different active regions; solid lines show the
boundary computed by our algorithm with ε = 1◦ and 40 iterations of
the algorithm, and dash lines show the boundary computed by the random
algorithm with 150 random readings.

The scenarios which are used in the simulation experi-
ment for evaluating distance augmenting function and vector
augmenting function are given in Figure 14 and Figure 15
respectively.


