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Abstract 

Nowadays, modern multicore processors come with virtualization featuresthat provide the creation of different 
virtual environments inside the samemachine, which magnify its ability to use all the resources available. 
Thecombination of multiprocessor systems with virtualization is highly demandedby the embedded systems 
domain.Virtualization technologies like hypervisor software are responsible for managingvirtual machines and 
control their access to physical resources. Severalvirtualization technologies and hypervisors exist for different 
industrydomains. One of those, is Jailhouse, a static partitioning hypervisor thatpartitions the hardware resources 
and directly assigns applications to eachpartition, providing them with access to the actual physical resources.This 
hypervisor focuses on giving the applications the isolation they need;however this can be seen as a limitation as it 
may restrict communicationbetween applications running in different partitions. There are inter virtualmachine 
19s communication mechanisms (based on networking or sharedmemory)that solves this limitation. This project 
aims at exploring this aspectin Jailhouse and focuses on using the Jailhouse hypervisor and ashared-memory 
mechanism to manage to send information between twopartitions.Specifically, it aims at: (1) understanding the 
jailhouse hypervisor with respectto its features. For that, demonstrations are executed on top of twoarchitectures, 
Intel based x86-64, using QEMU; and ARM, using a BananaPi-M1 board; and (2) understanding a shared memory-
based communicationprotocol, denoted as IVSHMEM, and create a use case in which twopartitions exchange 
information using this protocol.Results of this work are promising as the x86-64 use case was 
successfullyexecuted on top of QEMU, however, the ARM use case is still an on-goingendeavour. 

 



Exploring IVSHMEM in the Jailhouse

Hypervisor

CISTER - Centro de Investigação em Sistemas Computacionais

Embebidos e de Tempo-Real

2018/2019

1161209 Diana Ramos



Exploring IVSHMEM in the Jailhouse

Hypervisor

CISTER - Centro de Investigação em Sistemas Computacionais

Embebidos e de Tempo-Real

2018 / 2019

1161209 Diana Ramos

Degree in Computing Engineering

September of 2019

Advisor: Cláudio Ribeiro Maia



«to my family, that have always supported me»



Exploring IVSHMEM in the JailhouseHypervisor

IV Diana Ramos



Acknowledgments

I would like to thank my adviser Cláudio Maia, David Pereira and Pedro

Santos for all the support, availability and interest in helping me in every-

thing I needed during my project.

Moreover I would like to thank CISTER members that provided me with

good moments and support and CISTER overall for the internship opportu-

nity.

V



Exploring IVSHMEM in the JailhouseHypervisor

VI Diana Ramos



Abstract

Nowadays, modern multicore processors come with virtualization features

that provide the creation of different virtual environments inside the same

machine, which magnify its ability to use all the resources available. The

combination of multiprocessor systems with virtualization is highly demanded

by the embedded systems domain.

Virtualization technologies like hypervisor software are responsible for man-

aging virtual machines and control their access to physical resources. Sev-

eral virtualization technologies and hypervisors exist for different industry

domains. One of those, is Jailhouse, a static partitioning hypervisor that

partitions the hardware resources and directly assigns applications to each

partition, providing them with access to the actual physical resources.

This hypervisor focuses on giving the applications the isolation they need;

however this can be seen as a limitation as it may restrict communication

between applications running in different partitions. There are inter virtual

machine’s communication mechanisms (based on networking or shared-

memory) that solves this limitation. This project aims at exploring this as-

pect in Jailhouse and focuses on using the Jailhouse hypervisor and a

shared-memory mechanism to manage to send information between two

partitions.

Specifically, it aims at: (1) understanding the jailhouse hypervisor with re-

spect to its features. For that, demonstrations are executed on top of two

architectures, Intel based x86-64, using QEMU; and ARM, using a Banana

Pi-M1 board; and (2) understanding a shared memory-based communica-

tion protocol, denoted as IVSHMEM, and create a use case in which two

partitions exchange information using this protocol.

Results of this work are promising as the x86-64 use case was successfully
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executed on top of QEMU, however, the ARM use case is still an on-going

endeavour.

Keywords (Theme): embedded systems, virtualization, isolation.

Keywords (Technologies): hypervisor, Jailhouse, QEMU, Banana Pi-M1,

TCP/IP, shared memory, IVSHMEM.
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Resumo

Hoje em dia, os processadores modernos com vários cores já vêm com

virtualização que fornece a criação de diferents ambientes virtuais den-

tro da mesma máquina, o que permite usar de melhor forma os recursos

disponíveis. Esta combinação de sistemas multiprocessador com virtual-

ização é altamente procurada no domínio de sistemas embebidos.

Tecnologias de virtualização como o hipervisor é responsável por gerir

máquinas virtuais e controlar o acesso aos recursos físicos. Estas tec-

nologias e hipervisores existem para diferentes domínios da indústria. Um

desses é Jailhouse, um hipervisor de particionamento estático que par-

ticiona o hardware e atribui diretamente a aplicações de cada partição,

fornecendo acesso aos recursos físicos.

Este hipervisor foca se em isolar as aplicações. No entanto, o isolamento

pode ser visto como uma inconveniência pois podes limitar a comunicação

entre aplicações de partições diferentes. Existem mecanismos de comuni-

cação entre máquinas virtuais (via rede ou memória partilhada) que vem a

resolver esta limitação. Este projeto foca-se em explorar o Jailhouse e um

mecanismo de memória partilhada de forma a que duas partições sejam

capazes de receber informação uma da outra.

Especificamente, o projeto tem os seguintes objetivos: (1) perceber as

funcionalidades do Jailhouse, correndo demonstrações em várias arquite-

turas: Intel x86-64 utilizando o QEMU e em ARM usando a placa Banana

Pi-M1 e (2) entender o funcionamento de um mecanismo de memória par-

tilhada chamado de IVHSMEM e criar um caso de uso onde duas partições

comunicam uma com a outra utilizando esse protocolo.

Os resultados deste trabalho provaram ser promissores visto que tanto o

hipervisor como as demonstrações correram nas várias arquiteturas (x86-
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64 e ARM) com sucesso, no entanto o caso de uso em ARM utilizando

IVSHMEM é um trabalho ainda em andamento.

Palavras-chave (Tema): sistemas embebidos, virtualização, isolamento.

Palavras-chave (Tecnologias): hypervisor, Jailhouse, QEMU, Banana Pi-

M1, TCP/IP, memória partilhada, IVSHMEM.
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1. Introduction

Virtualization is a technique that allows one to logically divide the system

resources between the applications executing on top of it [51]. There are

multiple ways of achieving virtualization. For instance, using desktop virtu-

alization 1, server virtualization 2 or even hardware virtualization, the topic

of study of the work reported in this document.

By definition, hardware virtualization occurs at the hardware level, that is,

hardware virtualization targets hardware machine resources (such as main

memory, hard disks, processor, network related hardware and peripheral

devices) to create an abstraction layer for each of these resources. In a

hardware virtualization setting, there is an intermediate layer between the

hardware tier and software tier named the hypervisor layer [42] [32].

A hypervisor is a virtualization software that enables the creation and man-

agement of Virtual Machines (VMs) [16] often called "guests" executing

over a physical machine, denoted as "host". There are many hypervisors

out there in the market, each with its own purpose, as for instance Xen

[55] and Kernel Virtual Machine (KVM) [54], Jailhouse [40] and many more,

however in this report the attention is devoted to the Jailhouse hypervisor.

The Jailhouse hypervisor is a static partition-based hypervisor that sepa-

rates the machine’s available hardware resources into persistent divisions,

denoted as partitions or "cells" in Jailhouse terminology, to which one may

assign different types of applications, denoted as "inmates" in Jailhouse

terminology. These applications include bare-metal applications or operat-

1Desktop virtualization is the virtualization of workstations, allowing multiple users to

remotely access each one of them logically [34].
2Server virtualization enables the creation of multiple virtual environments with one phys-

ical server [34].
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ing systems (OS), including Linux and other specific operating systems for

embedded devices such as Real-time Operating Systems (RTOS)3. One of

the features provided by Jailhouse is the isolation between partitions [24].

Figure 1.1 depicts an example of how Jailhouse partitions the hardware by

the cells. In the example, there are two cells where each one has access

to one core and a device (representing for instance a network card, a hard

drive, a bus, etc.). In the context of the cell, one can assign inmates (i.e.,

applications or OSes), with the guarantee that they execute in isolation in

their own environment.

Isolation has its advantages (as for instance it allows cells to execute in their

own context and therefore avoid being interfered or share their resources

with other cells) but at the same time it brings the challenge of how two

applications in different cells can share information among them.

The project described in this report focuses on the Jailhouse hypervisor

and the challenge of exchanging information between different partitions

in order to transfer data between them. Due to the isolation provided by

Jailhouse one has to use specific protocols to exchange information such

as networking mechanisms like TCP/IP protocol or shared-memory based

mechanisms like Inter-VM SHared MEMory (IVSHMEM or Nahanni)4.

In this report the focus is on the shared-memory mechanism IVSHMEM.

1.1 Project Context

"Exploring IVSHMEM in the Jailhouse Hypervisor" is a project proposed by

CISTER, a research laboratory dedicated to the research of real-time and

embedded systems, and is integrated in the curricular unit of PESTI (Pro-

jeto Estágio), lectured in Instituto Superior de Engenharia do Porto (ISEP).

The subject itself of hypervisors is new to me, so it is a complete challenge

3RTOS is a type of operating system meant to run applications that need to respond to

external events in a timely fashion [53] [9].
4In this report it will be used IVSHMEM as a reference to this mechanism.

2 Diana Ramos
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Figure 1.1: Static partitioning example.

to learn something new and popular as it is now and enter in the community

with my implementation of it is very satisfying. My main goal by choosing

this internship was to diversify my knowledge at a more low-level, so that I

would be more receptive to more types of projects.

Alongside with the demands of this job, there are other aspects that I con-

sidered, like the type of environment that a research center would have, so

that I would be thoughtful about having that experience again in the future.

1.1.1 Problem Description

As mentioned in section 1, Jailhouse is a static partitioning hypervisor that

splits the machine’s physical resources in divisions (or "cells") in order to

assign them to different applications (or "inmates"). As also mentioned, this

hypervisor guarantees isolation between the partitions which enables each

application to run independently and without any interference from other

cells. Yet there are cases where there is the need of exchanging information

between different OSes. Thus, in these cases it is imperative to support

some kind of communication channel so that partitions can send/receive

information without breaking isolation.

Two types of communication mechanisms [23] can be used for this purpose:

Diana Ramos 3
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networking communication via Transmission Control Protocol/Internet Pro-

tocol (TCP/IP), that uses the TCP/IP protocol to send data between nodes

or by using shared memory between partitions (example of a protocol that

leverages this feature is IVSHMEM).

TCP/IP is a protocol more suitable for those cases where the virtual ma-

chines (VMs) reside in separate physical machines, in other words, it was

meant to provide a communication channel for multiple physical machines

when they need to connect among themselves [41]. However, using com-

munication via TCP/IP is more time consuming considering the data to be

transferred goes through the protocol stack 5 [41].

Shared memory is more suitable to those cases where VMs reside in the

same physical machine. Thus, it is more suitable to be used in the context

of Jailhouse since Jailhouse creates VMs on the same physical machine.

Using a shared memory protocol allows one to reduce the number of oper-

ations needed to exchange data and the changes are directly visible [41].

Having the above in mind, this project has as main goal the establishment

of a shared-memory communication channel using IVSHMEM to enable

partitions to exchange information without breaking the partition’s isolation.

1.1.2 Approach

Currently, there is already an implementation of IVSHMEM for the Jail-

house hypervisor in x86-64 architecture, provided by Henning Schild and

Jan Kiszka.6.

Since the available demonstrations regarding x86_64 architecture of the

functionality of Jailhouse are implemented with the support of Quick Emu-

5TCP/IP represents a group of protocol layers. Each layer supports different protocols

for managing the data across the network [21].
6There are two repositories for Jailhouse https://github.com/siemens/Jailhouse, contain-

ing the source code, and https://github.com/siemens/Jailhouse-images, containing ready-

to-use virtual machine with Jailhouse and demonstrations for several architecture types.

4 Diana Ramos
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lator (QEMU) 7, the starting point is to learn and understand Jailhouse by

following the indications provided by the Jailhouse repository [24] to set up

the hypervisor. Then, the hypervisor is executed on an Intel based x86-

64 architecture machine, by using QEMU, and a BananaPi-M1 (BPI) board

with an ARM processor [6].

After performing the above tasks, a detailed study of the IVSHMEM shared-

memory mechanism and the architecture itself (ARM) is done in order to

use this mechanism along side with Jailhouse and create a use case where

two partitions exchange information between them. This is expected to

perform as the already existing implementation for x86_64 architecture.

1.1.3 Objectives and Contributions

This project aims to: (1) run the Jailhouse hypervisor in x86-64 architec-

ture provided by QEMU emulator, including running already-to-use demon-

strations and develop knowledge in this matter and install it in Banana Pi-

M1 and run previous demonstrations as well; (2) use the shared-memory

mechanism IVSHMEM to function along side with Jailhouse on Banana Pi-

M1 to exchange information between two partitions.

1.1.4 Organization

CISTER is an internal research unit of ISEP that specializes in the fields

of real-time cyber-physical systems and multiprocessor systems, being re-

warded with the highest classification by the Science and Technology Foun-

dation.

Currently, CISTER has international reputation built upon an extensive his-

tory of paper publications, international conferences, seminal research works

and there’s about 60 researchers directly involved with the centre, half of

them with a PhD, reaching more than 20 nationalities [3].

7Open-source Emulator or virtualizer which enables the creation of virtual machines [33]

Diana Ramos 5
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1.2 Report Structure

This report is structured in the following manner:

The current chapter, chapter 1, is an introductory segment that character-

izes the problem and the proposed approach and describes the internship

itself, including the work division and meetings.

In chapter 2, it will be presented the state-of-art of some hypervisors that

were considered as possible solutions for the problem at hand (KVM, Xen

and Jailhouse) and inter-VM communication mechanisms (TCP/IP protocol

and IVSHMEM).

In chapter 3, it will be discussed the requirements, functionality, the device

driver and one of the demonstrations available for Jailhouse. Ultimately in

chapter 4, the IVSHMEM will be explained and ran in a x86-64 architecture

via QEMU and will be discussed its implementation on a ARM processor

board.

Chapter 5 is the conclusions chapter.

1.3 Work Planning

The work can be divided in five different milestones: setup (internship inte-

gration and study of the requirements), survey (study of the technologies),

implementation (running previous related works and implement some mod-

ifications and the specific use case), testing (performance measurements

and efficiency tests) and report, as suggested by figure 1.2.

1.3.1 Meetings

There were weekly non-formal meetings and monthly meetings in which

the students discussed their work during that week or month. After the

discussion of the tasks, it would be defined new tasks for the future.

The table 1.3 summarizes the topics of the meetings.

6 Diana Ramos
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Figure 1.2: Tasks and milestones by chronologic order.
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Figure 1.3: Meetings table.
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2. State-of-Art

In this chapter it is presented some of the current most popular hypervisors,

namely KVM, Xen and Jailhouse, requirements and basic functionalities

(section 2.1). In addiction, it will be presented some Inter-VMs Communi-

cation mechanisms that use networking like TCP/IP protocol and a shared

memory protocol named IVSHMEM (section 2.2).

2.1 Hypervisors

As mentioned in chapter 1, a hypervisor is a virtual platform (similar to an

OS [32]) that enables the creation of virtual machines (VM) in the same

physical machine. The main purpose is to control VMs access to the ma-

chine resources [30] [10]. A hypervisor creates a virtual layer between the

physical resources and the VMs (as also denoted "guests") so that each

guest has a share of virtual hardware [32].

Currently there are multiple hypervisors, thus this section will discuss the

main hypervisors (as well as Jailhouse): Xen and KVM.

2.1.1 Hypervisor’s Classification

Hypervisors can be divided in two types: type 1 and type 2 hypervisor.

By definition, a type 1 is a bare-metal hypervisor that operates between

hardware and the OS and a type 2 is considered as a hosting hypervisor,

running above the OS [13].

Virtualization is a specific characteristic of the hypervisor technology and

can be classified within two categories: (1) para-virtualized that uses a

hypervisor as an abstraction layer between an OS and the hardware and

which will imply modifications to the OS in order to communicate with the

hypervisor and (2) full-virtualized which simulates the hardware from a ma-

chine and the guest OS does not need any modification [37].

9
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Figure 2.1: Hypervisor’s type 1 and 2 designs.

2.1.2 The KVM Hypervisor

KVM, or Kernel-based Virtual Machine, is a virtualization technology, that

transforms the Linux kernel into a hypervisor. The main advantage of this

hypervisor is the ability to function alongside with the kernel and use kernel

services, such as hard-disk write operations. It allows the hosting machine

to launch multiple isolated virtual machines, by opening a device node

named /dev/kvm [29], treating them as common Linux processes, as sug-

gested by figure 2.2. Each guest has its own memory, separate from the

userspace process that created it [29].

To use KVM one needs to enable virtualization in the target machine, re-

quiring Intel processor with the Intel Virtualization Technology (VT) and the

Intel 64 extensions or an Advance Micro Devices (AMD) processor with

the AMD-V and the AMD64 extensions [7]. Then, two modules need to be

loaded into the kernel: a host module and a processor-specific module; and

an emulator. KVM takes advantage from being already part of the Linux ker-

nel, because the kernel already has all components required to run VMs,

such as memory manager or process scheduler [54]. All VMs share their

resources and it is needed synchronization mechanisms in order to control
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Figure 2.2: Basic architecture of the KVM Hypervisor.

resource’s accesses.

KVM is not a traditional type 1 hypervisor since it transforms the Linux ker-

nel into a hypervisor and it may seem that it provides system-level services

(such as memory management), where is actually the kernel itself that pro-

vides them. It can be classified as a full-virtualized technology that can run

multiple virtual machines executing unmodified Linux or Windows images

[28].

2.1.3 The Xen Hypervisor

Xen is an open-source bare-metal hypervisor which enables the creation

of multiple virtual machines called "domains". A privileged domain is cre-

ated during boot, called dom0, and is responsible for creating another un-

privileged domain, called domU. Once dom0 is shut down, the remaining

domains will follow; however the opposite does not occur.

As suggested by figure 2.3, the dom0 is the only virtual machine that acts

as an intermediate layer between Xen and the domU, being the only domain

to interact directly with the hypervisor.

Both domains, privileged and unprivileged, are connected via para-virtualized

drivers, called backend and frontend drivers, correspondingly, which gives

dom0 a virtual device, visible to all other domains that it manages, and

gives domU a device driver which will be used to establish the connection
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Figure 2.3: Basic architecture of the Xen Hypervisor.

with dom0. The communication is established via shared memory.

Xen represents a more concise type 1 hypervisor, where the privileged

domain is created during boot. One particularity of this hypervisor is that it

can support both para-virtualization and full-virtualization [55].

2.1.4 The Jailhouse Hypervisor

Jailhouse is a static partitioning hypervisor that runs with Linux, started by

Jan Kiszka, a lead developer at Siemens, AG. In 2013, Siemens, AG. de-

cided to open source it [5]. It manages partitions (called "cells"), where

each one of them has a share of the computer resources, such as CPU,

memory and PCI devices so, instead of having multiple guests accessing

symmetrically to the resources and having no boundaries between them,

Jailhouse divides the resources and assigns them to each partition, accord-

ingly with their definitions. For instance, this hypervisor is meant to provide

isolation between all partitions, such that there is no resource sharing and

flexibility to run whatever software (called "inmates") they desire.

In order to launch the hypervisor, Linux is required to be installed on the

system, because it is in charge of bootstrapping Jailhouse. After initializa-

tion, it is created an initial cell called the "root cell" and the hypervisor layer

goes under the Linux layer. Originally, the root cell has to its possession
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Figure 2.4: Basic architecture of a system using the Jailhouse Hypervisor.

all resources, but as more cells are created, defined resources are taken

and assigned to the new cells. As demonstrated in figure 2.4, there are two

cells: one root cell that runs Linux that has to its possession three CPUs

and another non-root cell that run a RTOS with one CPU. In this case, if

another cell were to be created with two defined CPUs, these resources

would be taken from the root cell and assigned to the new cell, resulting in

the root cell having 1 CPU, cell 0 having 1 CPU and the newer cell having

two CPUs assigned.

Jailhouse does not fit in a standard hypervisor classification. It could be

classified as a type 2 hypervisor, since it initially needs to be bootstrapped

by Linux, but then, after initialization, the hypervisor goes under Linux and

handles all operations, fitting in the type 1 description.

2.2 Inter-VM Communication

Although one crucial requirement of this project is to necessarily imple-

ment IVSHMEM (shared-memory) as the mechanism of communication,

there are some other viable options to take into account, as for instance a

networking-based mechanisms such as TCP/IP protocol.

2.2.1 TCP/IP-based Communication

TCP/IP is a networking communication protocol commonly used for nodes

in different physical machines and can as well be used as a communication
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Figure 2.5: Basic architecture of TCP/IP protocol.

channel between isolated virtual machines inside the same physical ma-

chines. The data is segmented into smaller chunks (or segments), wrapped

into a packet and then delivered to a certain network node. It uses two dif-

ferent protocols: TCP (Transmission Control Protocol), which processes

and receives data from sources; and IP (Internet Protocol) that provides

addresses to each node of the network.

Figure 2.5 is a representation of how two virtual machines communicate

using TCP/IP via a virtualized network device.

2.2.2 Shared-Memory Communication

A traditional shared memory mechanism is translated into a specific re-

gion of memory that is mapped into several process’s address space and

configured by the OS resulting in a common area, visible by all of these

processes. This methodology is considered to be the fastest and efficient

inter-process communication mechanism [50], as suggested by figure 2.6

[8].

The main perk of using shared memory is to enable all processes to read

and write directly from the memory region, where by using other methods,

like TCP/IP based mechanisms, in general, there’s a significant increase of

overhead due to the fact that the same message has to go through multiple

protocol layers.
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Figure 2.6: Basic architecture of shared memory communication protocol.

IVSHMEM

IVSHMEM (Inter-VM SHared MEMory), is an emulated PCI device that

provides communication between co-located virtual machines (same host)

by sharing memory establishing a connection between Portable Operating

System Interface (POSIX1) shared memory on the Host and the application

running inside a VM.

IVSHMEM’s shared memory is visible to user-level code, which greatly sim-

plifies the porting of existing libraries and supports pointer-based mecha-

nisms [32] and its flexibility is proved by letting exist different memory re-

gions between virtual machines, enforcing whatever policy is desired.

The virtual machines share the POSIX shared memory via series of map-

ping operations at the user level, with support for inter-VM interrupts via the

Linux event file descriptor mechanism [32].

1POSIX is a standard interface based on UNIX that facilitates software programs to be

run in different machine’s operating systems [38].
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3. Jailhouse Hypervisor

This chapter is related to Jailhouse and gives a general view about the

project and setup of the Jailhouse kernel module, including its hardware

and software requirements. This hypervisor’s functionality is explained in

more technical detail, incorporating some examples implemented in an em-

ulator called QEMU (using x86-64 architecture) and Banana Pi-M1 (ARM

architecture).

3.1 Jailhouse Overview

As mentioned in section 1.1.1, Jailhouse is a hypervisor that follows the

static hardware partitioning ideology that is based on the fact that partitions

have their own share of the physical resources of the hardware available in

the system and they are not shared.

Considering that this technology provides isolation between partitions, the

system is prepared to safely run bare-metal partition without compromis-

ing any of their performances, which is why Jailhouse focuses primarily in

giving exclusive access to the resources for each partition.

As suggested by figure 3.1, Linux is a fundamental piece for Jailhouse, in

a way that the hypervisor is activated within its environment, taking over

the hardware resources and moving under the OS, becoming the root cell.

When Jailhouse creates a new cell (non-root cell), Jailhouse takes back

Figure 3.1: Jailhouse bootstrap process taken from [40].
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Figure 3.2: Jailhouse’s system architecture taken from [14].

some resources allocated for the current root cell and assigns them to the

new partition. These resources are explicitly defined in the configuration

file for the new cell and includes a minimum of one CPU and a part of the

memory from the root cell [40].

From all OSes, it is common to ask why Linux is the most suitable to per-

form this task. This OS is specially appropriate to Jailhouse’s specification

regarding hardware support [40], considering that it is one of the OSes that

can be ran almost in every machine, which is very convenient and gives a

major advantage to any developer who aims to explore the Jailhouse tech-

nology. Also, when directly assigning the devices, Jailhouse does not need

device drivers, like other partitioning technologies ( like Quest-V1), becom-

ing lighter, system wise [40].

Figure 3.2 is a simple representation of Jailhouse’s architecture, with two

real-time applications, each one on their respective cell. The hypervisor

1Quest-V is a static partitioning hypervisor that separates kernel into sandboxes, which

are a security method for isolating different programs, and each one has a part of memory,

I/O and CPU resources [57]
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Figure 3.3: Jailhouse’s package diagram.

works at the lowest-level possible with the support of a loadable kernel

module (see section 4.1.2) which is in charge of managing the hypercalls2

via a management tool.

3.1.1 Code Organization

According to figure 3.3, Jailhouse’s code repository is divided by 9 pack-

ages.

1. The ci, or continuous integration build environment package, is meant

to help and adapt the current system’s environment in order to run

Jailhouse. Since every system has its own configuration, memory

regions and hardware components, a static project like this hypervi-

sor’s can not demonstrate consistency in these terms, therefore some

handy scripts to help configuration tasks were created. The config-

uration of the Linux kernel must allow some specific functionalities

enabled to run and use Jailhouse smoothly. If the configuration file

2A hypercall is a way to a user space application notify the OS that it needs to execute a

command with higher priority [46]
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(.config) in the kernel’s source code is not synchronized with it, fixing

the upcoming compilation/run time problems may be time consuming.

2. The pyjailhouse package is essentially a python module that extends

Jailhouse’s functionality [39].

3. The include package contains headers files.

4. The hypervisor package contains firmware specifics.

5. The scripts package contains version control scripts.

6. The driver package is related to the Jailhouse’s loadable kernel mod-

ule.

7. The tools package contain the functionality scripts for all operations

under Jailhouse. Its usage will be demonstrated in the next sub-

section.

8. The config package, as the name suggests, is where all configuration

files for the cells are stored. Since the hypervisor is supported in 3

different architectures (arm, arm64 and x86), each one has its own

compatible file so that the cells (root and non-root) are created within

the boundaries of memory.

9. The inmates package contains the software demonstrations that are

meant to run within its equivalent cell. Each demo has different out-

puts.

3.1.2 Jailhouse Requirements

In order to setup Jailhouse, two main components are required: Virtualiza-

tion feature for I/O and virtualization extensions pack for the processor. This

section is related to this hypervisor’s requirements and their importance in

the context of Jailhouse.
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Intel Virtualization Technology, or Intel VT, is a general feature required to

enable virtualization specifically for Intel-based systems [20]. It specializes

in three different areas which are: CPU (focusing in virtual machines with

native run time), memory (regarding direct memory access (DMA) remap-

ping and extended page tables (EPT)) and I/O device support (related to

the peripheral system, featuring Intel Virtualization Technology for Directed

I/O (denoted as VT-d)) [20].

By using VT-d capabilities, the hypervisor is able to more efficiently manage

the I/O inputs and outputs, physical memory and interrupt system [19], by

allowing direct assignment to I/O ports. In other words, if a certain device

is trying to access some block of memory which is not allowed to, then it

will be blocked by the VT-d hardware which will contribute for the resource

isolation featured by the Jailhouse hypervisor.

Virtual Machine Extensions (VMX or VT-x) and the equivalent for AMD sys-

tems, Secure Virtual Machine (SVM), are defined as extension packs for

the processor in order to enable virtualization [2] and includes the follow-

ing:

1. EPT or Nested Page Tables (NPT): translates the physical addresses

into guest physical addresses, granting the guest full control of its own

page tables [1].

2. Unrestricted guest mode: determines if the guest will run in unpaged

protected mode or in real address mode and will use EPT mecha-

nism.

3. Preemption timer: mechanism that controls the preemption3 of the

guest VM’s execution [2].

3Preemption is switching a task for another with higher execution priority.

Diana Ramos 21



Exploring IVSHMEM in the JailhouseHypervisor

Figure 3.4: Jailhouse’s hardware requirements for both architectures.

Jailhouse has also support for ARM and ARM64 architectures and figure

3.4 lists all boards that are currently available. All boards need at least 2

logical CPUs to run a root and non-root cell as well as for x86-64 architec-

ture.

Jailhouse also has some specific software requirements. The hypervisor

needs some pre-located RAM, in order to boot and re-allocated it to fu-

ture cells [24]. For x86-64 architectures, I/O Memory Management Unit

(IOMMU) has to be disabled as well and the minimum Linux kernel version

is 3.14. For ARM and ARM64 architectures, the Linux kernel version must

be at least 3.19 and 4.7 and Linux must start in hypervisor mode and has

to support Power State Coordination Interface (PSCI).
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Figure 3.5: Jailhouse’s software requirements for both architectures.

3.1.3 Linux Kernel Modules

The Linux kernel is an aggregation of pieces of executable code that are

responsible for manipulating certain parts of the hardware. It can be split in

6 parts corresponding to the following [27]:

1. Process management: responsible for taking into account the cre-

ation, manipulation and destruction of the Linux processes and the

scheduler.

2. Memory management: in charge of managing the whole memory

system, including controlling the resource utilization of all software

components.

3. Filesystems: this area is related to the multiple filesystems that Linux

supports and how the data is organized.

4. Device control: this part refers to how hardware devices interact with

the system. Traditionally, each device is mapped into the memory

and is uniquely controlled by code, denoted as device driver. Since

a device is at hardware level and an OS executes on top it, without

a device driver to monitor the hardware, the communication between
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device and OS would be non-existent and the operations sent to the

device would not execute properly.

5. Networking: this area handles the networking aspects, for instance

if a system receives a packet, it must be identified and redirected to a

Linux process do handle it.

Kernel Modules

Loadable modules are out-of-tree kernel modules that are developed with

the intent of extending the kernel’s features and exploring their potential.

Modules can be loaded and unloaded at any point during run time. After

compiling a module against the desired kernel, the module results in an

object file which is linked to the kernel after loading it [27].

To compile an out-of-tree module, usually a main-line kernel is more suit-

able to compile against since is free from heavy patches provided by devel-

opers [27]. The following commands will compile and install the module:

make KDIR=/path/to/source/kernel

make install

It is worth mention that if the compilation has not a explicit location of the

desired Linux kernel, by default, the kernel module will be compiled with the

already running kernel.

With an already compiled module, the next step is to load it into the kernel

using one of the following:

modprobe "module"

insmod "module".ko

When the kernel module is loaded, that specific piece of code is inserted

into the already existing kernel’s code, translating it to symbol table of the

kernel, enabling other lower-level functionalities. Both "modprobe" and "in-

smod" are the same functions regarding loading a module, but used in dif-

ferent matters. The first one will search in the desired kernel directory and
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Figure 3.6: Loaded modules.

try to find the module and load all its dependencies, whereas the second

one works with static paths and will not load any dependencies and so it

can result in an "unresolved symbols" insertion error [27]. After succeeding,

running "lsmod" command will list all inserted modules. Figure 3.6 repre-

sents the output of lsmod, which lists all inserted modules by designation,

size in bytes and how many instances of the module are being used and

by which component of the system [31]. One way to remove the module is

running "rmmod" command which will fail in cases while the module is still

in use.

It will be created a device regarding the module that can be accessed within

the /dev filesystem. Figure 3.7 is an example of how a device and an appli-

cation are connected. User level applications will open the /dev filesystem

which will give access to a kernel module and, consequently, control the

device.

3.1.4 Jailhouse’s Kernel Module

As mentioned in section 3.1, Jailhouse works with a loadable kernel module

to issue hypercalls via a management tool denoted as jailhouse.ko.

Following section 3.1.3 command scheme, the kernel module is compiled
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Figure 3.7: Kernel module transactions adapted from [15].

Figure 3.8: Jailhouse installation Makefile.

with the above command:

make KDIR=/path/to/source/kernel

The next step should be the installation of Jailhouse on target machine, by

running the command below, which follows the defined rules of figure 3.8.

All modules, firmware and tools will be installed.

make install

And the kernel module can be finally loaded into the kernel running one of

the following commands:

modprobe jailhouse

insmod jailhouse.ko
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Figure 3.9: Jailhouse’s command line tool options.

3.1.5 Jailhouse Functionality

Figure 3.9 represents a piece of code from /tools/Jailhouse.c that prints a

menu of available commands.

With the Jailhouse’s kernel module already inserted (see section 3.1.2),

the first thing to do is to enable the hypervisor by following the line 65 from

figure 3.9:

jailhouse enable /path/to/system/configuration

The "enable" command from Jailhouse’s management tool launches the

hypervisor, passing multiple validations and creates the root cell, initializing

all assigned CPUs and subsequently run it under Linux. Since the root cell

will now be running with all of the resources as a whole, the next step is

to create a cell configuration. Programs to be ran under a cell’s environ-

ment can only use the resources that the cell makes accessible for them,

nevertheless a cell configuration is needed to add and define resource’s

boundaries, including adding PCI devices.
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The code below is an excerpt of a Jailhouse configuration file where the

allocation of memory for RAM is described. It is defined a physical and

virtual start addresses, the size and jailhouse’s flags regarding read and

write permissions. For more information of how to write a cell configuration

file, consult sections B.1 and B.2 of the attachments.

/∗ RAM ∗ / {

. phys_s ta r t = 0x7bef0000 ,

. v i r t _ s t a r t = 0 ,

. s i ze = 0x00010000 ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_EXECUTE |

Jailhouse_MEM_LOADABLE ,

}

One of the following command can be used (line 65 from figure 3.9):

jailhouse cell create /path/to/demonstration/cell/config

jailhouse config create my_config.c

The "cell create" is often used for pre-created cell configuration’s. The

"config create" is a cell configuration generator which is intended to gen-

erate files for both root and non-root cells. This command is highly useful

when implementing Jailhouse in other potential environments, where the

architecture may differ from what the hypervisor is used to. Since the as-

signment is based on memory ranges, configuration file depends on the

hardware resources and memory boundaries. Next is loading the inmate

inside the cell by following the command (line 70 from figure 3.9):

jailhouse cell load "demo_name" /path/to/demonstration/cell/inmate

This command line option usually requires that the inmate is specially cre-

ated for the cell that is loaded into, because the cell configuration includes

all hardware resources and sufficient memory allocation for the program to
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run smoothly otherwise it may occur run time fails like "unhandled traps"

(see section 3.1.5) or memory access’s denials (see section 3.1.5). The

next step is to finally launch the cell by following this command (line 73

from figure 3.9):

jailhouse cell start "demo_name"

The "cell start" splits the memory regions defined above of the root cell and

assign them to the newly-created non-root cell, which will give it run-time

isolation, that is, since the root cell no longer has control over the resources

that the guest has allocated, then it no longer has permission to access

them.

In order to stop or shutdown a cell, the command line option must be fol-

lowed as (line 74 from figure 3.9):

jailhouse cell shutdown "demo_name"

And to destroy the cell (line 75 from figure 3.9):

jailhouse cell destroy "demo_name"

Certain cells have the ability to decline a shutdown request (see section

3.1.6). Although destroying a cell does not necessarily implies it, when

those cells are running, the procedure to destroy them involves shutting

down first then destroying it.

There are some control command line options to be used to check the

state of the cells, i.e. the "cell list" option where it gives a list of the created

cells, containing its identification (both numerical and by name), the loaded

inmate (if it exists), the state and failed CPUs. The syntax is the following

(line 69 from figure 3.9):

jailhouse cell list
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Figure 3.10: Jailhouse’s hypercall cell states.

3.1.6 Jailhouse’s Cell States

Accordingly to Jailhouse’s hypercalls, defined in /include/jailhouse/hypercall

header file (figure 3.10), there are 5 different cell states. Figure 3.11 is

a state machine diagram that represents all the possible states and their

outcomes for a non-root cell, that follows sequentially all the command tool

options listed above.

When creating a cell configuration, the state is set to "shutdown", since

there is already an empty cell, despite not being running. After loading

and starting the cell, the state is changed to "running", considering the

inmate is running and producing outputs. "Running/Locked" is an inevitable

case which occurs when a cell is still running but locked its configuration so

that no other cell (root and non-root) can modify it or when the hypervisor

attempts to shutdown the cell. This last reason is an exception for cells that

implement a voting system between all cells for certain operations such

as shutting down, that is, if the hypervisor requests shutting down a cell,

instead of having full control, other existing cells can vote and eventually

decline it. Thus, a second try should succeed. "Failed" state is common

where there are some run time fails, such as unhandled traps or parking

errors, which leads to CPU failing (see section 3.1.6). For this particular

state, there are two alternatives: restarting the cell, setting the state back

to "running" or destroying it.

3.1.7 Run Time Failing Errors

As most technologies, Jailhouse is prepared to handle run time errors. Ac-

cording to figure 3.11, a certain cell can be set to a "failed" state, which
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Figure 3.11: Jailhouse cell states.

normally can be lead by CPU suspension. These run-time errors are usu-

ally handled by macros called "traps". The hypervisor’s trap occurs when it

is trying to unsuccessfully map regions of memory. As mentioned above,the

configuration files define boundaries of memory, not in a dynamic but hard-

coded way. Those files are vulnerable for misconfiguration, considering

that they need to be aligned with the memory for each physical device that

it mentions.

There are two types of traps that are defined: unhandled and forbidden.

The hypervisor passes through a bunch of validations. Figure 3.12 verifies

the memory-mapped for the I/O (MMIO) accesses. In case where it results

in either an MMIO_ERROR or MMIO_UNHANDLED values, the access is

invalid. When trying to perform some sort of operation in memory regions

that the hypervisor has not permissions, a forbidden trap appears. Ac-

cesses with appropriate permissions but not within the memory ranges will

be caught as an unhandled trap. When operating on a cell with those con-

ditions, it appears on the console some specific messages, implemented

by figures 3.13 and 3.12.

Any trap leads the cell to a "failed" status. Since the CPU fails its initializa-

tion, the hypervisor suspends it and it no longer executes any code. The
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Figure 3.12: Jailhouse unhandled traps message.

Figure 3.13: Jailhouse unhandled trap console message.

goal is to keep the CPU waiting until the hypervisor resets its status or

destroys the cell. In addition to the triggering event and trap message, a

special message (figure 3.15) appears indicating which CPU failed its exe-

cution (the one(s) assigned to the triggering cell) - parking. The message is

based on "parking" a CPU, i.e., setting aside on execution, on panic, which

is an OS safety measure when detecting an internal fatal error [48].

3.2 Jailhouse’s Demonstrations

Jailhouse has some demonstration cells and this section is related to a

QEMU based demonstration (apic-demo) implemented for Intel system x86-

64 based architecture and an ARM architecture based demonstration (gic-

demo).

Figure 3.14: Jailhouse unhandled traps conditions.
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Figure 3.15: Jailhouse parking error.

Figure 3.16: QEMU architecture.

3.2.1 QEMU Demonstration

QEMU, or Quick Emulator4 is an emulation technology that runs virtual ma-

chines which can operate with KVM assistance and run under multiple sys-

tems such as x86, x86-64 and PowerPC and emulate numerous architec-

tures like x86, x86-64, ARM, Scalable Processor ARChitecture (SPARC),

PowerPC and Microprocessor without Interlocked Pipeline Stages (MIPS)

[45].

KVM is a kernel module that is loaded into the Linux kernel in order to

transform it into a hypervisor and is an important piece in QEMU. With

hardware capable of using virtualization, i.e. VT-d or AMD-v, QEMU can

4An emulator is generally a program or device that enables the creation of a different

environment within a machine, by creating its particular hardware components.
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create user-space virtual machines that will be taken care of with the cur-

rent hypervisor’s help [18].

Figure 3.16 shows that QEMU emulates hardware and can benefit from

supporting KVM, i.e. creates Virtual CPUS (VCPUs) in order to execute the

intended code on the guests side. Guests are created as KVM guests that

are intended to run software and communicate with VCPUs which commu-

nicates with the KVM interface inserted in the actual kernel. This emulator

also sends I/O requests to the kernel module so that events regarding its

virtual machines are handled.

Setting up Jailhouse with QEMU

For demonstration purposes and software validation, using an emulator

such as QEMU to run Jailhouse is appropriate. Since the QEMU already

provides all possible hardware devices that the hypervisor might need, this

is a way to run Jailhouse almost in any environment at any time without

compromising the machine itself. There are already some demonstration

cells ready-to-use in multiple architectures like x86-64, arm64, arm, etc.

The first step is to get QEMU working properly. An updated version of this

emulator is recommended and can be extracted by the main QEMU page

(https://www.qemu.org/download/source).

The configuration script that QEMU provides, by default, builds it with every

available architecture. Therefore a target list must be defined, in this case a

x86-64 architecture. The Simple DirectMedia Layer (SDL) option is enabled

in order to have a graphical display mode, otherwise if no display is enabled,

the emulator will start and hangs at the Virtual Network Computing (VNC)

server5.

./configure –target-list=x86-64-softmmu –enable-sdl

make

5The VNC server is a remote way for a user to access another machine.
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make install

Now that QEMU is installed, there are two paths to follow to run Jailhouse:

1. Setting up and running the hypervisor with the assistance of a side

repository.

By following the first approach, the first step is to clone the "Jailhouse-

images" side repository using the git tool:

git clone https://github.com/siemens/jailhouse-images.git

The host machine must fulfill the following requirements [25]:

(a) Updated Docker, which will create containers that will allow the

demonstrations to run isolated, that is, the applications will not

be able to see more than the resources assigned to their con-

tainer;

(b) QEMU version must be equal or higher than 2.8 for x86 image

and higher or equal than 2.12 for ARM64 image;

(c) Linux kernel version above or equal to 4.4 with KVM support (for

x86 image);

(d) On Intel, kvm_intel module loaded with parameter nested=1.

This parameter will enable nested virtualization and permit that

inside a KVM virtual machine it can run a hypervisor [36].

This repository has two main parts: the build-images and the start-

qemu script. In order to QEMU initialize, it needs an image prepared

by the first script which allows the build for multiple environments (fig-

ure 3.17). In this particular case, the QEMU/KVM Intel-x86 virtual

target is selected as the emulator to configure for this type of sys-

tems. The second script initializes the emulator with the built image

(Linux kernel 4.19.56) and already display a bunch of usable ordered
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Figure 3.17: QEMU images list.

Figure 3.18: Bash history for QEMU’s AMD systems.

command line options (located in the history 3.18) to run Jailhouse

and work with apic-demo cell and a non-root Linux cell.

./build-images

./start-qemu "architecture"

2. Starting a virtual machine from scratch, build Jailhouse and run:

The second approach is more meticulous considering that the vir-

tual machine is created from scratch, incorporating all hardware re-

quirements for the hypervisor, that are concealed by the scripts of the

Jailhouse-images repository. The following command will launch the

virtual machine with a Linux image:

qemu−system−x86 \ _64 −machine q35 , kerne l \ _ i r q c h i p = s p l i t

−m 1G −enable−kvm −smp 4

−device i n t e l −iommu , intremap=on , x−buggy−eim=on

−cpu kvm64,−kvm \ _pv \ _eoi ,−kvm \ _s tea l \ _time ,−kvm \ _asyncpf ,
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Figure 3.19: PIC architecture taken from [22].

−kvmclock ,+vmx −d r i ve f i l e = L i n u x I n s t a l l a t i o n . img , format=raw ,

i d =disk , i f =none −device ide−hd , d r i v e =d isk −s e r i a l s t d i o

−s e r i a l vc −netdev user , i d =net

−device e1000e , addr =2.0 , netdev=net

−device i n t e l −hda , addr=1b .0 −device hda−duplex

By setting up the Jailhouse’s driver (see section 3.1) and its function-

ality (see section 3.1.4), the hypervisor should run correctly.

Advanced Programmable Interrupt Controller Demonstration

Advanced Programmable Interrupt Controller, or APIC, is a superior version

of the Programmable Interrupt Controller (PIC), that is an unity used to

program that controls interrupt’s flow in the machine, which contains entries

and exits of requests. From definition, an interrupt is an action triggered by

peripherals or even the CPU to a CPU in order to modify software behavior

[22]. Accordingly with figure 3.19, devices send interrupt requests (IRQ) to

the connected PIC and it forwards them to the CPU [22].

PIC is the logical-base technology, but supposing that the system is mul-

ticore, where there are multiple CPUs to be assisted, APIC seems to be

more appropriate because each core has its own local APIC (LAPIC), in-

stead of an external connected PIC, and can manage the interrupts coming

from their linked devices. This link is not direct, that is, each CPU is con-

nected to the Interrupt Controller Communication BUS and to a I/O APIC

which will receive the external events and forward them for their destination
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Figure 3.20: APIC architecture taken from [22].

core [22] (3.20).

Jailhouse provides multiple demonstrations specially for x86-64 architec-

ture systems, one of them being the "apic-demo" that is based on APIC

interrupt handler mentioned above. This demonstration displays a timer to

be triggered at 10Hz and includes a jitter, which is measures the delay be-

tween the actual time of an event and the programmed one (event latency).

Therefore, a smaller latency contributes to a more accurate hypervisor [44].

As mentioned before, QEMU images have a customized bash history (fig-

ure 3.18) which facilitates the understanding and serves as an orientation

guide for what commands to follow. To run "apic-demo", the commands

are:

jailhouse enable /etc/jailhouse/qemu-x86.cell

jailhouse cell create /etc/jailhouse/apic-demo.cell

jailhouse cell load apic-demo /usr/libexec/jailhouse/demos/apic-demo.bin

jailhouse cell start apic-demo

jailhouse cell destroy apic-demo

jailhouse disable
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Figure 3.21: BananaPi-M1 specification.

3.2.2 Banana Pi Board

Banana Pi-M1 is one of the boards that supports Jailhouse and is the cho-

sen one to assist in this project. The specifications are represented by

figure 3.21 [6].

Setting up Jailhouse with Banana Pi-M1 Board

Actually there is already a tutorial about the setup of Jailhouse on this

board, although for the sake of this project’s requirements, some parts of it

were altered. All the full scripts used for this were added to the appendix

section in the end of this document.

Since this board is a basic functional computer, its initialization depends on

an injectable SD card that contains the OS. Firstly, it will contain the "bana-

nian" SO provided by bananian team, which is a Debian image specifically

adapted for Banana Pi-M1.

The next step is to update U-boot configuration file as it follows in order to

boot the OS with reserved space for the hypervisor. This file must be a

more recent released version that v2015.04 [43] and has two boot options
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which is a main line kernel above version 4 and sunxi above 3.4. If the SD

card contain only bananian OS, the boot loader will boot with it, unless a

Linux kernel is found. This is only a script so if there is a boot error, the

commands that are defined in the file can be manually written and this way

is more likely to verify each command output and find where it fails, i.e.

when the kernel image is too large. The mkimage command is used to

create the image adapted for U-boot.

(...) mem=932M vmalloc=512M

mkimage -C none -A arm -T script -d boot.cmd boot.scr

Now that the board can boot with bananian OS, the next step is to install

a Linux kernel in order to run Jailhouse. Since Banana Pi-M1 has the min-

imum hardware requirements, obtaining a kernel within a x86-64 machine

can be more efficient and less time-consuming. To do so, a Cross Compil-

ing (CC) tool-chain (arm-linux-gnueabihf) is needed because by default the

machine will compile the kernel for its architecture when the desired one is

ARM.

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- -j8 uImage modules

dtbs LOADADDR=40008000

Using the sshfs comannd, which is a secure shell hosting for filesystems

that uses Filesystem in Userspace (FUSE), it is possible to mount a remote

filesystem. The goal is to create a mounting point, a directory, that will per-

mit access to the files from another machine, that is, it is established a con-

nection between two directories from different machines by network means

in order to access the kernel compiled source files and install them into the

SD card. The U-boot partition is updated as well in order to the bootloader

loads both the Linux image (in the U-boot file is called the uImage-next)

and the device tree binaries (DTBs), in this case the "sunxi-x.dtb" files.

sshfs <remote user>@<remote ip address>:<linux source path> /linux-src
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cp -v arch/arm/boot/uImage /boot/uImage-next

cp -v arch/arm/boot/dts/*.dtb /boot/dtb/

Building Jailhouse is as simple as it is mentioned before (see section 3.1.4),

except that the compilation is adapted for ARM architectures.

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- KDIR=/path/to/linux

The installation is rather different, considering that all files are located in

the x86-64 machine, the mounting point is BPI’s root.

sshfs root@<bananapi_ip_addr>:/ /bpi_root

make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- KDIR=../linux-stable

DESTDIR= /bpi_root install

To run Jailhouse, the compiled files must be located in the SD card, ready

to use. Since is more convenient to actually have the files and not only

access them by sshfs, a new command is used: sftp, which stands for

ssh file transfer protocol that ships files from one machine to another by

network means. A connection is established with the board and a shell-

type command line opens to transfer the files via the put command.

sftp root@<bananapi_ip_addr>

put jailhouse-compiled.tar.gz

quit

Finally, the last step is to insert the Jailhouse’s kernel module by using one

the commands described in section 3.1.4.

Generic Interrupt Controller Demonstration

Generic Interrupt Controller, or GIC, is the APIC’s version for ARM, that

is, a common interrupt handler interface device for multicore ARM uni and

multiprocessors [26], which receives an input signal [12] and organizes the

inputs by priority and identifiers. When the interrupts are forwarded to the
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destiny CPU, it reads it to match the device that triggered it, processes the

event and then writes to the GIC register to inform that the interrupt was

received and handled successfully.

For each CPU core, there is a CPU interface that connects to a "distribu-

tor" interface. The distributor interface is responsible for receiving, labels it

and forward the interrupts where the CPU interface only receives them and

signals to the connected CPU the interrupts with enough priority [4].

There are three different source interrupts: Software Generated Interrupt

(SGI), Private Peripheral Interrupt (PPI) and Shared Peripheral Interrupt

(SPI) [17]. PPI is an interrupt triggered to a specific processor and SPI is

one that can be redirected to multiple processor, routed by the distributor

[12].

GIC demonstration, implemented for ARM processors, is a timer interrupt

and displays a jitter, which, once again, calculates the delay between the

received interrupts at real time and the expected time.

The environment cell configuration file for BPI, included in the attachments,

has 17 defined memory regions, one of them being allocated for the SPI,

and 2 devices: a pci device (IVSHMEM pci device) and irqchips (GIC).

jailhouse enable jailhouse/configs/arm/bananapi.cell

jailhouse cell create jailhouse/configs/arm/bannapi-gic-demo.cell

jailhouse cell load bananapi-gic-demo jailhouse/inmates/arch/arm/gic-demo.bin

jailhouse cell start bananapi-gic-demo
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4. IVSHMEM - The Inter-Vm SHared

Memory

Due to the fact that Jailhouse is a partitioning hypervisor that assigns a

subset of hardware resources to each partition (denoted as "cell") that it

manages and each software guest (or "inmate") run without interference

from other applications, it may occur situations where these cells need to

exchange data and there is the need to use some sort of communication

mechanism, which is one the main goals of this project.

This chapter is related to one of the existing inter-VM shared memory

mechanisms implemented for QEMU called Nahanni (or IVSHMEM) and

its adaption for the Jailhouse hypervisor with support for message signaled

interrupts as notification protocol, including its use in a previous demonstra-

tion (in x86-64 architecture) provided by QEMU and in ARM architecture

provided by BPI. IVSHMEM functionality is enabled by an Userspace I/O

driver, which is one topic to be discussed in this chapter as well.

4.1 Design of IVSHMEM

The main perk of using shared memory is to enable all processes to read

and/or write directly from a shared memory region, common to all involved

processes, without overflowing a buffer.

By using other methods such as a TCP/IP based communication mecha-

nism, in general, there’s a significant increase of overhead, considering that

a single message has to go through multiple layers and need to use more

sophisticated synchronization mechanisms.

Nahanni, or IVSHMEM, as mentioned in section 2.2.2, is a project for inter-

VM communication which operates with the support of a shared mapped
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Figure 4.1: IVSHMEM or Nahanni’s overview adapted from [32].

PCI device, that allows the sending of interrupts between VMs. Figure 4.1

describes IVSHMEM’s architecture where there are two VMs within a host

and user-level applications can access to the POSIX shared-memory via

Nahanni’s device under the /dev filesystem.

The IVSHMEM device (see figure 4.3) is composed by three main parts

which are: the configuration section, the register memory and the shared

memory.

4.1.1 The Configuration Section

The configuration section, known as “config space”, has multiple sections

which are visible by the OS, through the PCI bus and contains, among

several information, the vendor and device ID, which allows the OS to load

the correct driver for the device if the OS has available [32].
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Figure 4.2: IVSHMEM PCI device architecture adapted from [32]

4.1.2 The Base Address Registers

Base address registers, or BARs, point to the regions of memory on PCI

devices that are involved in the device’s function. BAR0 is pointing to the

register memory, which is a MMIO region [11], BAR1 is used for the MSI

when enabled and BAR2 is pointing to the shared memory region [32].

4.1.3 The Register Memory

The register memory is not shared between guests. The IVSHMEM PCI

device has a 256-byte register memory region.

When applications need to interact with the device driver in order to per-

form any tasks, such as sending interrupts, the application will read or write

from/to the registers [32].

The Registers

The registers are a set of data in memory regions, measuring between 16 to

32 bits, that can be read and/or written from. The 4 registers that ivshmem

uses are: Interrupt Status Register (ISR), interrupt mask register (IMR), a

storage register and the doorbell (see figure 4.3).
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Figure 4.3: IVSHMEM PCI device registers adapted from 4.3.

Figure 4.4: IVSHMEM PCI device doorbell adapted from 4.3.

As mentioned above, the first two registers are the main responsibles for

the interrupt mechanism, in a way where both of the registers change when

the nature of the interrupts are pin-based [32] [11]. Considering that the ISR

is set to 1, which is triggered by an interrupt, the IMR performs a bitwise

operation, resulting in a masked interrupt.

The doorbell register is composed by 2 pieces, 16-bit each, which are the

"Destination VM" and the "Interrupt Vector" (figure 4.4). As well as for ISR

and IMR, the doorbell also performs as a notification technology, where by

using the MSI protocol, each VM that are referred in the Interrupt Vector,

are going to be notified [32].

4.2 Message Signaled Interrupts

Message Signaled Interrupts, or MSI, are hardware interrupts triggered by

I/O devices that support more than one interrupt per device and each is

independently configured [35].

Traditional pin-based interrupts are a more complex mechanism consider-
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ing that normally is shared by multiple devices so, when interrupts are trig-

gered, the kernel is in charge of calling their handlers, resulting in a lower

performance, unlike MSI [35].

Another inconvenience that rises with the use of pin-based interrupts is that

it is possible that, for example, when performing a data writing operation,

the interrupt may be faster than the actual operation, which will reduce

performance, thus, to prevent this, the actual interrupt handler will perform

an additional read to a register in order to verify if the data is already in

memory, while by using MSI, the driver already acknowledges that the data

is in memory when the interrupt comes [35].

4.2.1 MSI’s Functionality

By default, the PCI devices are configured to use pin-based interrupts so,

in order to enable this functionality, the Linux kernel must support it. The

kernel must be build with the MSI-related options enabled (normally the

"CONFIG_PCI_MSI") so that the following functions are available. One

important note to be highlighted is that lower kernel versions than 4.8.0 are

not compatible with the protocol.

MSI will allocate the maximum number of vectors supported by that PCI de-

vice (usually between 1 and 32) and forms a request by calling request_irq.

4.3 Jailhouse’s Version of IVSHMEM

Considering that IVSHMEM is a shared-memory mechanism implemented

for QEMU and was later adapted for the Jailhouse hypervisor, there is one

major difference between them regarding the notification mechanism. The

message signaled protocol implemented for QEMU’s version can carry mul-

tiple interrupts at a time unlike the Jailhouse’s adaptation that is one-to-one

peer, i.e. one interrupt at a time.

To establish a connection between two cells, the configuration files for both

cells have to define the same shared-memory region with the appropriate

Diana Ramos 47



Exploring IVSHMEM in the JailhouseHypervisor

permissions: read and/or write; and the same PCI device. This device must

be well defined so that MSI-X1 should function: each end of the communi-

cation channel will be emulated as a PCI device.

The hypervisor could be hosting multiple virtual machines as much as the

hardware is capable to; however, when defining both PCI devices, a cer-

tain caution must be taken in order to establish the correct connections by

defining a smiliar bdf identifier and the same shared-memory protocol, so

that each cell can discover the devices via PCI bus.

4.3.1 IVSHMEM Demonstration

There is an IVSHMEM demonstration available only for x86-64 architecture

that is programmed to send interrupts between two cells. In this case, the

root cell, which is in QEMU environment and a non-root cell that is called

the "ivshmem-demo".

As seen before, the hypervisor must be activated with QEMU’s system cell

and the IVSHMEM cell configuration must be created and loaded its inmate.

Since both configuration cells have the same memory region allocated as

the shared-memory and a PCI device defined, when creating the IVSH-

MEM cell configuration, the hypervisor will link both cells by its virtual PCI

devices.

The following commands activates the hypervisor and starts the ivshmem-

demo:

jailhouse enable /etc/jailhouse/qemu-x86.cell

jailhouse cell create /etc/jailhouse/ivshmem-demo.cell

jailhouse cell load ivshmem-demo /usr/libexec/jailhouse/demos/ivshmem-demo.bin

jailhouse cell start ivshmem-demo

Although a link between cells is created and the demonstrations already

send interrupts, there is a piece missing in the system that is fundamental

1MSI-X is a more recent version of MSI which allows to more interrupts [52] [56]
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to this process. By analyzing figure 4.1, a UIO device driver is needed in or-

der to access certain kernel functionalities that are moved to userspace and

the inmate could actually benefit from it by accessing the /dev/uio filesys-

tem, i.e. read and write from/to the shared memory. To this purpose, a

IVSHMEM’s-based device driver was developped by Henning Schild and

Cam Macdonell in order to facilitate this access.

The UIO Device

UIO was introduced to the Linux Kernel with the purpose of moving some

code from the kernel and passing it to more high level layers so that user-

level applications could use it.

A UIO driver is specially designed for Linux and is provided by a side git

project, called the "ivshmem-guest-code", which includes the device as well

as test code.

The UIO device driver configures the IVSHMEM device and requests the

guest kernel to map the device memory into the kernel’s address space

[32]. This way, guest OSe’s applications can map from kernel to user-level,

which permits the kernel to map the device memory on BAR2 (the shared-

memory region) into the guest kernel’s virtual address space [32]. The

ivshmem device is treated as a normal PCI device and will be registered

under the /dev filesystem with the following format: /dev/uio"n".

The repository has three branches: master, Jailhouse and next. Nahanni

is not specific for Jailhouse so trying to use the device with the main-line

code is not effective. A special branch was forked from the master in order

to alter and align the device within Jailhouse’s requirements.

git clone https://github.com/henning-schild-work/ivshmem-guest-code.git

git checkout jailhouse

modprobe uio

insmod kernel_module/uio/ivshmem.ko
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The already-to-use images for QEMU, provided by the Jailhouse team, are

not capable of building a kernel module considering that the Linux modules

are not imported, that is, the Linux headers. All tools could be installed via

the apt command, thus, the last Linux headers installed were for a much

lower version than the one that is used in the pre-installed Linux kernel,

due the fact that, to simplify the QEMU demonstrations, only runtime de-

pendencies were installed. That was sufficient to run the demonstrations

and the hypervisor, although the building dependencies were hidden. This

can be fixed by two means:

1. Add the following line: "IMAGE_INSTALL += linux-headers-Jailhouse"

to the demo-image.bb file, located in recipes-core/images;

2. Manually transfer the Linux headers of the directory out/build/tmp/deploy/apt/Jailhouse-

demo/pool/main/l/linux-$(uname -r).

Considering that the kernel module is already inserted, the uio device should

now appear as a device and be listed as a PCI device. The cells should

now be able to read from the shared-memory, although there is the need of

using some test scripts provided by the driver:

apt-get install cmake

cd uio/tests/Interrupts/VM

cmake .

make

./uio/tests/Interrupts/VM/uio_read /dev/uio0 "number"

./uio/tests/Interrupts/VM/uio_send /dev/uio0 "number" 0 0

./tests/shmem_test.py

The activity diagram (figure 4.6) is an overview of the process from the

beginning of activating the hypervisor until the expected behavior of the

demonstration cell. The hypervisor needs to be activated and the uio_ivshmem
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Figure 4.5: Activity diagram of IVSHMEM demonstration.

loaded so that the ivshmem-demo cell can be create, loaded with the ivshmem-

demo binary and started. The inmate should receive an interrupt when the

message is has been written into the shared-memory and should read it.

The driver prepares both IVSHMEM-NET2 and traditional IVSHMEM, so

one concern is to choose the right device since there is two different uio

devices. If the python sripts do not eventually give any reasonable output,

this might be the reason.

4.3.2 IVSHMEM Demonstration on Banana Pi-M1

Although Jailhouse has made some advancements in x86-64 architecture

and already provides multiple demonstrations such as apic-demo, this hy-

pervisor is in constant evolution and IVSHMEM, a shared-memory mecha-

nism (uses MSI-X protocol as a notification mechanism via interruptions),

has been a target mechanism to work alongside with Jailhouse within ARM

environments and with great interest by the community and has been lack-

ing for recent experiences.

2IVSHMEM-NET is an adaptation of the implementation of IVSHMEM for the Jailhouse

hypervisor, but instead of using shared-memory, it supports networking protocols like

TCP/IP.
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Figure 4.6: Sequence diagram for IVSHMEM demonstration.

4.3.3 Solution Implementation

The following sequence diagram represents the implementation system

that was designed to run IVSHMEM under a ARM processor:

To use IVHSMEM it is required the creation of three new files (see sec-

tion B.1 and B.2 from the attachments) and some modification in others.

The configuration of the ivshmem-demo cell will align with the system’s cell

(bananapi.c) as it will define the same PCI device, bdf zone, the shared-

memory region and shared-memory protocol and should be created as it

follows below.

There were taken two different approaches to implement this functionality:

1. Using the uio_ivshmem driver with Linux kernel 4.13.0 and creat-

ing the necessary files based on previous IVSHMEM’s demonstration

files;

2. Using a recent reworked IVSHMEM driver with Linux kernel 5.2 (see

section B.3 of the attachments) and build another demonstration’s

working configuration file.

The ivshmem-demo inmate is a binary that is loaded into the ivshmem-
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Figure 4.7: Finding the device function in ivshmem-demo inmate.

demo cell. As mentioned before, the device will appear under the UIO

filesystem so that it will be a registered device. The inmate will have to

manage the interrupts, map the shared-memory and BARs, find the device

and send interrupts until the message is received.

The inmate must be loaded indicating the base address from where the

PCI will be located as well as the interrupt request 155 and address 0x1000.

These data can be found in the configuration file for BPI ( .pci_mmconfig_base),

which in this case is 0x2000000 and GIC is configured with pin_based to 32

and .vpci_irq_base to 123, which gives 155 for the IVSHMEM interruptions.

./jailhouse cell load ivshmem-demo ../inmates/demos/arm/ivshmem-demo.bin

-s "pci-cfg-base=0x02000000 ivshmem-irq=155" -a 0x1000

./jailhouse cell start ivshmem-demo

When following the first approach, although the uio module was success-

fully built against the current kernel (version 4.13.0) and inserted into the

kernel, the uio_ivshmem could not be registered under the uio filesystem,

therefore, it was not possible to read or write to the shared-memory nor did

any interrupt could be triggered. The inmate hangs at the pci_find_device

function that was needed in the main function (figure 4.7).

By following the second approach, the configuration file was based on a

functional demonstration that worked with BPI (gic-demo). Although there

were multiple experiments to modify the memory regions in order to run

ivshmem-demo, it led to a deadlock where it would result in a parked cell

due to the console’s address. If this address were to be modified, another
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error would occur, but if it would be removed, there would be no output.

Section B.4 from the attachments lists all the parking errors and the neces-

sary modifications to files that were needed to get to this project’s point.
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5. Conclusion

This chapter is related to final conclusions of the project and personal ap-

preciations of the work. Additionally it will be introduced some features that

could benefit this project and future work.

5.1 Solution Implementation

The main goal of this project was to enable a shared-memory channel to

establish communication in two or more cells that the Jailhouse hypervisor

could provide, based on an IPC mechanism called Nahanni, or IVSHMEM,

that supported notifications via interrupts. Both cells, in this case a root

and a non-root cell, have to define a PCI device and a memory region for

IVSHMEM so that it can be shared between them and exchange messages.

When a certain cell performs a write operation to the shared-memory, the

other cell should receive a notification about it. One major step that is highly

important to this process is having a device driver that takes care of these

transactions called the uio_ivshmem. This uio driver is a loadable kernel

module that is used to bring these low-level operations, such as write and

read from the POSIX shared-memory, to the user level so that they could

be implemented within the inmate space.

The approach to accomplish the goals of this project was based on the fol-

lowing tasks: (1) compile a Linux kernel that both Jailhouse and uio_ivshmem

could be built against; (2) Explore the Jailhouse hypervisor in terms of

functionality and previous implementations via QEMU, including resolving

issues and (3) explore IVSHMEM functionality and be able to modify Jail-

house’s files on BPI.

Although the concept perceive to be simple as it claims to be, this hyper-

visor is still under development and multiple patches are constantly being
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released for it, in terms of Linux kernel modifications and Jailhouse itself.

The first point, regarding the Linux kernel and necessary module’s compila-

tion (Jailhouse and uio_ivshmem), was very time consuming in this project,

considering that Jailhouse needs certain functionalities of the Linux kernel

that are not explicitly written in the official documentation, although they

have a very active mailing list that provided some information about it and

I manage to build it with a correct configuration, that is, with all the mini-

mum flags enabled. The Linux kernel version was a very crucial point as

well because the hypervisor had described as a requirement a certain min-

imum version (Linux kernel 3.14) and the initial approach was to use the

one defined in the setup for BPI (Linux kernel 4.3.3), since it was more re-

cent than 3.14. The device driver required at least the version 4.8.0. This

information was a result of multiple experiments, considering that versions

above it do not implement the necessary requirements for the device driver

so it would always derive from missing functions on the Linux kernel. After

some research in the official Linux kernel documentation, I had to switch to

another Linux version, this time to a more recent one (5.1.6) and compile

with Jailhouse and uio_ivshmem flags enabled.

The second point, concerning running Jailhouse in QEMU environment,

was more straight forward in a way where the goal was to run some of

the Jailhouse’s demonstrations and understand how to function with them,

what commands Jailhouse provides and how the cells interact with each

other. Using QEMU was just an initial task that was supposed to provide an

immediate demonstration of the hypervisor in x86-64 architecture, without

needing any particular machine. Exploring the implemented demonstra-

tions was a way to explore the hypervisor, thus the goal was to run the

ivshmem-demo. In order to run this demonstration, the uio_ivshmem was

needed and since QEMU had not all the dependencies installed, the Linux

headers were not updated and aligned with the current kernel version, so
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the compilation of the device driver always resulted in a failed status. Other

attempts were made, such as initializing manually QEMU, which resulted in

a very slow process or getting an actual physical machine to run Jailhouse

directly on top without any emulator. VT-d is a rather recent functionality

of modern processors so, after some research about this matter, it was

discovered that Intel processors that were released before 2008 would not

have this capability. In a few words, there were not machines available that

could run Jailhouse directly. This is why using an emulator like QEMU is

very useful. By adding one line, the headers could be installed and the

device could be used.

The last point was a little trickier than the others because is focused in a

matter that was not very matured in the Jailhouse community and there

were less help from the mailing list. There was a tutorial in the official

documentation that helped me setting up everything for Jailhouse, although

there were some problems when trying to use a more recent kernel and the

boot partition of the sd card was too small for the amount of dtb files and

u-boot image size. This was an inconvenience that needed to be solved by

manually configuring it.

There was a patch related to IVSHMEM implementation on BPI that was

decided that could be used as a guide. After creating, modifying and re-

solving some errors from these files, the uio device could not be found

under the /dev/uio filesystem, therefore it could not be used. When check-

ing the kernel log, the uio_ivshmem is active although not performing as

it should. Then, following the community advises, I started working with

IVSHMEM 2.0 that, at that time, had been recently announced. Following

this path, a new kernel had to be compiled again with the required func-

tionalities enabled. Since the used Linux kernel was version 4.13.0 and the

Jan Kiszka’s repository was using the most recent stable kernel, which at

the time was version 5.2, were taken some cautions with newer or modified
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configurations so that it would not interfere with Jailhouse. Since gic-demo

was a functional demonstration in BPI, the ivshmem-demo was based on

it and it took numerous iterations and problem solving in order to finalize it

this way.

Summing up, there were three main goals: (1) Running Jailhouse in QEMU;

(2) Running Jailhouse in BPI and (3) Running IVSHMEM in Jailhouse on

BPI-M1. Jailhouse was ran in QEMU and some demonstrations such as

apic-demo and ivshmem-demo, which gave some knowledge about their

particular functionality and how it could be passed down to other platforms.

Jailhouse was also successfully ran in BPI-M1 and gic-demo was also ran.

Running IVSHMEM was not successfully. As mentioned before, using a

first approach that included a side project’s uio device driver did not gave

the desired output, thus the files were correctly configured; and using a

second approach which already included a reworked driver in the kernel,

had many configuration problems that some ended in a deadlock.

5.2 Limitations and Future Work

One major limitation was the kernel compilation with the drivers that took a

considerable amount of time to compile with an appropriate configuration.

In the future, the plan is to continue exploring IVSHMEM and make it work

in a use case in order to accomplish the final goal of this internship.

5.3 Final Appreciation

This project was taken from a very different context that I am used to work

with, so this was presented to me as a challenge. I have managed to work

with numerous kernels and learn how a simple modification on the config-

uration can go a long way. I had the opportunity to learn some kernel inter-

nals as well and the functionalities that it involves. Device drivers were an

important topic to learn from as well. The hot topic of the hypervisors was

very explored, such as memory management mechanisms. I also gained
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some agility in the command line and there are some other skills that were

developed during this project that can not be very well demonstrated in this

report, although I am very pleased with all the things that I have learned,

developed and consolidated and it will be useful in the future.

Although one of the goals were not completely satisfactory, I am satisfied

with the solution as a whole. Jailhouse is a recent technology that is still

under development and entering in its area and interacting with the commu-

nity helped me work on some certain topics. Running Jailhouse in multiple

platforms and have actual cells giving reasonable outputs were both two

successful goals.

Diana Ramos 59



Bibliography

[1] In: AMD-VTM Nested Paging.

[2] In: Intel R© 64 and IA-32 Architectures Software Developer’s Manual.

System Programming Guide, Part 3. Vol. 3C.

[3] About Us. URL: https://www.cister.isep.ipp.pt/info/. (ac-

cessed: 27.05.2019).

[4] Saravana Pandian Annamalai. ARM INTERRUPT CONTROLLERS.

URL: http://www.embien.com/blog/arm-interrupt-controllers/.

(accessed: 30.08.2019).

[5] Maxim Baryshnikov. “Jailhouse Hypervisor”. Czech Technical Univer-

sity in Prague, 2016.

[6] BPI-M1. URL: http://www.banana- pi.org/m1.html. (accessed:

27.05.2019).

[7] CHAPTER 1. SYSTEM REQUIREMENTS. URL: https://access.

redhat.com/documentation/en-us/red_hat_enterprise_linux/5/

html/virtualization/chap-virtualization-system_requirements.

(accessed: 2.06.2019).

[8] CHAPTER 1. SYSTEM REQUIREMENTS. URL: https://www.softprayog.

in / programming / interprocess - communication - using - posix -

shared-memory-in-linux. (accessed: 2.06.2019).

[9] Creating Deterministic Applications (Real-Time Module). URL: https:

//zone.ni.com/reference/en-XX/help/370715P-01/lvrtconcepts/

builddeterapps_rt/. (accessed: 11.09.2019).

60



Exploring IVSHMEM in the JailhouseHypervisor

[10] C. Dall et al. “ARM Virtualization: Performance and Architectural Im-

plications”. In: 2016 ACM/IEEE 43rd Annual International Symposium

on Computer Architecture (ISCA). June 2016, pp. 304–316. DOI: 10.

1109/ISCA.2016.35.

[11] Device Specification for Inter-VM shared memory device. URL: https:

//chromium.googlesource.com/external/qemu/+/v2.4.0-rc2/

docs/specs/ivshmem_device_spec.txt. (accessed: 31.08.2019).

[12] Larry D.Pyeatt. In: Modern Assembly Language Programming with

the ARM Processor. 2016. Chap. 14 - Running Without an Operating

System.

[13] R. P. Goldberg. Architecture of Virtual Machines. Cambridge, Mas-

sachusetts: Harvard University Cambridge, 1973.

[14] Hard Partitioning for Linux: The Jailhouse Hypervisor. URL: https:

//events.static.linuxfound.org/sites/events/files/slides/

LinuxConNA-2015-Jailhouse_0.pdf. (accessed: 12.09.2019).

[15] How to write a kernel module for Linux. URL: http://cs.smith.

edu/~nhowe/Teaching/csc262/oldlabs/module.html. (accessed:

8.09.2019).

[16] Hypervisor. URL: https : / / www . vmware . com / topics / glossary /

content/hypervisor. (accessed: 24.03.2019).

[17] ideaopensource. ARM Global Interrupt controller GIC v2. URL: https:

/ / ideaopensource . wordpress . com / 2016 / 08 / 04 / arm - global -

interrupt- controller- gic- v2- basic- info- wiki/. (accessed:

30.08.2019).

[18] Intel Virtualisation: How VT-x, KVM and QEMU Work Together. URL:

https://binarydebt.wordpress.com/2018/10/14/intel-virtualisation-

how-vt-x-kvm-and-qemu-work-together/. (accessed: 7.09.2019).

Diana Ramos 61



Exploring IVSHMEM in the JailhouseHypervisor

[19] Intel R© Virtualization Technology for Directed I/O (VT-d): Enhancing

Intel platforms for efficient virtualization of I/O devices. URL: https:

//software.intel.com/en-us/articles/intel-virtualization-

technology-for-directed-io-vt-d-enhancing-intel-platforms-

for-efficient-virtualization-of-io-devices. (accessed: 21.08.2019).

[20] Intel R© Virtualization Technology (Intel R© VT). URL: https://www.

intel.com/content/www/us/en/virtualization/virtualization-

technology/intel-virtualization-technology.html?wapkw=vt-

d. (accessed: 21.08.2019).

[21] Internet Protocol stack in Internet protocol suite (TCP/IP). URL: https:

//medium.com/@anna7/internet-protocol-layers-in-internet-

protocol-suite-tcp-ip-abe038c0adde. (accessed: 31.05.2019).

[22] Interrupts. URL: https://linux-kernel-labs.github.io/master/

lectures/interrupts.html. (accessed: 29.08.2019).

[23] Pavle Ivanovic and Harald Richter. “Performance Analysis of Ivsh-

mem for High-Performance Computing in Virtual Machines”. In: (2017).

[24] Jailhouse. URL: https : / / github . com / siemens / jailhouse. (ac-

cessed: 24.02.2019).

[25] Jailhouse Image. URL: https://github.com/siemens/jailhouse-

images. (accessed: 24.02.2019).

[26] jasona. ARM Generic Interrupt Controller HOWTO. URL: https://

community.cadence.com/cadence_blogs_8/b/sd/posts/arm-

generic-interrupt-controller-architecture-howto. (accessed:

30.08.2019).

[27] Alessandro Rubini Jonathan Corbet and Greg Kroah-Hartman. In:

Linux Device Drivers. 3rd ed.

[28] Kernel Virtual Machine. URL: https://www.linux-kvm.org/page/

Main_Page. (accessed: 27.05.2019).

62 Diana Ramos



Exploring IVSHMEM in the JailhouseHypervisor

[29] Avi Kivity et al. “KVM: the Linux Virtual Machine Monitor”. In: In Pro-

ceedings of the 2007 Ottawa Linux Symposium (OLS’-07. 2007.

[30] Deepak Kumar and Amaizo Folly Felix Magloire. “Hypervisor based

performance characterization: XEN/KVM”. In: Noida, India: IEEE, 2017.

URL: https://ieeexplore.ieee.org/document/8343570.

[31] Linux lsmod command. URL: https://www.computerhope.com/unix/

lsmod.htm. (accessed: 14.09.2019).

[32] A. Cameron Macdonell. “Shared-Memory Optimizations for Virtual

Machines”. University of Alberta, 2011.

[33] Main Page. URL: https://wiki.qemu.org/Main_Page. (accessed:

24.03.2019).

[34] Karissa Miller and Mahmoud Pegah. “Virtualization, Virtually at the

Desktop”. In: (2007).

[35] MSI-HOWTO. URL: https://github.com/linuxkit/linux/blob/

master/Documentation/PCI/MSI-HOWTO.txt. (accessed: 31.08.2019).

[36] Nested virtualization in KVM. URL: https://stafwag.github.io/

blog/blog/2018/06/04/nested- virtualization- in- kvm/. (ac-

cessed: 14.09.2019).

[37] Para virtualization vs Full virtualization vs Hardware assisted Virtu-

alization. URL: https : / / www . unixarena . com / 2017 / 12 / para -

virtualization-full-virtualization-hardware-assisted-virtualization.

html/. (accessed: 13.09.2019).

[38] Posix Standard. URL: https://linuxhint.com/posix-standard/.

(accessed: 15.09.2019).

[39] Python module for Jailhouse. URL: https://wiki.qemu.org/Google_

Summer_of_Code_2018#Python_module_for_Jailhouse. (accessed:

22.08.2019).

Diana Ramos 63



Exploring IVSHMEM in the JailhouseHypervisor

[40] Daniel Lohmann Ralf Ramsauer Jan Kiszka and Wolfgang Mauerer.

“Look Mum, no VM Exits! (Almost)”. In: (2017).

[41] Yi Ren et al. “Shared-Memory Optimizations for Inter-Virtual-Machine

Communication”. In: ACM Comput. Surv. 48.4 (Feb. 2016), 49:1–

49:42. ISSN: 0360-0300. DOI: 10.1145/2847562. URL: http://doi.

acm.org/10.1145/2847562.

[42] Gleb Reys. HW Virtualization. URL: https://www.unixtutorial.

org/hw-virtualization. (accessed: 24.03.2019).

[43] Setup on Banana Pi ARM board. URL: https://github.com/siemens/

jailhouse/blob/master/Documentation/setup-on-banana-pi-

arm-board.md. (accessed: 29.08.2019).

[44] Valentine Sinitsyn. Jailhouse. URL: https : / / www . linuxjournal .

com/content/jailhouse. (accessed: 29.08.2019).

[45] Valentine Sinitsyn. “QEMU: a Multihost, Multitarget Emulator”. In: ().

URL: https://www.linuxjournal.com/article/8808.

[46] Joakim Svensson and Henrik Andersson. “Virtualization in an em-

bedded environment”. In: ().

[47] Towards an ivshmem 2.0? URL: https : / / groups . google . com /

forum / # ! searchin / jailhouse - dev / ivshmem % 5C $ 202 . 0 % 5C %

7Csort : date / jailhouse - dev / Rvg4UR6A _ gM / ApqQgX1JDAAJ. (ac-

cessed: 8.09.2019).

[48] TROUBLESHOOTING A LINUX KERNEL PANIC AFTER PATCH-

ING. URL: https://www.linuxnix.com/troubleshooting-linux-

kernel-panic-patching/. (accessed: 27.08.2019).

[49] uio: Add driver for inter-VM shared memory device. URL: http://

git.kiszka.org/. (accessed: 7.09.2019).

64 Diana Ramos



Exploring IVSHMEM in the JailhouseHypervisor

[50] Aditya Venkataraman and Kishore Kumar Jagadeesha. “Evaluation

of Inter-Process Communication Mechanisms”. In: (). URL: http://

pages.cs.wisc.edu/~adityav/Evaluation_of_Inter_Process_

Communication_Mechanisms.pdf.

[51] Virtualization: an overview. URL: https://www.ionos.com/digitalguide/

server/configuration/virtualization/. (accessed: 11.09.2019).

[52] What do the different interrupts in PCIe do? I referring to MSI, MSI-

X and INTx. URL: https : / / electronics . stackexchange . com /

questions/76867/what-do-the-different-interrupts-in-pcie-

do-i-referring-to-msi-msi-x-and-intx. (accessed: 12.09.2019).

[53] What is an RTOS? URL: https://www.highintegritysystems.com/

rtos/what-is-an-rtos/. (accessed: 1.06.2019).

[54] What is KVM? Red Hat. URL: https://www.redhat.com/en/topics/

virtualization/what-is-KVM. (accessed: 10.05.2019).

[55] Xen Project Software Overview. Xen Project. URL: https://wiki.

xen.org/wiki/Xen_Project_Software_Overview. (accessed: 27.05.2019).

[56] Xilinx PCI Express Interrupt Debugging Guide. URL: https://www.

xilinx.com/Attachment/Xilinx_Answer_58495_PCIe_Interrupt_

Debugging_Guide.pdf. (accessed: 12.09.2019).

[57] Richard West Ye Li and Eric Missimer. “The Quest-V Separation Ker-

nel for Mixed Criticality Systems”. In: (2011).

Diana Ramos 65



A. Setting up Jailhouse with BPI-M1

This chapter is related to a script for setting up Jailhouse with BPI-M1 based

on [43].

A.1 Formatting BPI-M1 sd Card

Since BPI-M1 boots with the assistance of a sd card, it will need to go

through a formatting process in order to boot with bananian OS.

# Get bananian OS

$ wget https://dl.bananian.org/releases/bananian-latest.zip

$ sudo apt-get update sudo apt-get install unzip screen

$ unzip bananian-latest.zip

# Insert the sd card and search for its partition

$ sudo fdisk -l

# Write the image to sd card into the result of the search

$ sudo dd bs=1M if=bananian-*.img of=/dev/"sd card"

# Insert the sd card into BPI-M1 and establish a serial connection

$ dmesg | grep tty

# Connection via serial on Ubuntu

$ screen /dev/ttyUSB"N" 115200

# Connection via serial on Ubuntu with putty

$ sudo apt-get install putty

$ putty

# On BananaPi, login with root/pi, then expand the filesystem

$ bananian-config
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A.2 Adjust U-boot

# Mount U-boot partition

$ mkdir /p1 $ mount /dev/mmcblk0p1 /p1 $ vi /p1/boot.cmd

# Create U-boot image

$ apt-get update apt-get install -y u-boot-tools

# In case of firmware error

$ dpkg -i –force-overwrite /var/cache/apt/archives/firmware-misc-nonfree_20161130-

5 deb8u1_all.deb

$ apt-get update apt-get install -y u-boot-tools

$ cd /p1

$ mkimage -C none -A arm -T script -d boot.cmd boot.scr

A.3 Cross Compiling Kernel for ARM on x86

$ sudo apt-get install -y git

$ cd

$ git clone git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git

$ git clone https://github.com/Bananian/bananian.git

$ git clone https://github.com/siemens/jailhouse.git

# Download the recommended cross-toolchain from Linaro $ cd

$ wget https://releases.linaro.org/components/toolchain/binaries/latest-5/arm-

linux-gnueabihf/gcc-linaro-5.5.0-2017.10-x86_64_arm-linux-gnueabihf.tar.xz

$ tar -xf gcc-linaro-5.5.0-2017.10-x86_64_arm-linux-gnueabihf.tar.xz

# Update environment path $ export PATH=PATH :(pwd)/gcc-linaro-5.5.0-

2017.10-x86_64_arm-linux-gnueabihf/bin

# Choose any Jailhouse-recommended version. Bananian Team imple-

mented some patches for certain versions of Linux kernel v4.x

$ cd /linux-stable
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$ git checkout v4.3.3

$ for i in ../bananian/kernel/4.3.3/patches/*; do patch -p1 < $i; done

$ sudo apt-get update sudo apt-get install -y build-essential libncurses5

libncurses5-dev

# Enable FUSE under "File systems", needed for file transfer via sshfs

and other functionalities that Jailhouse requires (virtualization, virtualiza-

tion drivers, MSI and MSI-X support, etc)

$ make ARCH=arm menuconfig

$ sudo apt-get update && sudo apt-get install -y u-boot-tools

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- -j8 uImage

modules dtbs LOADADDR=40008000

A.4 Installing the Linux kernel on BPI-M1

# On Compiling machine,

$ sudo apt-get update && sudo apt-get install -y sshfs

On BananaPi,

$ apt-get update && apt-get install -y sshfs make gcc

$ mkdir /linux-src

$ sshfs hostname@machine_ip:/path/to/linux/ /linux-src

$ cd /linux-src

$ make modules_install

# Update U-boot partition

$ mount /dev/mmcblk0p1 /boot

$ mkdir /boot/dtb/

$ cp -v arch/arm/boot/uImage /boot/uImage-next

$ cp -v arch/arm/boot/dts/*.dtb /boot/dtb/

# now reboot $ reboot

# Verify kernel installation
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$ uname -r

A.5 Cross Compiling Jailhouse for ARM on x86

# On Compiling machine, $ make –version

# If make version is higher or equal to 3.82, skip this part

$ sudo apt-get update sudo apt-get install -y checkinstall

$ wget http://ftp.gnu.org/gnu/make/make-3.82.tar.bz2 -O /Downloads/make-

3.82.tar.bz2

$ cd tar -xf /Downloads/make-3.82.tar.bz2

$ cd make-3.82

$ ./configure –prefix=/usr

$ make

$ sudo checkinstall make install

# On Compiling Machine

$ sudo apt-get update sudo apt-get install -y python-mako device-tree-

compiler

$ cd

# Copy the configuration header file before building

$ cp -av ./jailhouse/ci/jailhouse-config-banana-pi.h ./jailhouse/include/jail-

house/config.h

$ cd ./jailhouse

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- KDIR=../linux-

stable

A.6 Installing jailhouse

# On Compiling Machine, create a mounting point in BPI-M1

$ mkdir /bpi_root

$ sshfs root@bpi_ip:/ /bpi_root
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$ cd /jailhouse

$ make ARCH=arm CROSS_COMPILE=arm-linux-gnueabihf- KDIR=../linux-

stable DESTDIR= /bpi_root install

# Zip all the necessary files to send to BPI-M1

$ cd tar -zcf jailhouse-compiled.tar.gz jailhouse

$ sftp -P 22 root@bpi_ip

sftp > put jailhouse-compiled.tar.gz

sftp > quit

# On BananaPi

$ cd && tar -xf jailhouse-compiled.tar.gz

$ modprobe jailhouse

70 Diana Ramos



Exploring IVSHMEM in the JailhouseHypervisor

A.7 GIC-demo’s Outputs

In this section it is presented the gic-demo’s outputs followed by: the caption

of each image.

Hypervisor’s initialization on BPI.

GIC-demo cell creation.

GIC-demo inmate loading.

GIC-demo output.

GIC-demo cell list output.
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B. Jailhouse’s IVSHMEM related files

This chapter is related to IVSHMEM implementation files added to Jail-

house. It is worth mentioned that the created files were based on a patch

released on the Jailhouse mailing list by Jonas West. The inmate is the

original file by this author although the configuration file is altered.

B.1 IVSHMEM Demonstration Configuration File

/∗

∗ Jai lhouse , a Linux−based p a r t i t i o n i n g hyperv i so r

∗

∗ Con f i gu ra t i on f o r gic−demo inmate on Banana Pi :

∗ 1 CPU, 64K RAM, s e r i a l po r t s 4−7, CCU+GPIO

∗

∗ Copyr ight ( c ) Siemens AG, 2014

∗

∗ Authors :

∗ Jan Kiszka < jan . kiszka@siemens . com>

∗

∗ This work i s l i censed under the terms of the GNU GPL, vers ion 2 .

See

∗ the COPYING f i l e i n the top− l e v e l d i r e c t o r y .

∗ /

# inc lude <Ja i lhouse / types . h>

# inc lude <Ja i lhouse / c e l l −con f i g . h>

s t r u c t {

s t r u c t Ja i lhouse_ce l l_desc c e l l ;
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__u64 cpus [ 1 ] ;

s t r u c t Jailhouse_memory mem_regions [ 9 ] ;

s t r u c t Ja i l house_ i r qch ip i r q c h i p s [ 1 ] ;

s t r u c t Ja i lhouse_pc i_dev ice pc i_dev ices [ 1 ] ;

} _ _ a t t r i b u t e _ _ ( ( packed ) ) con f i g = {

. c e l l = {

. s igna tu re = Jailhouse_CELL_DESC_SIGNATURE ,

. r e v i s i o n = Jailhouse_CONFIG_REVISION ,

. name = " bananapi−ivshmem−demo" ,

. f l a g s = Jailhouse_CELL_PASSIVE_COMMREG ,

/ / . p io_bi tmap_size = 0 ,

. vpc i_ i rq_base = 123 ,

. cpu_set_size = s i z e o f ( con f i g . cpus ) ,

. num_memory_regions = ARRAY_SIZE( con f i g . mem_regions ) ,

. num_irqchips = ARRAY_SIZE( con f i g . i r q c h i p s ) ,

. num_pci_devices = ARRAY_SIZE( con f i g . pc i_dev ices ) ,

. console = {

. address = 0x01c29c00 ,

. c lock_reg = 0x01c2006d ,

. gate_nr = 23 ,

. d i v i d e r = 0x0d ,

. type = Jailhouse_CON_TYPE_8250 ,

. f l a g s = Jailhouse_CON_ACCESS_MMIO |

Jailhouse_CON_REGDIST_4 ,

} ,

} ,

. cpus = {

0x2 ,

} ,
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. mem_regions = {

/∗ CCU ∗ / {

. phys_s ta r t = 0x01c20200 ,

. v i r t _ s t a r t = 0x01c20200 ,

. s i ze = 0x200 ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_IO | Jailhouse_MEM_IO_32 ,

} ,

/∗ GPIO : po r t H ∗ / {

. phys_s ta r t = 0x01c208fc ,

. v i r t _ s t a r t = 0x01c208fc ,

. s i ze = 0x24 ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_IO | Jailhouse_MEM_IO_32 ,

} ,

/∗ UART 4−7 ∗ / {

. phys_s ta r t = 0x01c29000 ,

. v i r t _ s t a r t = 0x01c29000 ,

. s i ze = 0x1000 ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_IO ,

} ,

/∗ RAM ∗ / {

. phys_s ta r t = 0x7bef0000 ,

. v i r t _ s t a r t = 0 ,

. s i ze = 0x00010000 ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_EXECUTE | Jailhouse_MEM_LOADABLE ,

} ,

/∗ IVSHMEM ∗ / {

. phys_s ta r t = 0x7bf00000 ,

. v i r t _ s t a r t = 0x7bf00000 ,
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. s i ze = 0x000100000 ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_ROOTSHARED,

} ,

{ 0 } ,

{

. phys_s ta r t = 0x7bf01000 ,

. v i r t _ s t a r t = 0x7bf01000 ,

. s i ze = 0x7f000 ,

. f l a g s = Jailhouse_MEM_READ |

Jailhouse_MEM_ROOTSHARED,

} ,

{

. phys_s ta r t = 0x7bf80000 ,

. v i r t _ s t a r t = 0x7bf80000 ,

. s i ze = 0x7f000 ,

. f l a g s = Jailhouse_MEM_READ

| Jailhouse_MEM_WRITE |

Jailhouse_MEM_ROOTSHARED,

} ,

/∗ communication reg ion ∗ / {

. v i r t _ s t a r t = 0x80000000 ,

. s i ze = 0x00001000 ,

. f l a g s = Jailhouse_MEM_READ

| Jailhouse_MEM_WRITE |

Jailhouse_MEM_COMM_REGION,

} ,

} ,

. i r q c h i p s = {

/∗ GIC ∗ / {

. address = 0x01c81000 ,

. pin_base = 32 ,

. pin_bi tmap = {
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1ULL<<(52−32) ,

0 ,

0 ,

1 << (155−128) ,

} ,

} ,

} ,

. pc i_dev ices = {

{

. type = Jailhouse_PCI_TYPE_IVSHMEM ,

. bdf = 0x00 ,

. bar_mask = {

0 x f f f f f f 0 0 , 0 x f f f f f f f f , 0x00000000 ,

0x00000000 , 0x00000000 , 0x00000000 ,

} ,

. shmem_regions_start = 4 ,

. shmem_dev_id = 1 ,

. shmem_peers = 2 ,

. shmem_protocol = Jailhouse_SHMEM_PROTO_UNDEFINED,

} ,

} ,

} ;

B.2 IVSHMEM Demonstration Inmate File

/∗

∗ Jai lhouse , a Linux−based p a r t i t i o n i n g hyperv i so r

∗

∗ Copyr ight ( c ) Siemens AG, 2014−2016

∗ Copyr ight ( c ) Retotech AB, 2017

∗

∗ Authors :

∗ Henning Sch i ld <hennin . . . @siemens . com>
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∗ Jonas W e s t k e r < j o . . . @retotech . se>

∗

∗ This work i s l i censed under the terms of the GNU GPL, vers ion 2 .

See

∗ the COPYING f i l e i n the top− l e v e l d i r e c t o r y .

∗ /

# inc lude <inmate . h>

# inc lude <mach . h>

# de f ine VENDORID 0x1af4

# de f ine DEVICEID 0x1110

# def ine IVSHMEM_CFG_SHMEM_PTR 0x40

# def ine IVSHMEM_CFG_SHMEM_SZ 0x48

# def ine Jailhouse_SHMEM_PROTO_UNDEFINED 0x0000

/ / # de f ine IRQ_VECTOR 32

# def ine MAX_NDEV 4

# def ine UART_BASE 0x3F8

s t a t i c char s t r [ ] = " He l lo from bare−metal ivshmem−demo inmate ! ! !

" ;

s t a t i c i n t i r q_coun te r ;

s t r u c t ivshmem_dev_data {

u16 bdf ;

u32 ∗ r e g i s t e r s ;

vo id ∗shmem;

u64 shmemsz ;

} ;
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s t a t i c s t r u c t ivshmem_dev_data devs [MAX_NDEV] ;

s t a t i c u64 pci_cfg_read64 ( u32 base , u16 bdf , unsigned i n t addr )

{

u64 bar = ( ( ( u64 ) pc i_cfg_read ( base , bdf , addr + 4 , 4) << 32) |

pc i_cfg_read ( base , bdf , addr , 4 ) ) ;

r e t u r n bar ;

}

s t a t i c vo id pc i_c fg_wr i te64 ( u32 base , u16 bdf , unsigned i n t addr , u64 va l )

{

p c i _ c f g _ w r i t e ( base , bdf , addr + 4 , ( u32 ) ( va l >> 32) , 4 ) ;

p c i _ c f g _ w r i t e ( base , bdf , addr , ( u32 ) val , 4 ) ;

}

s t a t i c i n t map_shmem_and_bars ( u32 base , s t r u c t ivshmem_dev_data ∗d )

{

d−>shmemsz = pci_cfg_read64 ( base , d−>bdf , IVSHMEM_CFG_SHMEM_SZ) ;

d−>shmem =

( vo id ∗ ) ( ( u32 ) ( 0 x f f f f f f f f &

pci_cfg_read64 ( base , d−>bdf ,

IVSHMEM_CFG_SHMEM_PTR ) ) ) ;

p r i n t k ( " IVSHMEM: shmem i s a t %p \ n " , d−>shmem ) ;

d−>r e g i s t e r s =

( u32 ∗ ) ( ( ( u32 ) ( d−>shmem + d−>shmemsz + PAGE_SIZE − 1 ) )

& PAGE_MASK) ;

pc i_c fg_wr i te64 ( base , d−>bdf , PCI_CFG_BAR, ( u32 ) d−>r e g i s t e r s ) ;

p r i n t k ( " IVSHMEM: bar0 i s a t %p \ n " , d−>r e g i s t e r s ) ;

p c i _ c f g _ w r i t e ( base , d−>bdf , PCI_CFG_COMMAND,

(PCI_CMD_MEM | PCI_CMD_MASTER) , 2 ) ;

r e t u r n 0 ;

}
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s t a t i c u32 get_ ivpos ( s t r u c t ivshmem_dev_data ∗d )

{

r e t u r n mmio_read32 ( d−>r e g i s t e r s + 2 ) ;

}

s t a t i c vo id send_irq ( s t r u c t ivshmem_dev_data ∗d )

{

p r i n t k ( " IVSHMEM: %02x:%02x.%x sending IRQ

( by w r i t i n g 1 to 0x%x ) \ n " ,

d−>bdf >> 8 , ( d−>bdf >> 3) & 0x1f , d−>bdf & 0x3 ,

d−>r e g i s t e r s + 3 ) ;

mmio_write32 ( d−>r e g i s t e r s + 3 , 1 ) ;

}

s t a t i c vo id enab le_ i rq ( s t r u c t ivshmem_dev_data ∗d )

{

p r i n t k ( " IVSHMEM: Enabl ing IVSHMEM_IRQs \ n " ) ;

mmio_write32 ( d−>r e g i s t e r s , 0 x f f f f f f f f ) ;

}

s t a t i c vo id hand le_ i rq ( unsigned i n t i r q n )

{

p r i n t k ( " IVSHMEM: hand le_ i rq ( i r q n :%d ) − i n t e r r u p t #%d \ n " ,

i rqn , i r q_coun te r ++) ;

}

vo id inmate_main ( vo id )

{

unsigned i n t i = 0 ;

i n t bdf = 0 ;

unsigned i n t c lass_rev ;

s t r u c t ivshmem_dev_data ∗d ;
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v o l a t i l e char ∗shmem;

i n t ndevices = 0;

g ic_setup ( hand le_ i rq ) ;

long long pci_cfg_base = cmdl ine_parse_ in t ( " pc i−cfg−base " , −1);

i f (−1 == pci_cfg_base ) {

p r i n t k ( "ERROR: Provide value f o r ’ pc i−cfg−base ’−parameter \ n "

" ( using cmdline when load ing ivshmem−demo inmate : \ n "

" ’ −s \ " pci−cfg−base=<pci_mmconfig_base > \ " −a <address > ’ ) . \ n "

" Check root−c e l l c o n f i g u r a t i o n f i l e : \ n "

" con f i g . header . p l a t f o r m _ i n f o . pci_mmconfig_base \ n "

" f o r d e t a i l s on a value app l i cab le to your t a r g e t system . \ n " ) ;

r e t u r n ;

}

p r i n t k ( " IVSHMEM: pci−cfg−base :0 x%l l x \ n " , pci_cfg_base ) ;

long long ivshmem_irq = cmdl ine_parse_ in t ( " ivshmem− i r q " , −1);

i f (−1 == ivshmem_irq ) {

p r i n t k ( "ERROR: Provide value f o r ’ ivshmem−i r q ’−parameter \ n "

" ( using cmdline when load ing ivshmem−demo inmate : \ n "

" ’ −s \ " ivshmem− i r q =<value > \ " −a <address > ’ ) . \ n " ) ;

r e t u r n ;

}

p r i n t k ( " IVSHMEM: ivshmem− i r q :%d \ n " , ivshmem_irq ) ;

wh i le ( ( ndevices < MAX_NDEV) &&

(−1 != ( bdf =

pc i_c fg_ f i nd_dev ice ( pci_cfg_base , VENDORID, DEVICEID ,

bdf ) ) ) )

{

p r i n t k ( " IVSHMEM: Found %04x:%04x at %02x:%02x.%x \ n " ,

pc i_cfg_read ( pci_cfg_base , bdf , PCI_CFG_VENDOR_ID, 2 ) ,
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pc i_cfg_read ( pci_cfg_base , bdf , PCI_CFG_DEVICE_ID , 2 ) ,

bdf >> 8 , ( bdf >> 3) & 0x1f , bdf & 0x3 ) ;

c lass_rev = pc i_cfg_read ( pci_cfg_base , bdf , 0x8 , 4 ) ;

i f ( c lass_rev != (PCI_DEV_CLASS_OTHER << 24 |

Jailhouse_SHMEM_PROTO_UNDEFINED << 8 ) ) {

p r i n t k ( " IVSHMEM: c lass / r e v i s i o n %08x , not supported "

" sk ipp ing device \ n " , c lass_rev ) ;

bdf ++;

cont inue ;

}

ndevices ++;

d = devs + ndevices − 1;

d−>bdf = bdf ;

i f ( map_shmem_and_bars ( pci_cfg_base , d ) ) {

p r i n t k ( " IVSHMEM: F a i l u r e mapping shmem and bars . \ n " ) ;

r e t u r n ;

}

p r i n t k ( " IVSHMEM: mapped shmem and bars ,

got p o s i t i o n %p \ n " ,

get_ ivpos ( d ) ) ;

g i c_enab le_ i rq ( ivshmem_irq + ndevices − 1 ) ;

p r i n t k ( " IVSHMEM: Enabled IRQ:0 x%x \ n " ,

ivshmem_irq + ndevices −1);

enab le_ i rq ( d ) ;

bdf ++;

}

i f ( ! ndevices ) {

p r i n t k ( " IVSHMEM: No PCI devices found . . noth ing to do . \ n " ) ;

r e t u r n ;
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}

p r i n t k ( " IVSHMEM: Done s e t t i n g up . . . \ n " ) ;

{

u8 buf [ 3 2 ] ;

memcpy( buf , d−>shmem, s i z e o f ( buf ) / s i z e o f ( buf [ 0 ] ) ) ;

p r i n t k ( " IVSHMEM: %s \ n " , buf ) ;

memcpy( d−>shmem, s t r , s i z e o f ( s t r ) / s i z e o f ( s t r [ 0 ] ) + 1 ) ;

}

wh i le ( 1 ) {

f o r ( i = 0 ; i < ndevices ; i ++) {

d = devs + i ;

/ / delay_us (1000∗1000);

shmem = d−>shmem;

shmem[ s i z e o f ( s t r ) / s i z e o f ( s t r [ 0 ] ) ] + + ;

send_irq ( d ) ;

}

p r i n t k ( " IVSHMEM: wa i t i ng f o r i n t e r r u p t . \ n " ) ;

asm v o l a t i l e ( " w f i " : : : "memory " ) ;

}

}

B.3 IVSHMEM 2.0

IVSHMEM 2.0 is a reworked version of IVSHMEM, specially designed for

Jailhouse, that can be found in Jan Kiszka’s repository (http://git.kiszka.org/linux.git/).

Since the uio_ivshmem driver could be used via a side repository, the pur-

pose was to create a patch to include it within the kernel and be found by

the kernel configuration’s tools.

git clone git.kiszka.org/linux.git

git checkout queues/Jailhouse-ivshmem2
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Jailhouse also has a side branch for this particular kernel configuration.

After cloning the repository, the branch must be switched to wip/ivshmem2

as it follows:

git checkout wip/ivshmem2

This driver "exposes the MMIO register region and all shared memory sec-

tion to userspace. Interrupts are configured in one-shot mode so that

userspace needs to re-enable them after each event via the Interrupt Con-

trol register. The driver registers all possible MSI-X vectors, coalescing

them into the single notifier UIO provides" [49].

Accordingly to IVSHMEM 2.0 announcement, this arranged driver differs

from the original in the following aspects [47]:

1. "Only two peers per link: This simplifies the implementation and also

the interfaces (think of life-cycle management in a multi-peer envi-

ronment). Moreover, we do not have an urgent use case for multiple

peers, thus also not reference for a protocol that could be used in such

setups. If someone else happens to share such a protocol, it would

be possible to discuss potential extensions and their implications".

2. "Side-band registers to discover and configure share memory regions:

This was one of the first changes: We removed the memory regions

from the PCI BARs and gave them special configuration space regis-

ters. By now, these registers are embedded in a PCI capability. The

reasons are that Jailhouse does not allow to relocate the regions in

guest address space (but other hypervisors may if they like to) and

that we now have up to three of them".

3. "Changed PCI base class code to 0xff (unspecified class): This allows

us to define our own sub classes and interfaces. That is now exploited

for specifying the shared memory protocol the two connected peers

should use. It also allows the Linux drivers to match on that".
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4. "INTx interrupts support : This is needed on target platforms without

MSI controllers, i.e. without the required guest support. Namely some

PCI-less ARM SoCs required the reintroduction. While doing this, we

also took care of keeping the MMIO registers free of privileged con-

trols so that a guest OS can map them safely into a guest userspace

application".

And some extensions that were added [47]:

1. "Multiple shared memory regions, including unidirectional ones: It

is now possible to expose up to three different shared memory re-

gions: The first one is read/writable for both sides. The second re-

gion is read/writable for the local peer and read-only for the remote

peer (useful for output queues). And the third is read-only locally but

read/writable remotely (ie. for input queues). Unidirectional regions

prevent that the receiver of some data can interfere with the sender

while it is still building the message, a property that is not only useful

for safety critical communication, we are sure".

2. "Life-cycle management via local and remote state: Each device can

now signal its own state in form of a value to the remote side, which

triggers an event there. Moreover, state changes done by the hyper-

visor to one peer are signalled to the other side. And we introduced

a write-to-shared-memory mechanism for the respective remote state

so that guests do not have to issue an MMIO access in order to check

the state".

B.4 Parking Errors

This section is related to unsuccessful experiments regarding creating con-

figuration files for BPI and ivshmem-demo. It was taken into consideration

one of the already running demonstrations (gic-demo) in order to build a file
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for ivshmem. Since the files needed to be aligned with the addresses and

memory regions that they allocated, most of the experiences resulted in a

"parked cell".

Unhandled data read at 0x1c25014 ( 4 )

FATAL : unhandled t rap ( except ion c lass 0x24 )

pc=0xc0543d64 cpsr=0xa00f0193 hsr=0x93850007

r0=0x00000030 r1=0xde074840 r2=0x00000000 r3=0xe0037000

r4=0xde074840 r5=0xde8a6068 r6=0x00000000 r7=0xc0a01eb8

r8=0x00000030 r9=0xde8a6000 r10=0xc0a69bbc r11=0xc07f905c

r12=0x1e6fe000 r13=0xc0a01e68 r14=0xc0163764

Parking CPU 0 ( Ce l l : " Banana−Pi " )

Unhandled data read at 0x1c1600c ( 4 )

FATAL : unhandled t rap ( except ion c lass 0x24 )

pc=0xc0473924 cpsr=0x200f0013 hsr=0x93830007

r0=0 xe f60 f f16 r1=0x00000021 r2=0 x f f f f f f f 8 r3=0xe0029000

r4=0x0d2e6416 r5=0x00000022 r6=0xde854040 r7=0xc0a04c48

r8=0xde068000 r9=0xde0680dc r10=0xde854040 r11=0x00000001

r12=0x00000018 r13=0xde109e98 r14=0x29aaaaab

Parking CPU 1 ( Ce l l : " Banana−Pi " )

#When adding the reg ions "HDMI" and "RTP" .

Unhandled data read at 0x1c1600c ( 4 )

FATAL : unhandled t rap ( except ion c lass 0x24 )

pc=0xc047b19c cpsr=0x80010013 hsr=0x93830007

r0=0x8c31a9d6 r1=0x0000003e r2=0 x f f f f f f f 8 r3=0xe0029000

r4=0xa9ff0ed6 r5=0x0000003e r6=0xdea33040 r7=0xc0b04c48
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r8=0xdeb24800 r9=0xdeb248dc r10=0xdea33040 r11=0x00000001

r12=0x00000018 r13=0xde12de98 r14=0x29aaaaab

Parking CPU 0 ( Ce l l : " Banana−Pi " )

#When removing " Jailhouse_MEM_IO_32 " f l a g from "HDMI" reg ion .

Unhandled data read at 0x1c20060 ( 4 )

FATAL : unhandled t rap ( except ion c lass 0x24 )

pc=0xc03f45e8 cpsr=0x60010093 hsr=0x93870007

r0=0x20010093 r1=0x00000191 r2=0x00000060 r3=0xe0009060

r4=0xc0b2b558 r5=0x00000100 r6=0x20010093 r7=0x00000000

r8=0x00000004 r9=0xde22c000 r10=0xc0b04c48 r11=0xde0ddc00

r12=0x00000000 r13=0xde22dc98 r14=0xc03f45d8

Parking CPU 0 ( Ce l l : " Banana−Pi " )

#When removing gic−demo ’ s c lock r e l a t e d reg ion .

Unhandled data read at 0x1c20088 ( 4 )

FATAL : unhandled t rap ( except ion c lass 0x24 )

pc=0xc03f457c cpsr=0x60010093 hsr=0x93850007

r0=0xa0010093 r1=0x00000195 r2=0x00000088 r3=0xe0009088

r4=0xc0b2a3dc r5=0xde817cc0 r6=0xa0010093 r7=0x80000000

r8=0xde24a000 r9=0xc0b04c48 r10=0x00000008 r11=0xdf054880

r12=0x00000000 r13=0xde24be68 r14=0xc03f456c

Parking CPU 0 ( Ce l l : " Banana−Pi " )

#When removing gic−demo ’ s CCU r e l a t e d reg ion .

Unhandled data w r i t e a t 0x7bfe0000 ( 1 )
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FATAL : unhandled t rap ( except ion c lass 0x24 )

pc=0xc06c770c cpsr=0x20000013 hsr=0x9000004f

r0=0xe0184000 r1=0x00023080 r2=0x00002134 r3=0xea00000d

r4=0xea000005 r5=0xea000005 r6=0xea000005 r7=0xea000005

r8=0xea000005 r9=0xe0184000 r10=0x00023038 r11=0x00000001

r12=0xea00001a r13=0xde86fe4c r14=0xea000005

Parking CPU 0 ( Ce l l : " Banana−Pi " )

#When a l t e r i n g gic−demo ’ s RAM addresses .

Unhandled data w r i t e a t 0x7bf00000 ( 1 )

FATAL : unhandled t rap ( except ion c lass 0x24 )

pc=0xc06c770c cpsr=0x20000013 hsr=0x9000004f

r0=0xe0184000 r1=0x00023080 r2=0x00002134 r3=0xea00000d

r4=0xea000005 r5=0xea000005 r6=0xea000005 r7=0xea000005

r8=0xea000005 r9=0xe0184000 r10=0x00023038 r11=0x00000001

r12=0xea00001a r13=0xde34be4c r14=0xea000005

Parking CPU 0 ( Ce l l : " Banana−Pi " )

#When a l t e r i n g the f o l l o w i n g l i n e s :

/∗ RAM ∗ / {

. phys_s ta r t = 0x40000000 ,

. v i r t _ s t a r t = 0x40000000 ,

/ / . s i ze = 0x3bf00000 ,

. s i ze = 0 x 1 d 1 f f f f f ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_EXECUTE ,
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} , <−−−−−−− bananapi . c

/∗ RAM ∗ / {

/ ∗ . phys_s ta r t = 0x7bfe0000 ,

. v i r t _ s t a r t = 0 ,

. s i ze = 0x00010000 , ∗ /

. phys_s ta r t = 0 x 5 d 1 f f f f f ,

. v i r t _ s t a r t = 0 ,

. s i ze = 0 x 1 d 1 f f f f e ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_EXECUTE | Jailhouse_MEM_LOADABLE ,

} , <−−−−−−− bananapi−gic−demo . c

Adding v i r t u a l PCI device 00:00.0 to c e l l " Banana−Pi "

Page pool usage a f t e r l a t e setup : mem 68/16362 , remap 5/131072

FATAL : i n s t r u c t i o n abor t a t 0x5df6e9a4

FATAL : fo rb idden access ( except ion c lass 0x20 )

pc=0xbf000ea8 cpsr=0x80030193 hsr=0x80000086

r0=0x00000000 r1=0x00000002 r2=0xf0000000 r3=0xf0003580

r4=0xbf006688 r5=0x00000000 r6=0xbf000e3c r7=0xf0000000

r8=0x00000000 r9=0xc088c16c r10=0xc0b6ee80 r11=0x00000001

r12=0xc0b01ed0 r13=0xc0b01ed0 r14=0xf0003934

Parking CPU 0 ( Ce l l : " Banana−Pi " )

#when a l t e r i n g the f o l l o w i n g l i n e s :

/∗ RAM ∗ / {

. phys_s ta r t = 0x7A3EFFFF ,

. v i r t _ s t a r t = 0 ,
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. s i ze = 0x00010000 ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_EXECUTE | Jailhouse_MEM_LOADABLE ,

} , <−−−−−−− bananapi−gic−demo . c

Ce l l " bananapi−gic−demo" can be loaded

Star ted c e l l " bananapi−gic−demo"

Unhandled data read at 0x1c2006c ( 4 )

FATAL : unhandled t rap ( except ion c lass 0x24 )

pc=0x00001aa2 cpsr=0x200001f3 hsr=0x91830007

r0=0x00000001 r1=0x00000000 r2=0x01c00705 r3=0 x fe3d f f94

r4=0x01c2006c r5=0x80000018 r6=0x000020d4 r7=0x00000017

r8=0x00000000 r9=0x00000000 r10=0x00000000 r11=0x00001fc2

r12=0x00000000 r13=0x00008f10 r14=0x00001aa1

#when a l t e r i n g the f o l l o w i n g l i n e s :

/∗ CCU ∗ / {

. phys_s ta r t = 0x01C1FC00 ,

. v i r t _ s t a r t = 0x01C1FC00 ,

. s i ze = 0x400 ,

. f l a g s = Jailhouse_MEM_READ | Jailhouse_MEM_WRITE |

Jailhouse_MEM_IO | Jailhouse_MEM_IO_32 ,

} , <−−−−−−− bananapi−gic−demo . c

Ce l l " bananapi−gic−demo" can be loaded

Star ted c e l l " bananapi−gic−demo"

Unhandled data read at 0x1c2006c ( 4 )

FATAL : unhandled t rap ( except ion c lass 0x24 )
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pc=0x00001aa2 cpsr=0x200001f3 hsr=0x91830007

r0=0x00000001 r1=0x00000000 r2=0x01c00705 r3=0 x fe3d f f94

r4=0x01c2006c r5=0x80000018 r6=0x000020d4 r7=0x00000017

r8=0x00000000 r9=0x00000000 r10=0x00000000 r11=0x00001fc2

r12=0x00000000 r13=0x00008f10 r14=0x00001aa1

Parking CPU 1 ( Ce l l : " bananapi−gic−demo " )
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