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Abstract 

Smart Cities will leverage the Internet-of-Things(IoT) paradigm to enable cyber-physical loops over urbanprocesses. 
Vehicular backhauls contribute to IoT platforms byallowing sensor/actuator nodes near roads to explore 
opportunisticconnections to passing vehicles when other communicationbackhauls are unavailable. A placement 
process of nodes thatincludes vehicular networks as a connectivity backhaul requiresestimates of infrastructure-
to-vehicle (I2V) wireless service atpotential deployment sites. However, carrying out I2V measurementcampaigns 
at all potential locations can be very expensive;so, predictive models are necessary. To this end, 
qualitativecharacteristics of a potential site, such as infrastructural pointsof-interest (POI) relating to traffic (i.e., 
traffic lights, crosswalks)and fleet activities (i.e., bus stops, garbage bins) can inform aboutthe vehicles 19 mobility 
patterns and quality of the I2V service. Inthis paper, we show the contribution of POI (and site-specificinformation) 
to I2V transfers, leveraging a real-world dataset ofgeo-referenced I2V WiFi link measurements in urban 
settings.We present the distributions of throughput with respect todistance per POI class and site, and apply 
exponential regressionto obtain practical throughput/distance models. We then usethese models to compare I2V 
transfer estimation methodologieswith different levels of POI-specific data and data resolution. Weobserve that 
I2V transfer estimate accuracy can improve froman average over-estimation of 18.3% with respect to 
measuredvalues, if site or POI-specific information metrics are not used,to 9.3% in case such information is used. 
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Abstract—Smart Cities will leverage the Internet-of-Things
(IoT) paradigm to enable cyber-physical loops over urban
processes. Vehicular backhauls contribute to IoT platforms by
allowing sensor/actuator nodes near roads to explore opportunis-
tic connections to passing vehicles when other communication
backhauls are unavailable. A placement process of nodes that
includes vehicular networks as a connectivity backhaul requires
estimates of infrastructure-to-vehicle (I2V) wireless service at
potential deployment sites. However, carrying out I2V measure-
ment campaigns at all potential locations can be very expensive;
so, predictive models are necessary. To this end, qualitative
characteristics of a potential site, such as infrastructural points-
of-interest (POI) relating to traffic (i.e., traffic lights, crosswalks)
and fleet activities (i.e., bus stops, garbage bins) can inform about
the vehicles’ mobility patterns and quality of the I2V service. In
this paper, we show the contribution of POI (and site-specific
information) to I2V transfers, leveraging a real-world dataset of
geo-referenced I2V WiFi link measurements in urban settings.
We present the distributions of throughput with respect to
distance per POI class and site, and apply exponential regression
to obtain practical throughput/distance models. We then use
these models to compare I2V transfer estimation methodologies
with different levels of POI-specific data and data resolution. We
observe that I2V transfer estimate accuracy can improve from
an average over-estimation of 18.3% with respect to measured
values, if site or POI-specific information metrics are not used,
to 9.3% in case such information is used.

Index Terms—Vehicular networks, IoT nodes, I2V links, vol-
ume estimation

I. INTRODUCTION

Smart Cities aim to improve the quality-of-life of city

dwellers by increasing the efficiency of urban processes

(e.g., traffic management), leveraging remote process

monitoring and actuation by a centralized command center.

The Internet-of-Things (IoT), a paradigm of pervasive and

heterogeneous communication, is the key enabler of the

data and control connections between sensors, actuators and

control center. In this context, vehicular backhauls – i.e.,

vehicular fleets equipped with wireless Access Points (APs) –

can also be explored to support dependable communication:

data produced by road-side IoT nodes is opportunistically

transferred to vehicles over infrastructure-to-vehicle (I2V)

links and forwarded to the cloud [1]. During the design stage

of an IoT platform, in order to select deployment sites for the

road-side sensor/actuator nodes, it is necessary to estimate

the I2V service offered by the vehicular backhaul at tentative

deployment sites and evaluate it against the node’s communi-

cation requirements. One option is to carry out measurement

campaigns at all potential sites, but this can be resource-

consuming or even unfeasible. Another option is to compute

estimates of I2V transfers based on models of throughput

versus distance and mobility traces, but these may be too

demanding on computational resources and required datasets,

or too simplistic thus failing to capture relevant behaviours.

In this paper, we explore how infrastructure features re-

lated to vehicular mobility can inform the estimation of

I2V transfers. The characteristics of vehicular mobility (e.g.,

speed distribution and stopped/moving periods of the vehicles)

can be related to local infrastructural points-of-interest (POI)

that affect traffic (e.g., traffic lights, crosswalks) and/or fleet

operation (bus stops, garbage bins). We leverage a dataset of

geo-referenced I2V WiFi (IEEE 802.11b/g) link performance

collected in three real-world urban settings to identify and

quantify the relevance of POI. In an initial dataset analysis,

we find that most connections occur when the vehicles are

stopped. This lead us to apply a spatial clustering algorithm

to the I2V samples, with the resulting clusters being associated

with nearby POI. From this association, we draw distributions

of throughput with respect to distance per class of POI (and

target site), and apply regression (with an exponential curve)

to produce a model that is more convenient for the estimation

procedure. Finally, the resulting throughput/distance models

are feed to a set of I2V transfer estimation methods that rely

on POI and site-specific information to various degrees. In

this manner, we identify the nature and scale of the datasets

required for accurate estimation. We obtain an average over-

estimation of 18.3% if non-specific models are not used, with

improvements to 15% if POI-specific information is used and

9.3% if site-specific information is used.

Our main contributions are:

• Quantification of the contribution of vehicular point-of-

interest to I2V transfers, in three representative real-world

urban settings;

• Exponential models of throughput versus distance per

type of POI and site obtained via regression;

• Comparative evaluation of I2V transfer estimation meth-

ods with different levels of coarseness and specificity.

The remainder of this article is organized as follows. In

Section II, we review the literature on this topic. We describe

the I2V dataset and pre-processing in Section III. In Sec-

tion IV, we draw POI-related throughput and distance models

at selected sites. Several estimation methods are evaluated in

Section V. Final remarks are drawn in Section VI.

II. RELATED & PRIOR WORK

One of the first reports of vehicular data collection from

infrastructure nodes is found in [2]: the authors report a

distributed mobile sensor system, in which data collected by



sensors installed in vehicles is offloaded to static road-side

units. The work of [3] builds on the previous by allowing

vehicles to receive data from the static nodes. There are

numerous works on IEEE 802.11 link characterization and data

volume measurements in vehicle-to-X scenarios. The works

reported in [4] and [5] evaluate the performance of IEEE

802.11-based I2V links to provide Internet to vehicular users

in highway scenarios (in [5], also car-to-car measurements

are taken). The authors of [6] describe range, association

times, UDP and total data volume between infrastructure and

cars at different speeds. In [7], the performance of IEEE

802.11 is characterized under aggressive mobility scenarios

(node mobility up to 240km/h). Regarding I2V data volume

estimation, the work of [8] presents a theoretical evaluation of

the capacity and coverage of various technologies (cellular and

vehicular) to support infrastructure-to-vehicle communication

at large scale. The work of [9] discusses coverage estimation

from cellular towers within the scope of Minimization Drive

Tests (proposed by 3GPP), that seek to crowdsource user RSSI

and position samples to support propagation estimation. The

authors of [10] describe CARM, an algorithm to generate RSSI

maps from crowdsensed datasets.

In previous work [11], we characterized transfer rates,

volumes and connection times between a traffic light-bound

sensor and passing buses over WiFi links. This work addressed

a single site and the impact of nearby traffic and fleet-related

elements was not studied in detail. In [12], we provide a

first look into the relevance of POI over multiple sites: we

introduce a dataset of geo-referenced I2V measurements

with a waste disposal fleet and a methodology for sample

clustering and POI association. In the current paper, we

leverage the latter work (reviewed in Section III1) to obtain

throughput models per site and POI, and compare various

I2V volume estimation methods with different levels of

requirements on input data detail and estimation accuracy.

III. DATASET PROCESSING FOR ASSOCIATION WITH POI

A. Description of Geo-Referenced I2V Dataset

We use I2V measurements acquired in the context of the

PortoLivingLab platform [13]2. PortoLivingLab is a smart

city-enabler IoT platform deployed in Porto, Portugal, com-

prising sub-platforms UrbanSense [14], a collection of 20

sensing units equipped with a WiFi module, and BusNet3,

a vehicular network of 600+ on-board units (OBU) installed

in the public transportation and waste disposal fleets of Porto

(the former accounting for 400 nodes) that offer a WiFi (IEEE

802.11b/g) hotspot service. The sensing units are configured as

WiFi clients and connect opportunistically to passing OBUs,

to perform I2V link performance measurement sessions. The

measurements were taken at three sites refered to as A, B and

C, and exclusively with the waste disposal fleet. The resulting

logs contain collections of geo-referenced I2V measurement

tuples (or simply I2V samples) composed of timestamp, MAC

address of OBU, position and speed of vehicular node, and link

1Some values and figures have been updated per revised analysis processes.
2Dataset available on request to authors.
3BusNet is currently operated by company VENIAM: https://veniam.com/.
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Fig. 1: CDF of relevant metrics for all sites.

quality metrics (throughput, packet loss ratio, jitter) collected

with the tool Iperf (version 2.0). The time between I2V

samples is at least 2s, as the vehicle’s GPS position is obtained

via a SSH-based query to the OBU, and the IPerf measurement

session is scheduled to last 1s. Individual connections to

OBU are identified by aggregating samples that are temporally

close (less than 60 seconds apart). The data volume of a

connection is the summation, over all samples, of the product

of each sample throughput and the time interval until the

next sample. In pre-processing, samples lacking valid GPS

data were discarded. In total, we identified 12369 link quality

samples, 588 connections, and 16 unique OBU.

B. Stopped/Moving Ratio as Indicator of POI Impact

Using the geo-referenced I2V samples, we computed the

per-site distributions of the vehicles’ speed, throughput,

and throughput per distance. The cumulative distribution

function (CDF) of the speed of the vehicles during the I2V

measurements, shown in Figure 1a (as in [12]), informs that

the ratio of stopped and moving intervals of the vehicles was,

on average, 83.32%. This leads us to conclude that the large

majority of samples was taken when the vehicle is stopped,

across all three sites. We also observed the throughput

samples to follow similar distributions at the three sites, as

can be seen from the throughput CDF in Figure 1b (as in [12]).

The performance of throughput versus distance is depicted in

Figure 2 for 10 meter-wide bins (as in [12]). We observe that

the communication range differs between sites, which can

be explained by distinct road topologies, and that there are

distance intervals where a larger number of samples occur (see

top axis of graphs), indicating that at those distances there

may be points-of-interest (or areas affected by nearby POI).

Mobility dynamics can change due to circumstantial

conditions (e.g., weather, emergency scenarios, holidays); in

turn, these may cause the distribution of the contact intervals

between the vehicle and the road-side wireless node to vary.

Evaluating the impact of such conditions is challenging, as

the involved steps are complex: (i) include external datasets

to identify occurrences of such conditions; (ii) associate

occurrences with changes in mobility patterns; and (iii) relate

mobility pattern changes with I2V performance. Thus, we do

not consider them in the current work.

C. Creation of I2V Clusters and Association to POI

In order to relate POI and spatial patterns of I2V samples,

we create geographical clusters of samples that we subse-

quently map to the POI that could best motivate them. The
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Fig. 2: Throughput versus distance at the selected locations (top axis: number of samples).

Site # days Total Stopped Filter # clusters Data retained in clusters* Data retained in POI* Assigned clusters

A 70
# samples 4148 3128 (75.4%)

30
35.9% (1123) 24.6% (768)

29Conn. time (s) 12825 9793 (76.4%) 31.5.0% (3084) 22.4% (2192)
Volume (Mbit) 103006 76614 (74.4%) 47.6% (36488) 29.2% (22364)

B 34
# samples 1386 1124 (81.1%)

11
32.4% (364) 32.4% (364)

11Conn. time (s) 4094 3340 (81.6%) 36.0% (1202) 36.0% (1202)
Volume (Mbit) 31404 25995 (82.8%) 43.3% (11244) 43.3% (11244)

C 61
# samples 6466 6043 (93.5%)

10
40.3% (2433) 38.1% (2302)

8Conn. time (s) 19875 18655 (93.9%) 32.7% (6102) 32.3% (6020)
Volume (Mbit) 170167 159813 (93.9%) 47.5% (75866.3) 46.9% (74877)

*Ratios respective to the stopped dataset.

TABLE I: Relevant metrics through data processing stages (stopped samples filtering, clustering and POI association).

first step of data processing was to keep only I2V measure-

ment samples with stopped vehicles; we consider a vehicle

as stopped if its speed is inferior to 3 km/h. The second

step involved the application of a density-based clustering

technique, DBSCAN [15], to identify areas of large sample

density. In order to sub-sample homogeneously over the entire

range of distances, we defined consecutive 10m-wide rings

centered at the DCU location, and take only the 40% highest-

throughput samples in each ring. We only apply this technique

to the 40% highest quantiles of the throughput samples for

two reasons: these are more indicative of locations favourable

to I2V transfers, and throughput samples of low value can

be found throughout the whole region with low density, thus

hindering the clustering process. DBSCAN was then applied to

the filtered I2V samples with the following parameters: neigh-

borhood radius – 2.5m; minimum number of points to become

a core point – 8. The parameters of the sub-sampling and

DBSCAN procedures were found through empirical iterative

exploration. Our target was to obtain a manageable number of

clusters and with a size proportional to the surroundings (as

opposed to having many small clusters or few large ones).

In a parallel process, we identified manually, at each site,

the following classes of POI: traffic lights and crosswalks

(traffic-related POI), and garbage bins (fleet-related POI).

We then sought to assign clusters to POI, under the rule

that one POI may be assigned more than one cluster (i.e., a

POI can cause I2V sample clusters in different regions; the

inverse is considerably more difficult to identify). We initially

computed the Euclidean distance between cluster centroids

and POI locations and associated them by closeness, but

concluded that this approach did not perform well in some

cases. E.g., oftentimes a slender cluster, known to be caused

by a particular traffic light, presents its centroid closer to the

crosswalk of an inflowing parallel street. Thus, we associated

manually POI to clusters, considering: (a) whether POI is

inside/near the cluster; (b) direction of traffic flows.

Table I (as in [12], updated) presents a quantitative character-

ization of the datasets associated with each processing step –

the initial dataset, after the stopped filtering, after clustering,

and after association to POI. The cluster algorithm retained

between 32.4% and 40.3% of the stopped samples per site,

corresponding to between 43.3% to 47.6% of the measured

volume transfers in stopped conditions. This value range can

further be altered by tuning the parameters of the sub-sampling

and DBSCAN procedures. After association to POI, almost all

samples are retained except at site A, where one large cluster

could not be assigned to a POI and caused a considerable drop

in the number of retained samples.

IV. ANALYSIS AND MODELS PER POI CLASS AND SITE

Using the association between clusters of I2V samples

and POI described previously, the contribution of each POI

class (i.e., the set of all POI of a given type [traffic-light,

crosswalks, garbage bins]) at each site can be clarified.

A. I2V Service per Site and Relevance of POI Classes

We identify relationships between POI classes and I2V

performance metrics that are site-specific. Table II (as in [12],

updated) indicates, per site, the number of POI per class that

were manually identified, the number of clusters associated to

each POI class, and the corresponding dataset size and data

volume. Figure 3 complements Table II by pinpointing traffic

lights (green pins), garbage bins (blue pins), and produced

clusters. Note that the crosswalk POI class refers only to

crosswalks that are not related to traffic lights.



Site POI class # POI # clusters # samples Conn. time at class POI (s) Volume at class POI (Mbit)

A
Garbage bins 6 10 181 621 3719
Traffic Lights 7 15 523 1409 16980
Crosswalks 7 4 64 162 1666

B
Garbage bins 1 0 0 0 0
Traffic lights 4 11 364 931 11244
Crosswalks 1 0 0 0 0

C
Garbage bins 2 1 2064 5417 65598
Traffic Lights 5 7 238 603 9378
Crosswalks 2 0 0 0 0

TABLE II: Contribution of different POI classes for site performance.

(a) Site A (b) Site B (c) Site C

Fig. 3: Clusters of I2V samples (polygons) and POI (traffic lights and garbage bins are numbered).

Site A: most clusters are associated with traffic lights (e.g.,

note traffic lights [green pins] numbered as 2, 3, 4 and 5

of Figure 3a), accounting for 83% of all transfers. Two

clusters are associated with garbage bins (2 and 6 [blue

pins]). Crosswalks account for comparatively few samples.

There is a large cluster that cannot be directly associated to

any POI, as it sits at the center of the intersection.

Site B: the entirety of the data volume in this site is recorded

at clusters associated with two traffic-lights (1 and 2 [green

pins] in Fig. 3b). There is a garbage-bin POI, but no nearby

cluster was produced during the clustering stage.

Site C: the majority of samples (87.5%) are associated with

garbage bin 1 of Figure 3c. This is likely due to: (a) waste

disposal trucks stop at this bin for long periods; (b) samples

from nearby traffic lights might have been included.

In conclusion, we find that, in all sites, traffic lights always

show associated samples and crosswalks account for few or no

I2V samples. Also, the identification of a cluster at the center

of the intersection, in site A, shows that other unaccounted

factors may exist. Most samples at this cluster were obtained

during night, thus excluding traffic jams as a cause. Finally,

a single fleet-related POI may account of the majority of

throughput samples at a given site (e.g., site C), to an extent

that is not observed in traffic-related POI.

B. Throughput Models per POI Class and Site

We now address the distribution of the throughput with

respect to distance of the I2V clusters per site and POI class.

The I2V samples assigned to clusters were binned in 10 meter-

wide bins, shown in Figures 4 and 5 per site and POI class

respectively (note that Fig. 4 differs from Fig. 2 as not all of

the initial samples are assigned to clusters). In Figure 4, the

gaps or distance ranges with inferior amount of samples further

stress that each site presents its very own spatial configuration

of POI. The results per POI class (Figure 5) capture some

particularities of the behaviour of throughput with respect to

distance at each type of POI, even if it is profoundly associated

to the topology of the studied sites. For example, there are few

samples collected at traffic lights that are far (i.e., above 90m),

indicating that those traffic lights provide little contribution,

while far away garbage bins still register considerable I2V ex-

changes. A challenge of POI class throughput characterization

is that, even if more data is collected over more sites, it is un-

likely (or very difficult) to obtain a dataset of I2V samples that

are homogeneously distributed over the entire distance range.
In order to leverage the presented data for I2V volume esti-

mation, we produce a concise and practical model of through-

put with respect to distance ξ by fitting an exponential curve

t(d) = α · eβ d (t=throughput; d=distance) [16]. We computed

model parameters for all data (ξ), for each site S (ξS) – i.e.,

considering all I2V samples of each site –, for each POI class

Pk (ξPk
, where k is an index for POI classes) – i.e., consider-

ing the clusters associated with each POI class across all sites

–, or both (ξS,P
k
). For all data, the global throughput model ξ

has curve parameters α=17.5 and β=-0.0094; per-site and per-

POI class models are shown in Table III. Looking at the site-

related models ξS (Table IIIa), all sites present a similar decay

factor β ∈ [−1.26,−1.16]·10−2. Sites A and C exhibit similar

throughput at 0m α (19.55 and 19.47 Mbit/s), whereas site

B only attains 15.05, possibly indicating that communication

at small distances is underperforming (e.g., signal may be

attenuated by obstacles due to the position of the wireless

interface). We also observe relevant differences among POI

classes (Table IIIb, row ξPk
). Garbage bins and crosswalks

present the highest throughput at 0m α (18.49 Mbit/s and

19.47 Mbit/s, respectively), with respect to the inferior values

of traffic lights (16.75 Mbit/s). The decay factor β presents

values in the range (β ∈ [−1.2,−0.74] · 10−2), with traffic

lights presenting the least steep decay, possibly due to the

lack of samples at distances higher than 90m. The remaining
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Fig. 4: Throughput versus distance per site (only I2V samples assigned to clusters considered).
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Fig. 5: Throughput versus distance per POI class (only I2V samples assigned to clusters considered).

(a) Per site.
Site A B C
Params. α β α β α β
ξS 19.55 -0.0116 15.05 -0.0122 19.47 -0.0126

(b) Per POI class, global and at each site.
POI class Garb. Bin Traf. light Crosswalk
Params. α β α β α β
ξPk

18.49 -0.0112 16.75 -0.0074 19.47 -0.012

Site A 11.26 -0.0053 19.79 -0.0112 19.47 -0.012
ξS,Pk

Site B - - 15.05 -0.0122 - -
Site C 18.92 -0.0118 18.92 -0.0092 - -

TABLE III: Exponential parameters for throughput models.

rows of Table IIIb present the models specific per site and POI

class ξS,P
k
. We evaluate next if the per-POI class behaviours

captured in these models can improve volume estimation.

V. I2V ESTIMATION METHODS

We compare several estimation methodologies with different

levels of granularity and requirements on POI- or site-related

detail, leveraging the developed I2V throughput models. As

volume estimation may be applied in locations where datasets

as the one of this work are not available, we seek to map

levels of dataset detail and POI-/site-specific information into

levels of estimation accuracy. In this way, parties interested

in deploying road-side nodes that explore I2V transfers (e.g.,

municipalities, authorities, services), but that do not have

the ability to produce large datasets of geo-referenced link

performance samples, may learn about the accuracy that

coarser and simpler-to-obtain datasets can offer. The following

methods are formulated in a generic manner in order to be

independent of specific data sources; in Subsection V-B, we

clarify how our dataset was processed to implement them.

A. Estimation Methodologies

We seek to estimate the total data volume V̂ at a tentative

deployment location (referred to as the test location) in a

given site S. Four estimation models are presented next and

assigned names, for convenience in the discussion. The index i

identifies individual clusters, whereas k indexes a concrete POI

class. The terms POI and cluster will be used interchangeably,

but recall that a POI may have more that one cluster associated

(i.e., a traffic light may cause stopping behaviours in distinct

geographical areas). The used throughput models are those

described in the previous section; Γ refers to total connection

time. In all cases, it is assumed there is a prior geographical

identification of stopping areas, that in turn correspond to

potential clusters. This can be done e.g. by on-site inspection

of existing POI and deduction of potential stopping areas

caused by each POI, or mined from GPS traces if available.

Model 1, Coarsest model (Eq. 1): is agnostic to POI classes

and builds on a basic set of information: an estimate of

overall stopped time at the site Γ, a global throughput

model ξ, and a list of individual distances between cluster

centroids and test location. The distance between cluster



centroid/test location is used with the global throughput

model to obtain a throughput value per cluster; this set of

values is then averaged (ξ).

V̂M1 = Γ ξ (1)

To produce this estimate, an interested party could estimate

Γ from traffic light scheduling; the throughput model ξ

can be conveniently drawn from an existing representative

collection of I2V measurements taken throughout the city,

or a generic literature model; and the cluster centroid/test

location distances can be drawn from a prior survey of

potential clusters.

Model 2, Site/POI model (Eq. 2): uses a mix of POI class-

and site-specific information: the total stopped time per POI

class Γk and the average throughput for that site ξS. As in

Model 1, the average throughput is obtained from feeding

cluster centroid/test location distances into the site-specific

throughput model and averaging the resulting values.

V̂M2 =
∑

k

Γk ξS (2)

In practical terms, the total stopped time per POI class

can be drawn from POI-related task execution time logs

(e.g., in the case of waste disposal, average time at each

garbage bin), or from GPS traces of fleets that use that

particular class of POI. The average throughput per site ξS
relies on throughput measurements (not necessarily paired

with position information) that can be done on purpose at

a tentative deployment site.

Model 3, POI-only model (Eq. 3): considers metrics only

related to POI classes, namely the total stopped time Γk

and the average throughput for that POI class ξPk
.

V̂M3 =
∑

k

Γk ξPk
(3)

This method is suited for the case in which fleets are

wireless-enabled. The throughput model per POI class ξPk

requires I2V measurements taken when the vehicle was

stopped due to a POI of that class – again, this can be done

by task execution timestamps, and not necessarily drawn

from GPS data. Γk can be obtained as described in Model 2.

Model 4, Per-cluster model (Eq. 4): provides the finest

resolution: the stopped time measured at each cluster Γi is

individually multiplied by the site- and POI class-specific

throughput ξS,P
k

at the distance between cluster centroid

and test location.

V̂M4 =
∑

k

(

∑

i∈Pk

Γi ξS,P
k

)

(4)

This approach requires a way of estimating stop times at

all clusters, to an extent that GPS data may be required.

The site- and POI class-specific throughput may be

obtained from on-site measurements at the cluster centroids

(requiring already an extensive measurement campaign).

B. Evaluation of I2V Volume Estimation Models

We leverage our dataset to produce estimates according to

the various models and compare them against the measured

data volume in each site (recall that the described methods do

not necessarily need a dataset like the one used in this article).

We explain next how our dataset was processed to match the

inputs of each method; the test locations are the locations of

the DCUs where the measurements were taken.

Model 1: From our dataset, we compute the total stopped

time of all clusters Γi in the target site, and multiply it

by the average throughput predicted by the general through-

put/distance model ξ(di) for that site, thus producing a total

volume estimate V̂ ′

M1
.

V̂ ′

M1
=

(

∑

i

Γi

) (

1

N

∑

i

ξ(di)

)

(5)

Model 2: We compute the product of the total stopped time

per POI class (Γi, i ∈ Pk), and the throughput estimated

from the site-specific throughput/distance model ξS (at the

distance between test location and the cluster center). The

used exponential model parameters are those of Table IIIa.

Summing the values per POI class, we produce the total

volume estimate V̂ ′

M2
.

V̂ ′

M2
=
∑

k

(

∑

i∈Pk

Γi

) (

1

N

∑

i∈Pk

ξS(di)

)

(6)

Model 3: Similar to Model 2, but the used through-

put/distance model is defined per POI class, ξPk
; the

parameters are found in the respective line of Table IIIb.

Model 4: Eq. 4 was used directly with the model parameters

of Table IIIb.

Table IV presents the data volume estimated by the models

and the values measured on site, and the ratios to the volumes

measured from samples in POI clusters and from all samples

at each site. Regarding the ratios to POI cluster volumes

(Table IVb, first three columns), Model 1 shows the highest

over-estimation – between 1.11 and 1.25 (avg. 1.183) –,

due to the very coarse temporal and throughput resolution

used (in both cases, global metrics) and lack of site or

POI class specific information. Model 2 exhibits an inferior

over-estimation with respect to Model 1, between 1.03 and

1.16 with respect to measured values (avg. 1.093); the use

of site-specific throughput metrics and POI class-aware

time sums improved the estimation quality. Model 3, that

incorporates POI class-related information, produces ratios

between 1.08 and 1.23 (avg. 1.15), thus performing slightly

worst that Model 2. Model 4, using the most specific models,

shows mixed performance with an over-estimation over the

actual values between 1.09 and 1.18 (avg. 1.127). Finally, the

last three columns of Table IVb show that the estimates fall

between 0.24 and 0.55 of the total volume of each site. We

discuss these results in more detail in the following subsection.

C. Discussion

The end goal is to determine if POI can be predictors of the

I2V transfers that a road-side wireless node installed in a given

site will experience. We observe that coarse characterizations

as those of Model 1 produce an over-estimation of up to 25%

with respect to the volumes transferred in POI clusters. The in-

clusion of site-specific information, such as throughput-related

metrics, improved estimation accuracy: Model 2 presents an

over-estimation of up to 16%, with good performance on sites

B and C (3% and 9% respectively). The use of POI class-

specific average metrics (throughput and stop time), as in



(a) Measured and estimated volumes (Mbit).
Site (days) A (70) B (34) C (61)

Measured
Total 103006 31404 170167
POI clusters 22364 11244 74877

Estimated

Coarsest model (M1) 24889 14008 89310
Site/POI model (M2) 25956 11562 81824
POI-only model (M3) 25519 13840 80515
Per-cluster model (M4) 26449 12536 81570

(b) Ratio between estimated and measured volumes.
Ratio To POI clusters volume To total volume
Sites A B C A B C
Coarsest model (M1) 1.11 1.25 1.19 0.24 0.45 0.55
Site/POI model (M2) 1.16 1.03 1.09 0.25 0.37 0.48
POI-only model (M3) 1.14 1.23 1.08 0.25 0.44 0.47
Per-cluster model (M4) 1.18 1.11 1.09 0.26 0.4 0.48

TABLE IV: Model estimates compared to measured values.

Model 3, has mixed effects. In sites A and C there is an

improvement in the estimate accuracy, but considerable degra-

dation in site B. This may stem from the fact POI class-specific

throughput-related metrics may not be as representative as site-

specific metrics, as they are limited to the distances at which

POI are found throughout the studied sites. The use of models

tailored to site and POI class, as in Model 4, brings some

improvement, but not substantial with respect to Model 2. This

may be due to the lack of sufficient samples, causing the result-

ing models to not be accurate throughout the entire range of

distances. As a practical takeaway, the observation that coarse

metrics provide reasonable estimates indicates that less expen-

sive techniques for measuring throughput and stopped time can

be explored when producing datasets for I2V estimation.

Finally, the general behaviour of under-estimation of the

total volumes (last three columns of Table IVb) is strongly

related to the data retention rates of the clustering procedure.

In designing the procedure, we aimed to find a trade-off

between number of clusters and their geographical size, at the

cost of some I2V samples not being assigned to clusters and

thus not being considered by the estimation methods. This is

a challenge bound to occur in any work that attempts to relate

geo-referenced I2V samples and infrastructural elements.

Thus, the ratios shown should not be used to evaluate the

accuracy of the estimation methods, but they inform about

the ability of the overall system in producing estimates of the

total volumes that can be experienced at a potential site, under

the current values of the clustering procedure parameters.

VI. CONCLUSIONS AND FUTURE WORK

From analysis of real-world geo-referenced I2V link

measurements with fleet vehicles, we observed that I2V

transfers occur mostly with stopped vehicles. We created

geographical clusters of I2V measurements and associated

them with infrastructural point-of-interests relating with

traffic or fleet operation. Exponential curves are fitted to

the throughput samples with respect to distance per POI

class and site. We observed relevant differences between

the POI class-specific model parameters, e.g., traffic lights

present a inferior throughput at small distances and a less

steep decay factor. Finally, we show that the I2V volume

estimation improves as site or POI-specific information is

used: if no specific information is used, we report an average

over-estimation of 18.3% with respect to measured values,

whereas the incorporation of site- and POI-specific models

allows to decrease it to 9.3% and 15%, respectively.

Future work will deepen the relationship between POI and

measured I2V transfers at a given site. The setup of a second

IoT node at one of the studied sites may clarify if our approach

and conclusions are generalizable. A more comprehensive

and generic model, capable of approximating the throughput

versus distance behaviour at arbitrary locations, can be built

by collecting additional measurements at other sites and under

a wider variety of conditions. A clustering mechanism capable

of retaining an high ratio of I2V samples without degrading

the geographical boundaries of clusters will lead to better

estimates. The emergence of new wireless technologies such

as mmWave (IEEE 802.11ad) and multi-user MIMO (IEEE

802.11ax) may demand updated estimation mechanisms. Our

long-term goal is to identify the minimum set of site character-

ization required to produce accurate estimates of I2V capacity.
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