

Experiences on the Implementation of a
Cooperative Embedded System Framework

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100605

Version:

Date: 06-29-2010

Cláudio Maia

Luis Miguel Nogueira

Luis Miguel Pinho

Technical Report HURRAY-TR-100605 Experiences on the Implementation of a Cooperative Embedded System

 Framework

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Experiences on the Implementation of a Cooperative Embedded System
Framework
Cláudio Maia, Luis Miguel Nogueira, Luis Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: crrm@isep.ipp.pt, luis@dei.isep.ipp.pt, lmp@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
As the complexity of embedded systems increases, multiple services have to compete for the limited resources of a
single device. This situation is particularly critical for small embedded devices used in consumer electronics,
telecommunication, industrial automation, or automotive systems. In fact, in order to satisfy a set of constraints related
to weight, space, and energy consumption, these systems are typically built using microprocessors with lower
processing power and limited resources.

The CooperatES framework was thus specified in this context, allowing resource constrained devices to collectively
execute services with their neighbors in order to fulfil the complex QoS constraints imposed by users and applications.
This paper presents a prototype implementation of the framework within the Android platform, detailing the needed
extensions to the Android’s architecture to handle the formation of a coalition of cooperative nodes. Building on this
experience, the paper points out future perspectives for the development of real-time applications in the Android
platform.

Experiences on the Implementation of a Cooperative
Embedded System Framework

Cláudio Maia
CISTER Research Centre

School of Engineering of the
Polytechnic Institute of Porto

Porto, Portugal
crrm@isep.ipp.pt

Luís Nogueira
CISTER Research Centre

School of Engineering of the
Polytechnic Institute of Porto

Porto, Portugal
lmn@isep.ipp.pt

Luís Miguel Pinho
CISTER Research Centre

School of Engineering of the
Polytechnic Institute of Porto

Porto, Portugal
lmp@isep.ipp.pt

ABSTRACT
As the complexity of embedded systems increases, multiple
services have to compete for the limited resources of a sin-
gle device. This situation is particularly critical for small
embedded devices used in consumer electronics, telecommu-
nication, industrial automation, or automotive systems. In
fact, in order to satisfy a set of constraints related to weight,
space, and energy consumption, these systems are typically
built using microprocessors with lower processing power and
limited resources.

The CooperatES framework was thus specified in this con-
text, allowing resource constrained devices to collectively
execute services with their neighbours in order to fulfil the
complex QoS constraints imposed by users and applications.
This paper presents a prototype implementation of the frame-
work within the Android platform, detailing the needed ex-
tensions to the Android’s architecture to handle the forma-
tion of a coalition of cooperative nodes. Building on this
experience, the paper points out future perspectives for the
development of real-time applications in the Android plat-
form.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming — Distributed programming; D.2.11 [Software En-

gineering]: Software architectures; J.7 [Computers in

Other Systems]: Real-Time

Keywords
Distributed Real-Time Embedded Systems, Cooperative Com-
puting, Android

1. INTRODUCTION
During the past years the embedded device industry has
faced a huge growth and the tendency is to grow even more
in the next years [22]. Following this tendency, new applica-

tions, functionalities and more diverse devices are becoming
available to the general audience in a fast pace, therefore
bringing new technological and scientific challenges. Among
these challenges is the ability to cooperatively execute re-
source demanding applications in such heterogeneous, open,
and dynamic environments while meeting non-functional re-
quirements that otherwise would not be met by an individual
execution.

An increasing number of real-time applications need a con-
siderable amount of computation power and are pushing
the limits of traditional data processing infrastructures [23].
Consider, for example, the real-time stream processing sys-
tems described in [14, 6, 21]. The quantity of data produced
by a variety of data sources and sent to end systems to fur-
ther processing is growing significantly, therefore demand-
ing more processing power. The challenges become even
more critical when a coordinated content analysis of data
sent from multiple sources is necessary [6]. Thus, with a
potentially unbounded amount of stream data and limited
resources, some of the processing tasks may not be satisfy-
ingly answered even within the users’ minimum acceptable
QoS levels [21].

Several studies in computation offloading propose task par-
tition/allocation schemes that allow the computation to be
offloaded, either entirely or partially, from resource con-
strained devices to a more powerful neighbour [24, 8, 11].
These works conclude that the efficiency of an application
execution can be improved by careful partitioning the work-
load between a device and a fixed neighbour. Often, the goal
is to reduce the needed computation time and energy con-
sumption [9, 18, 20, 4, 10] by monitoring different resources,
predicting the cost of local execution and that of a remote
one and deciding between a local or remote execution. How-
ever, most of the work in this direction is limited to the case
where there is only one resource-limited device and one rel-
atively more capable neighbour to offload computation to.
Also, none of these works supports the maximisation of each
user’s specific Quality of Service (QoS) preferences while off-
loading computation among sets of heterogeneous nodes.

This is the challenge addressed by the CooperatES (Coop-
erative Embedded Systems) framework [16], a QoS-aware
framework that facilitates the cooperation among neighbour
nodes when a particular set of user-imposed QoS preferences
cannot be satisfied by a single node. This paper describes

the ongoing prototype implementation of the CooperatES
framework in the Android mobile platform [2], detailing the
needed extensions to the Android’s architecture to handle
the formation of a coalition of cooperative nodes as formally
described in [16]. This allows to understand the limitations
of the Android’s platform, and better identify the direction
to follow for better support real-time applications in An-
droid.

Android [2] was made publicly available during the fall of
2008 and is gaining strength both in the mobile industry
and in other industries, with different hardware architec-
tures (such as the ones presented in [3] and [12]). The
increasing interest from the industry arises from two core
aspects: its open-source nature and its architectural model.
Nevertheless, there are features which have not been ex-
plored yet, as for instance the suitability of the platform
to be used in Open Real-Time environments [13]. Taking
into consideration works made in the past such as [19, 5],
either concerning the Linux kernel or Virtual Machine en-
vironments, there is the possibility of introducing temporal
guarantees allied with Quality of Service (QoS) guarantees
in each of the aforementioned layers, or even in both, in
a way that a possible integration may be achieved, fulfill-
ing the temporal constraints imposed by the applications.
This integration may be useful for multimedia applications
or even other types of applications requiring specific ma-
chine resources that need to be guaranteed in an advanced
and timely manner. Thus, taking advantage of the real-time
capabilities and resource optimisation provided by the plat-
form.

The remainder of this paper is organised as follows: Section
II briefly presents the CooperatES framework. Section III
describes the core features of the Android architecture. The
proposed extensions to enable the formation of coalitions of
cooperative heterogeneous devices with Android are detailed
in Section IV. Section V points out a possible direction to
include real-time behaviour on Android. Finally, Section VI
concludes this paper.

2. THE COOPERATES FRAMEWORK
The CooperatES framework is primarily focused in open
and dynamic environments where new services can appear
while others are being executed, the processing of those ser-
vices has associated real-time execution constraints, and ser-
vice execution can be performed by a coalition of neighbour
nodes. Nodes may cooperate either because they cannot
deal alone with the resource allocation demands imposed by
users and services or because they can reduce the associated
cost of execution by working together.

The framework is composed by several components, as de-
picted in Figure 1. It is not our objective to detail the
framework model presented in the figure, as it has already
been done in [16]. However, a brief description helps to fully
understand the extensions to the Android’s architecture de-
tailed in Section IV.

When a QoS-aware service arrives to the system, it requests
execution to the framework through the Application Inter-

face, thus providing explicit admission control, while ab-
stracting the underlying middleware and operating system.

Figure 1: CooperatES Framework

Users provide a single specification of their own range of
QoS preferences for a complete service, ranging from a de-
sired QoS level to the maximum tolerable service degrada-
tion, specified by a minimum acceptable QoS level, without
having to understand the individual tasks that make up the
service. It is assumed that a service can be executed at
varying levels of QoS to achieve an efficient resource usage
that constantly adapts to the devices’ specific constraints,
nature of executing tasks and dynamically changing system
conditions.

The service request will then be handled by theQoS Provider,
which in turn is composed by the Local Provider and Coali-

tion Organiser components. The Local Provider is respon-
sible for determining if a local execution of the new service
is possible within the user’s accepted QoS range, by exe-
cuting a local gradient descent QoS optimisation algorithm,
quadratic in the number of tasks and resources and linear
in the number of QoS levels. The goal is to maximise the
satisfaction of the new service’s QoS constraints while min-
imising the impact on the current QoS of previously accepted
services [16].

Rather than reserving local resources directly, it contacts the
Resource Managers to grant the specific resource amounts
requested by the service. Each Resource Manager is a mod-
ule that manages a particular resource, and interfaces with
the actual implementation in a particular system of the re-
source controller, such as the network’s device driver, the
CPU scheduler, or even with the software that manages
other types of resources (such as memory).

The CooperatES framework differs from other QoS-aware
frameworks by considering, due to the increasing size and
complexity of distributed embedded real-time systems, the
needed trade-off between the level of optimisation and the
usefulness of an optimal runtime system’s adaptation be-
haviour. Searching for an optimal resource allocation with
respect to a particular goal has always been one of the funda-
mental problems in QoS management. However, as the com-
plexity of open distributed systems increases, it is also in-
creasingly difficult to achieve an optimal resource allocation
that deals with both users’ and nodes’ constraints within an
useful and bounded time. Note that if the system adapts
too late to the new resource requirements, it may not be
useful and may even be disadvantageous.

This idea has been formalised using the concepts of anytime

QoS optimisation algorithms [16], in which there are a range
of acceptable solutions with varying qualities, adapting the
distributed service allocation to the available deliberation
time that is dynamically imposed as a result of emerging
environmental conditions [15].

If the resource demand imposed by the user’s QoS prefer-
ences cannot be locally satisfied, the coalition formation pro-
cess is handled to Coalition Organiser. This component is
responsible for broadcasting the service’s description, the
user’s quality preferences, evaluating the received service
proposals, and deciding which nodes will be part of the coali-
tion.

Thus, there will be a set of independent blocks to be collec-
tively executed, resulting from partitioning a resource inten-
sive service. Correct decisions on service partitioning must
be made at runtime when sufficient information about work-
load and communication requirements become available [24],
since they may change with different execution instances and
users’ QoS preferences.

The Coalition Organiser interacts directly with the System

Manager to know which nodes are able to participate in the
coalition formation process. Therefore, the System Manager

is responsible for maintaining the overall system configura-
tion, detecting QoS-aware nodes entering and leaving the
network, and managing the coalition’s operation and disso-
lution.

3. ANDROID’S ARCHITECTURE
Android is an open-source software architecture provided
by the Open Handset Alliance [1], a group of 71 technology
and mobile companies whose objective is to provide a mo-
bile software stack. It presents some positive features, such
as: (i) its software licence; (ii) the target devices in which
Android can be run, including mobile devices and devices
based on x86 architecture [3], useful to prove the heteroge-
neous capabilities of the proposed framework; and (iii) its
Linux-based architecture.

Android’s main limitation lays on the real-time support.
Hence, in order to overcome this limitation, the Capacity
Sharing and Stealing (CSS) algorithm [15] is being imple-
mented in the Linux kernel in an ongoing parallel prelim-
inary prototype, which is included in the proposed frame-
work implementation. The implementation of the real-time
features on Android’s Virtual Machine (VM) is also part of
that work. The work presented in this paper is based on
the standard Android architecture as it is provided by the
Open Handset Alliance, and already allows to better under-
stand the existent limitations and how Android should be
augmented to better support real-time applications.

The Android stack includes an operating system, middle-
ware and out of the box applications that can be used by
the end user. It comes with a Software Development Kit
(SDK) and a Native Development Kit (NDK), which provide
the tools and Application Programming Interfaces (APIs)
needed by the developers, in order to develop new applica-
tions for the platform. The applications can be developed
using the Java programming language, if the developer uses
the SDK or, on the other hand, C/C++ programming lan-

guage in the case of using the NDK. In terms of features,
Android incorporates the common features found nowadays
in any mobile platform, such as: application framework
reusing, integrated browser, optimised graphics, media sup-
port, network technologies, etc.

The Android architecture, depicted in Figure 2, is composed
by the following layers: Applications, Application Frame-
work, Libraries, Android Runtime and finally Linux kernel.

Starting by the uppermost layer, the Applications layer,
it provides the core set of applications that are commonly
shipped out of the box with any mobile device, i.e. Browser,
Contacts, Phone, among others.

The next layer, the Application Framework, provides the
framework APIs used by the applications on the uppermost
layer. Besides the APIs, there is a set of services that enable
the access to the Android’s core features such as graphical
components, information exchange managers, event man-
agers and activity managers, as examples.

Below the Application Framework layer, there is another
layer containing two important parts: Libraries and Android
Runtime. The libraries provide core features to the applica-
tions. Among all the libraries provided, the most important
are libc, the standard C system library tuned for embed-
ded Linux-based devices; the media libraries, which support
playback and recording of several audio and video formats;
graphics engines; fonts; a lightweight relational database en-
gine and 3D libraries based on OpenGL ES.

Regarding the Android Runtime, besides the internal core li-
braries, Android has its own virtual machine named Dalvik.
This virtual machine was designed to be able to perform op-
timisations for minimal memory footprint as well as mapping
the applications running on the uppermost layer to own pro-
cesses, with its own instances of the virtual machine. This
means that each application has its own address space, by
running in a separate process in its own virtual machine in-
stance. Dalvik is capable of running multiple instances of
virtual machines and relies on the Linux kernel for features
such as thread management and memory management.

The Linux kernel, version 2.6, is the bottommost layer and
is no more than an hardware abstraction layer that enables
the interaction of the upper layers with the hardware layer
via device drivers. Furthermore, it also provides the most
fundamental system services such as security, memory man-
agement, process management and network stack.

4. PROPOSED EXTENSIONS
The proposed extensions to the standard Android’s architec-
ture are depicted in Figure 3. These extensions enable the
formation of coalitions of heterogeneous devices for coop-
erative QoS-aware execution of resource intensive services.
The real-time features are supported by the Linux kernel
and the CSS scheduling algorithm [15]. Although one of
the main limitations of Android, in the scope of our work,
is the lack of real-time support, there are other important
ones such as resource monitoring or even QoS support that
should be handled by the framework.

Figure 2: Android Architecture

Figure 3: CooperatES Architecture

The Android architecture does not provide mechanisms to
control the resource demands imposed by applications. There-
fore, and to overcome this limitation, Resource Managers

are used for handling singular resources, i.e. memory, cpu,
disk, etc. Due to the dynamic nature of the framework, the
amount of available resources has a direct impact on the de-
cisions taken by the QoS Provider, which will decide whether
to form a coalition of cooperative nodes or not, based on ac-
tual resource values.

Other limitation found in the Android’s architecture is the
lack of a component that is able to manage the communica-
tion schemes between different nodes. These communication
schemes are important to the framework due to the fact that
it permanently needs to handle all the network operations
with respect to the cooperation process among nodes. This
limitation was surpassed with the inclusion of the System

Manager component.

All the components provide a socket interface, and there-
fore, this approach enables the communication between com-
ponents located at different layers in the Android’s stack.
Without following this approach, it would not be possible to
have a direct communication path between the QoS Provider

and either the Resource Managers or System Manager, due

to the internal design of the Android’s architecture.

The QoS Provider runs seamlessly integrated in the Android
Runtime as a natural part of its architecture. The main ad-
vantage provided by this integration is the ability of having
a natural support for QoS in the architecture, which allows
a decision to be taken on the best QoS for an application.
There are two execution options available: (i) local execu-
tion or (ii) cooperative distributed execution. In either case,
applications are processed in a transparent way for the user,
as users are not aware of the exact distribution used to solve
the computationally expensive applications.

During a device’s boot time, the Linux kernel boots, as well
as the Resource Managers and System Manager. These will
run as kernel services and handle all the requests through a
socket interface. It is important for the framework to be able
to control resource usage through Resource Managers and
also to be able to maintain the overall system configuration
with the System Manager. As such, we have decided to
put these components as near the device drivers as possible.
The communication between the components will be socket-
based, as previously mentioned.

if(startQoSProvider() != 0)
{

LOGE(”Unable to start QoS Provider\n”);
goto bail;

}

/∗ start the virtual machine ∗/
if (startVm(&mJavaVM, &env) != 0)

goto bail;
...
int AndroidRuntime::startQoSProvider()
{

return createQoSProvider();
}

int createQoSProvider() {
pthread t threadID;

LOGI(”createQoSProvider was called\n”);
/∗ Create client thread ∗/
pthread detach(pthread self());
if (pthread create(&threadID, NULL,

putSocketUpAndListen, NULL) != 0)
LOGI(”QoSProvider pthread create() failed”);

return 0;
}

Listing 1: QoS Provider instantiation

Then, the Android Runtime is started via a process named
Zygote. This process is responsible for the pre-initialisation
of the Dalvik VM instance, which is used later on to spawn
new VM instances with a partially initialised state. When-
ever a new application is started, the main VM instance is
forked via the Linux kernel and a new process is created.
This process is handled by the VM itself and it is assigned
to the new application. It is important to mention that
Zygote is responsible for the initialisation of the core Java
classes existing at the Application Framework level, which
handle all the basic needs of the Android applications. The
use of Zygote reduces the application’s startup time, as most
of the Android’s core Java classes are already in a running

state when a user desires to start an application.

Just before starting the VM, the runtime starts the QoS

Provider, through the startQoSProvider() method, with its
internal components attached – the Local Provider and the
Coalition Organiser. The code listing for this step in pre-
sented in Listing 1. As QoS Provider runs as if it natively
belongs to the runtime itself, this step is strategic. Our
intention is to provide QoS management to applications,
where each application is mapped into an instance of the
Dalvik VM and, at the same time, to a Linux process. This
way, we are able to provide the application with an instance
of a QoS Provider that is capable of handling each applica-
tion’s QoS constraints.

Zygote continues and starts up all the remaining compo-
nents, beginning with Dalvik VM, then the core classes on
the Application Framework and finally, the phone applica-
tions.

<?xml version=”1.0” encoding=”utf−8”?>
<manifest ...>
<application ...>
<activity ...></activity>

</application>
<qos−parameters>
<dimensions>
<dimension>
<dimension−name>Video

Quality</dimension−name>
<attributes>
<attribute>
<attribute−name>color

depth</attribute−name>
<attribute−values
domain=”discrete”
datatype=”integer”>1,3,8,16,24

</attribute−values>
</attribute>

<attribute−name>sampling
rate</attribute−name>
<attribute−values
domain=”discrete”
datatype=”string”>SQCIF,QCIF,CIF

</attribute−values>
</attribute>
<attribute>...</attribute>

</attributes>
</dimension>
<dimension>...</dimension>

</dimensions>
</qos−parameters>
</manifest>

Listing 2: AndroidManifest.xml

Note that Android applications are dynamically able to use
the regular Android stack, if no QoS management is re-
quired, or use the proposed extensions to satisfy their QoS
requirements, which can be added to theAndroidManifest.xml

file. This file contains the definition of an application, e.g.
the declaration of the libraries, components, and specific
permissions required or handled by the application. List-
ing 2 shows an example of this file, considering the specifi-
cation of the application’s QoS requirements.

Basically, each application can specify its QoS requirements

through a set of quality dimensions, as proposed in [16].
Each quality dimension must specify a name, and a set of at-
tributes associated to the quality dimension being specified.
Each attribute also has an identifier, and a set of quality val-
ues. These values have a data type associated- float, integer
or string ; a domain - discrete or continuous - and finally, the
attribute values that will be used as a reference by the QoS

Provider, in order to perform the maximisation process with
the application of the anytime algorithms. Each application
may define an infinite set of dimensions according to its QoS
needs.

else if (tagName.equals(”qos−parameters”))
{

if (!parseQoS(pkg, res, parser, attrs, flags,
outError))

{
return null;

}
else

{
pkg.usesQoS = true;
pkg.applicationInfo.setQoS(pkg.

qosDimensions);
pkg.applicationInfo.usesQoS = true;

}
...
}

private boolean parseQoS(...)
{

if (tagName.equals(”dimensions”))
{

ArrayList <QoSDimension> dimArray =
parseDimension(...);

}
}
...
private ArrayList <QoSDimension> parseDimension(...)
{

ArrayList <QoSDimension> dimensionArray =
new ArrayList<QoSDimension>();

QoSDimension tmpDimension;

...

// each TAG is parsed and if everything is looks

good

// add the dimension to the array

dimensionArray.add(tmpDimension);
...
}

Listing 3: QoS parameter parsing in

PackageParser.java

By allowing the possibility to define the QoS requirements
in an XML format, quality information consistency among
heterogeneous nodes is achieved and therefore, a common
understanding of the QoS requirements by all the nodes in-
volved in the cooperative execution exist. This is a major
advantage offered by the Android architecture, and was also
taken into consideration in the framework implementation.
With this XML format, it is also possible to map and form
hierarchies between quality dimensions and its attributes.

The application QoS parameters are parsed by the Pack-
age Parser, as presented in Listing 3. Here, the parseQoS()

method is called to load the parameters into memory by
creating Java objects which will then be used by Android to
handle the application’s workflow. Each dimension is also
parsed and added to a list where all the dimensions and its
attributes are mapped. Note that all the application’s prop-
erties are also loaded into memory during boot time, since
the Android platform does not persist them.

Then, the parameters are sent to the QoS Provider compo-
nent via a Java Native Interface (JNI) call to the Zygote.
Listing 4 presents this step. One should note that there is
a decision path based on the existence of QoS parameters.
If the application presents QoS constraints, the method Zy-

gote.forkAndSpecializeQoS() is called, otherwise, the stan-
dard Android method for forking the applications will be
called, namely Zygote.forkAndSpecialize(). The listing is re-
lated to the ZygoteConnection.java file.

...
if(parsedArgs.qosArgs != null)
{

qosArgs =
parsedArgs.qosArgs.toArray(stringArray2d);

pid =
Zygote.forkAndSpecializeQoS(parsedArgs.uid,
parsedArgs.gid,

parsedArgs.gids, parsedArgs.debugFlags, rlimits,
qosArgs);

}
else

{
pid = Zygote.forkAndSpecialize(parsedArgs.uid,

parsedArgs.gid,
parsedArgs.gids, parsedArgs.debugFlags,

rlimits);
}
...

Listing 4: JNI Call to Dalvik VM

This JNI call is handled by dalvik system Zygote.c, which
belongs to the VM itself. The Zygote.forkAndSpecializeQoS()

method presented in Listing 5 is responsible for handling the
application QoS parameters and sending them via a socket
communication to the QoS Provider which is listening for
requests.

Each request is delivered to the Local Provider which based
on the resource allocation levels sent by each Resource Man-

ager, determines if there are enough resources to locally run
the application. If this is the case, the VM will be forked and
a new process is assigned to the application, following the
typical flow of Android. On the other hand, the Coalition

Organiser is invoked whenever the imposed QoS constraints
cannot be locally satisfied.

static void

Dalvik dalvik system Zygote forkAndSpecializeQoS(
const u4∗ args,

JValue∗ pResult)
{
pid t pid;
ArrayObject ∗qosArgs = (ArrayObject ∗) args[5];

if (qosArgs == NULL)
{

LOGI(”Zygote Args are NULL\n”);
}
else

{
// socket code was removed

u4 i, j;

ArrayObject∗∗ tuples = (ArrayObject ∗∗)
(qosArgs−>contents);

for (i = 0; i < qosArgs−>length; i++)
{
u4 count = tuples[i]−>length;

StringObject∗∗ qos tuple = (StringObject∗∗)
tuples[i]−>contents;

for (j = 0; j < count; j++)
{

StringObject∗ contents =
(StringObject∗) qos tuple[j];

char∗ tmpString =
dvmCreateCstrFromString(contents);

LOGI(”Sendind QoS parms to
QoSProvider −> %s \n”,
tmpString);

// send params to QoS Provider

n = write(sockfd, tmpString,
strlen(tmpString));

memset(&buffer, 0, sizeof (buffer));
}

}

// call standard function for fork

pid = forkAndSpecializeCommon(args);

RETURN INT(pid);
}

Listing 5: Zygote before forking

The Coalition Organiser is responsible for partitioning the
service in a set of blocks; requesting service proposals from
neighbour nodes (detected by the System Manager) for each
of those blocks; deciding which nodes will form the coali-
tion based on their service proposals and user’s QoS require-
ments; and disseminating blocks among the chosen nodes.
For now, only services that can be divided in sets of indepen-
dent blocks are supported, although algorithms for coordi-
nating the execution of interdependent blocks were already
developed [17]. A directed graph, describing the inputs and
outputs of each block is dynamically formed when the ser-
vice is partitioned.

Whenever coalition partners receive an application’s block
sent by the requesting node, a new VM instance is spawned
by forking the main Dalvik VM instance, dealing with blocks
as if they were locally started by an user.

Figure 4 presents the framework’s workflow in the form of
Unified Modelling Language (UML) activity diagram. The
diagram presents a high level overview of the framework
and its objective is to provide a clear view of the concepts
presented in this section.

Figure 4: CooperatES Framework Workflow

5. EXTENDING ANDROID FOR REAL-TIME
EMBEDDED SYSTEMS

In [13], we discuss the suitability of Android for open em-
bedded real-time systems, analyse its architecture internals,
point out its current limitations, and propose four possible
directions to incorporate real-time behaviour into the An-
droid platform:

• Inclusion of a real-time VM, besides Dalvik, along with
the inclusion of a real-time operating system;

• Extension of Dalvik with real-time features based on
the Real-Time Specification for Java [7], as well as the
inclusion of a real-time operating system;

• Inclusion of a real-time operating system in order to
allow only native applications to have the desired real-
time behaviour;

• Inclusion of a real-time hypervisor that parallelises the
execution of Android and real-time applications. Both
run as guests over the hypervisor which is responsible
for handling the scheduling and memory management
operations.

The acquired experiences with the directions proposed in
[13] allows us to conclude that the first direction is the one
that causes less impact in the system as a whole. This direc-
tion allows the possibility of having Dalvik serving the needs
of any Android application, while at the same time, the real-
time VM can handle the specific requests made by any QoS-
aware application that presents temporal constraints.

The inclusion of this second VM brings the desired real-
time behaviour to the Android platform. Nevertheless, its
inclusion also brings important challenges that should be
considered. One may think of how the scheduling oper-
ations between both VMs are mapped into the operating
system; how the memory management operations will be
managed in order to take advantage from the system’s re-
sources and finally, how to handle thread synchronisation
and asynchronous events in this dual VM environment.

Regarding scheduling, it must be assured by the operating
system that all the real-time tasks have higher priority than
the normal Android tasks. This can be achieved by having
a mechanism that maps each of the real-time tasks to a
higher priority operating system task. Then, the operating
system scheduler is responsible for assuring that these tasks
are dispatched earlier than the remaining tasks. Thus, at a
lower end limit a simple mapping mechanism must exist to
perform this operation.

As for the memory management, one possible solution to
consider would be to have a memory management abstrac-
tion layer that handles all the memory operations requested
by both VMs, i.e. allocation and deallocation through the
use of a smart garbage collector. The main benefit from this
layer would come from the fact that it would be possible to
have a single heap where all the objects would be managed
and thus, the system’s resources to deal with the dual VM
environment would be optimized. The disadvantage from
this approach lies in the way that Dalvik performs. Each
Android application runs on its own Linux process with its
own VM and garbage collector instances. Also, there is a

part of the heap that is shared among all the processes.
This modus operandi entails the need to, at least, integrate
Dalvik with the abstraction layer and at the same time to
modify its behaviour related to the per-process garbage col-
lector instances.

Regarding thread synchronisation, as long as the real-time
threads do not have the need to communicate with Dalvik
threads, it is assured that this will not pose any kind of
problems. However, if this communication is desired, a pro-
tection mechanism must be implemented in order to assure
that a real-time thread will not block on a Dalvik thread or
even that priority inversion does not happen. In terms of
asynchronous events, a mapping mechanism must be suffi-
cient to assure that the task that is waiting for the event will
receive it in a bounded time interval. This mechanism must
be implemented at the operating system level in order to
forward the events to the correct VM. Both VMs just need
to implement the handlers for the events.

6. CONCLUSION
The CooperatES framework is a QoS-aware framework ad-
dressing the increasing demands on resources and perfor-
mance by allowing services to be executed by temporary
coalitions of nodes. Users encode their own relative impor-
tance of the different QoS parameters for each service and
the framework uses this information to determine the dis-
tributed resource allocation that maximises the satisfaction
of those constraints.

Android mobile platform was made publicly available during
the fall of 2008 and is gaining strength both in the mobile
industry and in other industries, as a suitable platform for
distributed embedded systems. The increasing interest from
the industry arises from its open-source nature and its ar-
chitectural model.

This paper proposes the needed extensions to the Android
architecture to integrate the cooperative execution concept
allied with real-time capabilities in a seamless way and as a
natural ability of the architecture to satisfy the needs of the
industry or the most demanding users. This implementation
allows to analyse the limitations of the Android platform
for real-time embedded applications, for which the paper
proposes a suitable solution.

7. REFERENCES
[1] O. H. Alliance. Home page, June 2010.
[2] Android. Home page, Jan. 2010.
[3] Android-x86. Android-x86 project, Jan. 2010.
[4] G. Chen, B.-T. Kang, M. Kandemir, N. Vijaykrishnan,

M. J. Irwin, and R. Chandramouli. Studying energy
trade offs in offloading computation/compilation in
java-enabled mobile devices. IEEE Transactions on

Parallel and Distributed Systems, 15(9):795–809, 2004.
[5] A. Corsaro. jrate home page, Mar. 2010.
[6] V. S. W. Eide, F. Eliassen, O.-C. Granmo, and

O. Lysne. Supporting timeliness and accuracy in
distributed real-time content-based video analysis. In
Proceedings of the 11th ACM international conference

on Multimedia, pages 21–32. ACM Press, 2003.
[7] R.-T. S. for Java. Rtsj 1.0.2, Jan. 2010.

[8] X. Gu, A. Messer, I. Greenberg, D. Milojicic, and
K. Nahrstedt. Adaptive offloading for pervasive
computing. IEEE Pervasive Computing Magazine,
3(3):66–73, 2004.

[9] U. Kermer, J. Hicks, and J. Rehg. A compilation
framework for power and energy management on
mobile computers. In 14th International Workshop on

Parallel Computing, pages 115–131, 2001.
[10] Z. Li, C. Wang, and R. Xu. Computation offloading to

save energy on handheld devices: a partition scheme.
In Proceedings of the 2001 International Conference

on Compilers, Architecture and Synthesis for

Embedded Systems, pages 238–246. ACM Press, 2001.
[11] Z. Li, C. Wang, and R. Xu. Task allocation for

distributed multimedia processing on wirelessly
networked handheld devices. In Proceedings of the 16th

International Symposium on Parallel and Distributed

Processing, page 79. IEE Computer Society, 2002.
[12] G. Macario, M. Torchiano, and M. Violante. An

in-vehicle infotainment software architecture based on
google android. pages 257 –260, July 2009.

[13] C. Maia, L. Nogueira, and L. M. Pinho. Evaluating
android os for embedded real-time systems. In
Proceedings of the 6th International Workshop on

Operating Systems Platforms for Embedded Real-Time

Applications, Brussels, Belgium, July 2010.
[14] L. Marcenaro, F. Oberti, G. L. Foresti, and C. S.

Regazzoni. Distributed architectures and logical-task
decomposition in multimedia surveillance systems.
Proceedings of the IEEE, 89(10):1419–1440, October
2001.

[15] L. Nogueira and L. M. Pinho. Capacity sharing and
stealing in dynamic server-based real-time systems. In
Proceedings of the 21th IEEE International Parallel

and Distributed Processing Symposium, page 153,
Long Beach,CA,USA, March 2007.

[16] L. Nogueira and L. M. Pinho. Time-bounded
distributed qos-aware service configuration in
heterogeneous cooperative environments. Journal of
Parallel and Distributed Computing, 69(6):491–507,
June 2009.

[17] L. Nogueira, L. M. Pinho, and J. Coelho. Coordinated
runtime adaptations in cooperative open real-time
systems. In Proceedings of the 7th IEEE/IFIP

International Conference on Embedded and Ubiquitous

Computing, Vancouver, Canada, August 2009.
[18] M. Othman and S. Hailes. Power conservation

strategy for mobile computers using load sharing.
SIGMOBILE Mobile Computing Communications

Review, 2(1):44–51, 1998.
[19] RTMACH. Linux/rk, Mar. 2010.
[20] A. Rudenko, P. Reiher, G. J. Popek, and G. H.

Kuenning. Saving portable computer battery power
through remote process execution. Mobile Computing

and Communications Review, 2(1):19–26, 1998.
[21] S. Schmidt, T. Legler, D. Schaller, and W. Lehner.

Real-time scheduling for data stream management
systems. In Proceedings of the 17th Euromicro

Conference on Real-Time Systems, pages 167–176,
2005.

[22] M. Stanley. The mobile internet report, Jan. 2010.
[23] M. Stonebraker, U. Cetintemel, and S. Zdonik. The 8

requirements of real-time stream processing. SIGMOD

Record, 34(4):42–47, 2005.
[24] C. Wang and Z. Li. Parametric analysis for adaptive

computation offloading. In Proceedings of the ACM

SIGPLAN 2004 Conference on Programming

Language Design and Implementation, pages 119–130.
ACM Press, 2004.

