

Evaluating Android OS for Embedded Real-
Time Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-100604

Version:

Date: 06-29-2010

Cláudio Maia

Luis Miguel Nogueira

Luis Miguel Pinho

Technical Report HURRAY-TR-100604 Evaluating Android OS for Embedded Real-Time Systems

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Evaluating Android OS for Embedded Real-Time Systems
Cláudio Maia, Luis Miguel Nogueira, Luis Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: crrm@isep.ipp.pt, luis@dei.isep.ipp.pt, lmp@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Since its official public release, Android has captured the interest from companies, developers and the general audience.
From that time up to now, this software platform has been constantly improved either in terms of features or supported
hardware and, at the same time, extended to new types of devices different from the originally intended mobile ones.
However, there is a feature that has not been explored yet - its real-time capabilities.

This paper intends to explore this gap and provide a basis for discussion on the suitability of Android in order to be used
in Open Real-Time environments. By analysing the software platform, with the main focus on the virtual machine and
its underlying operating system environments, we are able to point out its current limitations and, therefore, provide a
hint on different perspectives of directions in order to make Android suitable for these environments.

It is our position that Android may provide a suitable architecture for real-time embedded systems, but the real-time
community should address its limitations in a joint effort at all of the platform layers.

Evaluating Android OS for Embedded Real-Time Systems

Cláudio Maia, Luı́s Nogueira, Luı́s Miguel Pinho
CISTER Research Centre

School of Engineering of the Polytechnic Institute of Porto
Porto, Portugal

Email:{crrm,lmn,lmp}@isep.ipp.pt

Abstract—Since its official public release, Android has cap-
tured the interest from companies, developers and the general
audience. From that time up to now, this software platform
has been constantly improved either in terms of features or
supported hardware and, at the same time, extended to new
types of devices different from the originally intended mobile
ones. However, there is a feature that has not been explored
yet - its real-time capabilities.

This paper intends to explore this gap and provide a basis
for discussion on the suitability of Android in order to be used
in Open Real-Time environments. By analysing the software
platform, with the main focus on the virtual machine and its
underlying operating system environments, we are able to point
out its current limitations and, therefore, provide a hint on
different perspectives of directions in order to make Android
suitable for these environments.

It is our position that Android may provide a suitable
architecture for real-time embedded systems, but the real-time
community should address its limitations in a joint effort at
all of the platform layers.

Keywords-Android, Open Real-Time Systems, Embedded
Systems

I. INTRODUCTION

Android [1] was made publicly available during the fall
of 2008. Being considered a fairly new technology, due
to the fact that it is still being substantially improved and
upgraded either in terms of features or firmware, Android
is gaining strength both in the mobile industry and in other
industries with different hardware architectures (such as the
ones presented in [2] and [3]). The increasing interest from
the industry arises from two core aspects: its open-source
nature and its architectural model.

Being an open-source project, allows Android to be fully
analysed and understood, which enables feature compre-
hension, bug fixing, further improvements regarding new
functionalities and, finally, porting to new hardware. On the
other hand, its Linux kernel-based architecture model also
adds the use of Linux to the mobile industry, allowing to take
advantage of the knowledge and features offered by Linux.
Both of these aspects make Android an appealing target to
be used in other type of environments.

Another aspect that is important to consider when using
Android is its own Virtual Machine (VM) environment.
Android applications are Java-based and this factor entails

the use of a VM environment, with both its advantages and
known problems.

Nevertheless, there are features which have not been
explored yet, as for instance the suitability of the platform
to be used in Open Real-Time environments. Taking into
consideration works made in the past such as [4], [5], either
concerning the Linux kernel or VM environments, there
is the possibility of introducing temporal guarantees allied
with Quality of Service (QoS) guarantees in each of the
aforementioned layers, or even in both, in a way that a
possible integration may be achieved, fulfilling the temporal
constraints imposed by the applications. This integration
may be useful for multimedia applications or even other
types of applications requiring specific machine resources
that need to be guaranteed in an advanced and timely
manner. Thus, taking advantage of the real-time capabilities
and resource optimisation provided by the platform.

Currently, the Linux kernel provides mechanisms that
allow a programmer to take advantage of a basic preemptive
fixed priority scheduling policy. However, when using this
type of scheduling policy it is not possible to achieve real-
time behaviour. Efforts have been made in the implemen-
tation of dynamic scheduling schemes which, instead of
using fixed priorities for scheduling, use the concept of
dynamic deadlines. These dynamic scheduling schemes have
the advantage of achieving full CPU utilisation bound, but
at the same time, they present an unpredictable behaviour
when facing system overloads.

Since version 2.6.23, the standard Linux kernel uses the
Completely Fair Scheduler (CFS), which applies fairness in
the way that CPU time is assigned to tasks. This balance
guarantees that all the tasks will have the same CPU share
and that, each time that unfairness is verified, the algo-
rithm assures that task re-balancing is performed. Although
fairness is guaranteed, this algorithm does not provide any
temporal guarantees to tasks, and therefore, neither Android
does it, as its scheduling operations are delegated to the
Linux kernel.

Android uses its own VM named Dalvik, which was
specifically developed for mobile devices and considers
memory optimisation, battery power saving and low fre-
quency CPU. It relies on the Linux kernel for the core
operating system features such as memory management and

scheduling and, thus, also presents the drawback of not
taking any temporal guarantees into consideration.

The work presented in this paper is part of the Cooper-
atES (Cooperative Embedded Systems) project [6], which
aims at the specification and implementation of a QoS-
aware framework, defined in [7], to be used in open and
dynamic cooperative environments. Due to the nature of the
environments, the framework should support resource reser-
vation in advance and guarantee that the real-time execution
constraints imposed by the applications are satisfied.

In the scope of the project, there was the need of eval-
uating Android as one of the possible target solutions to
be used for the framework’s implementation. As a result of
this evaluation, this paper discusses the potential of Android
and the implementation directions that can be adopted in
order to make it possible to be used in Open Real-Time
environments. However, our focus is targeted to soft real-
time applications and therefore, hard-real time applications
were not considered in our evaluation.

The remainder of this paper is organised as follows: Sec-
tion II briefly describes the Android’s architecture. Section
III presents a detailed evaluation along with some of the
Android internals and its limitations when considering real-
time environments. The different perspectives of extension
are detailed in Section IV. Finally, Section V concludes this
paper.

II. ANDROID’S ARCHITECTURE

Android is an open-source software architecture provided
by the Open Handset Alliance [8], a group of 71 technology
and mobile companies whose objective is to provide a
mobile software platform.

The Android platform includes an operating system,
middleware and applications. As for the features, Android
incorporates the common features found nowadays in any
mobile device platform, such as: application framework
reusing, integrated browser, optimised graphics, media sup-
port, network technologies, etc.

The Android architecture, depicted in Figure 1, is com-
posed by five layers: Applications, Application Framework,
Libraries, Android Runtime and finally the Linux kernel.

The uppermost layer, the Applications layer, provides the
core set of applications that are commonly offered out of
the box with any mobile device.

The Application Framework layer provides the framework
Application Programming Interfaces (APIs) used by the
applications running on the uppermost layer. Besides the
APIs, there is a set of services that enable the access to
the Android’s core features such as graphical components,
information exchange managers, event managers and activity
managers, as examples.

Below the Application Framework layer, there is another
layer containing two important parts: Libraries and the
Android Runtime. The libraries provide core features to

Figure 1. Android Architecture

the applications. Among all the libraries provided, the most
important are libc, the standard C system library tuned for
embedded Linux-based devices; the Media Libraries, which
support playback and recording of several audio and video
formats; Graphics Engines, Fonts, a lightweight relational
database engine and 3D libraries based on OpenGL ES.

Regarding the Android Runtime, besides the internal core
libraries, Android provides its own VM, as previously stated,
named Dalvik. Dalvik [9] was designed from scratch and it
is specifically targeted for memory-constrained and CPU-
constrained devices. It runs Java applications on top of it
and unlike the standard Java VMs, which are stack-based,
Dalvik is an infinite register-based machine. Being a register-
machine, it presents two advantages when compared to
stack-based machines. Namely, it requires 30% less instruc-
tions to perform the same computation as a typical stack
machine, causing the reduction of instruction dispatch and
memory access; and less computation time, which is also
derived from the elimination of common expressions from
the instructions. Nevertheless, Dalvik presents 35% more
bytes in the instruction stream than a typical stack-machine.
This drawback is compensated by the consumption of two
bytes at a time when consuming the instructions.

Dalvik uses its own byte-code format name Dalvik Ex-
ecutable (.dex), with the ability to include multiple classes
in a single file. It is also able to perform several optimi-
sations during dex generation when concerning the internal
storage of types and constants by using principles such as
minimal repetition; per-type pools; and implicit labelling.
By applying these principles, it is possible to have dex files
smaller than a typical Java archive (jar) file. During install
time, each dex file is verified and optimisations such as byte-
swapping and padding, static-linking and method in-lining
are performed in order to minimise the runtime evaluations
and at the same time to avoid code security violations.

The Linux kernel, version 2.6, is the bottommost layer
and is also a hardware abstraction layer that enables the

interaction of the upper layers with the hardware layer
via device drivers. Furthermore, it also provides the most
fundamental system services such as security, memory man-
agement, process management and network stack.

III. SUITABILITY OF ANDROID FOR OPEN REAL-TIME
SYSTEMS

This section discusses the suitability of Android for
open embedded real-time systems, analyses its architecture
internals and points out its current limitations. Android
was evaluated considering the following topics: its VM
environment, the underlying Linux kernel, and its resource
management capabilities.

Dalvik VM is capable of running multiple independent
processes, each one with a separate address space and
memory. Therefore, each Android application is mapped to
a Linux process and able to use an inter-process commu-
nication mechanism, based on Open-Binder [10], to com-
municate with other processes in the system. The ability
of separating each process is provided by Android’s archi-
tectural model. During the device’s boot time, there is a
process responsible for starting up the Android’s runtime,
which implies the startup of the VM itself. Inherent to this
step, there is a VM process, the Zygote, responsible for the
pre-initialisation and pre-loading of the common Android’s
classes that will be used by most of the applications. Af-
terwards, the Zygote opens a socket that accepts commands
from the application framework whenever a new Android
application is started. This will cause the Zygote to be
forked and create a child process which will then become
the target application. Zygote has its own heap and a set
of libraries that are shared among all processes, whereas
each process has its own set of libraries and classes that
are independent from the other processes. This model is
presented in Figure 2. The approach is beneficial for the
system as, with it, it is possible to save RAM and to speed
up each application startup process.

Android applications provide the common synchronisa-
tion mechanisms known to the Java community. Technically
speaking, each VM instance has at least one main thread and
may have several other threads running concurrently. The
threads belonging to the same VM instance may interact and
synchronise with each other by the means of shared objects
and monitors. The API also allows the use of synchronised
methods and the creation of thread groups in order to ease
the manipulation of several thread operations. It is also pos-
sible to assign priorities to each thread. When a programmer
modifies the priority of a thread, with only 10 priority levels
being allowed, the VM maps each of the values to Linux nice
values, where lower values indicate a higher priority. Dalvik
follows the pthread model where all the threads are treated
as native pthreads. Internal VM threads belong to one thread
group and all other application threads belong to another
group. According to source code analysis, Android does

Figure 2. Zygote Heap

not provide any mechanisms to prevent priority inversion
neither allows threads to use Linux’s real-time priorities
within Dalvik.

Threads may suspend themselves or be suspended either
by the Garbage Collector (GC), debugger or the signal
monitor thread. The VM controls all the threads through
the use of a internal structure where all the created threads
are mapped. The GC will only run when all the threads
referring to a single process are suspended, in order to avoid
inconsistent states.

The GCs have the difficult task of handling dynamic mem-
ory management, as they are responsible for deallocating the
memory allocated by objects that are no longer needed by
the applications. Concerning Android’s garbage collection
process, as the processes run separately from other processes
and each process has its own heap and a shared heap - the
Zygote’s heap - Android runs separate instances of GCs in
order to collect memory that is not being used anymore.
Thus, each process heap is garbage collected independently,
through the use of parallel mark bits that sign which objects
shall be removed by the GC. This mechanism is particularly
useful in Android due to the Zygote’s shared heap, which in
this case is kept untouched by the GC and allows a better
use of the memory.

Android uses the mark-sweep algorithm to perform
garbage collection. The main advantage provided by the
platform is that there will be a GC running per process,
which wipes all the objects from the application heap of a
specific process. This way, GCs belonging to other processes
will not impact the GC running for a specific process. The
main disadvantage arises from the algorithm used. As this
algorithm implies the suspension of all the threads belonging
to an application, this means that no predictability can be
achieved as that specific process will be freezed while being
garbage collected.

Android’s VM relies on the Linux kernel to perform all
the scheduling operations. This means that all the threads
running on top of the VM will be, by default, scheduled with

SCHED OTHER, and as such will be translated into the fair
scheme provided by the kernel. Therefore, it is not possible
to indicate that a particular task needs to be scheduled using
a different scheduling scheme.

Interrupt/event handling plays another important role
when concerning real-time systems, as it may lead to in-
consistent states if not handled properly. Currently, Android
relies on the Linux kernel to dispatch the interrupt/event via
device drivers. After an interrupt, the Java code responsible
for the event handling will be notified in order to perform
the respective operation. The communication path respects
the architecture layers and inter-process communication may
be used to notify the upper event handlers.

Currently, Dalvik does not support Just-in-Time (JIT)
compilation, although a prototype has already been made
available in the official repositories, which indicates that
this feature will be part of one of the next versions. Other
features that are also being considered as improvements are:
a compact and more precise garbage collector and the use
of ahead-of-time compilation for specific pieces of code.

As previously stated, Android relies on the Linux kernel
for features such as memory management, process manage-
ment and security. As such, all the scheduling activities are
delegated by the VM to the kernel.

Android uses the same scheduler as Linux, known as
Completely Fair Scheduler (CFS). CFS has the objective of
providing balance between tasks assigned to a processor.
For that, it uses a red-black binary tree, as presented in
Figure 3, with self-balancing capabilities, meaning that the
longest path in the tree is no more than twice as long as
the shortest path. Other important aspect is the efficiency of
these types of trees, which present a complexity of O(logn),
where n represents the number of elements in the tree. As
the tree is being used for scheduling purposes, the balance
factor is the amount of time provided to a given task. This
factor has been named virtual runtime. The higher the task’s
virtual runtime value, the lower is the need for the processor.

In terms of execution, the algorithm works as follows: the
tasks with lower virtual runtime are placed on the left side
of the tree, and the tasks with the higher virtual runtime
are placed on the right. This means that the tasks with the
highest need for the processor will always be stored on the
left side of the tree. Then, the scheduler picks the left-most
node of the tree to be scheduled. Each task is responsible for
accounting the CPU time taken during execution and adding
this value to the previous virtual runtime value. Then, it is
inserted back into the tree, if it has not finished yet. With this
pattern of execution, it is guaranteed that the tasks contend
the CPU time in a fair manner.

Another aspect of the fairness of the algorithm is the
adjustments that it performs when the tasks are waiting for
an I/O device. In this case, the tasks are compensated with
the amount of time taken to receive the information they
needed to complete its objective.

Figure 3. Red-Black Tree example

Since the introduction of the CFS, the concept of schedul-
ing classes was also introduced. Basically, these classes
provide the connection between the main generic sched-
uler functionalities and the specific scheduler classes that
implement the scheduling algorithms. This concept allows
several tasks to be scheduled differently by using different
algorithms for this purpose. Regarding the main scheduler,
it is periodic and preemptive. Its periodicity is activated
by the frequency of the CPU clock. It allows preemption
either when a high priority task needs CPU time or when
an interrupt exists. As for task priorities, these can be
dynamically modified with the nice command and currently
the kernel supports 140 priorities, where the values ranging
from 0 to 99 are reserved for real-time processes and the
values ranging from 100 to 139 are reserved for normal
processes.

Currently, the Linux kernel supports two scheduling real-
time classes, as part of the compliance with the POSIX
standard [11], SCHED RR and SCHED FIFO. SCHED RR
may be used for a round robin scheduling policy and
SCHED FIFO for a first-in, first-out policy. Both policies
have a high impact on the system’s performance if bad pro-
gramming applies. However, most of the tasks are scheduled
with SCHED OTHER class, which is a non real-time policy.

The task scheduling plays one of the most important
roles concerning the real-time features presented by a par-
ticular system. Currently, Linux’s real-time implementation
is limited to two scheduling real-time classes, both based
on priority scheduling. Another important aspect to be
considered in the evaluation is that most of the tasks are
scheduled by CFS. Although CFS tries to optimise the time
a task is waiting for CPU time, this effort is not enough as
it is not capable of providing guaranteed response times.

One important aspect that should be remarked is that
although the Linux kernel supports the real-time classes
aforementioned, these classes are only available for native1

Android applications. Normal Android applications can only
take advantage of the synchronisation mechanisms described

1A native application in Android is an application that can run on top
of the Linux kernel without the need of the VM.

earlier in this paper.
Regarding synchronisation, Android uses its own im-

plementation of libc - named bionic. bionic has its own
implementation of the pthread library and it does not support
process-shared mutexes and condition variables. However,
thread mutexing and thread condition variables are supported
in a limited manner. Currently, inter-process communication
is handled by Open-Binder. In terms of real-time limitations,
the mechanisms provided by the architecture do not solve
the old problems related with priority inversion. Therefore,
synchronisation protocols such as priority ceiling and inher-
itance are not implemented.

In terms of interrupt/event handling, these are performed
by the kernel via device drivers. Afterwards, the kernel is
notified and then is responsible for notifying the application
waiting for that specific interrupt/event. None of the parts
involved in the handling has a notion of the time restrictions
available to perform its operations. This behaviour becomes
more serious when considering interrupts. In Linux the
interrupts are the highest priority tasks, and therefore, this
means that a high priority task can be interrupted by the
arrival of an interrupt. This is considered a big drawback,
as it is not possible to make the system totally predictable.

Resource management implies its accounting, reclama-
tion, allocation, and negotiation [12]. Concerning resource
management conducted at the VM level, CPU time is
controlled by the scheduling algorithms, whereas memory
can be controlled either by the VM, if we consider the heaps
and its memory management, or by the operating system
kernel. Regarding memory, operations such as accounting,
allocation and reallocation can be performed. All these
operations suffer from an unbounded and non-deterministic
behaviour, which means that it is not possible to define and
measure the time allowed for these operations. The network
is out of scope of our analysis and thus was not evaluated.

At the kernel level, with the exception of the CPU and
memory, all the remaining system’s hardware is accessed via
device drivers, in order to perform its operations and control
the resources’ status.

Nevertheless, a global manager that has a complete
knowledge of the applications’ needs and system’s status
is missing. The arbitration of resources among applications
requires proper control mechanisms if real-time guarantees
are going to be provided. Each application has a resource
demand associated to each quality level it can provide.
However, under limited resources not all applications will
be able to deliver their maximum quality level. As such,
a global resource manager is able to allocate resources to
competing applications so that a global optimisation goal of
the system is achieved [7].

IV. POSSIBLE DIRECTIONS

This section discusses four possible directions to incor-
porate the desired real-time behaviour into the Android

architecture. The first approach considers the replacement of
the Linux operating system by one that provides real-time
features and, at the same time, it considers the inclusion of
a real-time VM. The second approach respects the Android
standard architecture by proposing the extension of Dalvik as
well as the substitution of the standard operating system by a
real-time Linux-based operating system. The third approach
simply replaces the Linux operating system for a Linux
real-time version and real-time applications use the kernel
directly. Finally, the fourth approach proposes the addition
of a real-time hypervisor that supports the parallel execution
of the Android platform in one partition while the other
partition is dedicated to the real-time applications.

Regarding the first approach, depicted in Figure 4, this
approach replaces the standard Linux kernel with a real-time
operating system. This modification introduces predictability
and determinism in the Android architecture. Therefore, it
is possible to introduce new dynamic real-time schedul-
ing policies through the use of scheduling classes; predict
priority inversion and to have better resource management
strategies. However, this modification entails that all the
device drivers supported natively need to be implemented
in the operating system with predictability in mind. This
task can be painful, specially during the integration phase.
Nevertheless, this approach also leaves space for the imple-
mentation of the required real-time features in the Linux
kernel. Implementing the features in the standard Linux
kernel requires time, but it has the advantage of providing
a more seamless integration with the remaining components
belonging to the architectures involved.

The second modification proposed, within the first ap-
proach, is the inclusion of a real-time Java VM. This modi-
fication is considered advantageous as, with it, it is possible
to have bounded memory management; real-time scheduling
within the VM, depending on the adopted solution; better
synchronisation mechanisms and finally to avoid priority
inversion. These improvements are considered the most
influential in achieving the intended deterministic behaviour
at the VM level. It is important to note that the real-time
VM interacts directly with the operating system’s kernel for
features such as task scheduling or bounded memory man-
agement. As an example, if one considers task scheduling,
the real-time VM is capable of mapping each task natively
on the operating system where it will be scheduled. If the
operating system supports other types of scheduling policies
besides the fixed priority-based scheduler, the VM may use
them to schedule its tasks. This means that most of the
operations provided by real-time Java VMs are limited to
the integration between the VM’s supported features and
the supported operating system’s features.

Other advantage from this approach is that it is not
necessary to keep up with the release cycles of Android,
although some integration issues may arise between the
VM and the kernel. The impact of introducing a new VM

Figure 4. Android full Real-Time

in the system is related to the fact that all the Android
specificities must be implemented as well as dex support in
the interpreter. Besides this disadvantage, other challenges
may pose such as the integration between both VMs. This in-
tegration possibly entails the formulation of new algorithms
to optimize scheduling and memory management in order to
be possible to have an optimal integrated system as a whole
and also to treat real-time applications in the correct manner.

The second proposed approach, presented in Figure 5,
also introduces modifications in the architecture both in the
operating system and virtual machine environments. As for
the operating system layer, the advantages and disadvantages
presented in the first approach are considered equal, as the
principle behind it is the same. The major difference lies
on the extension of Dalvik with real-time capabilities based
on the Real-Time Specification for Java (RTSJ) [13]. By
extending Dalvik with RTSJ features we are referring to
the addition of the following API classes: RealTimeThread,
NoHeapRealTimeThread, as well as the implementation of
generic objects related to real-time scheduling and memory
management such as Scheduler and MemoryAreas. All of
these objects will enable the implementation of real-time
garbage collection algorithms, synchronization algorithms
and finally, asynchronous event handling algorithms. All
of these features are specifically related to the RTSJ and
must be considered in order to be possible to have de-
terminism and predictability. However, its implementation
only depends on the extent one wishes to have, meaning
that a full compliant implementation may be achieved if
the necessary implementation effort is applied in the VM
extensions and the operating system’s supported features.
This extension is beneficial for the system as with it, it
is possible to incorporate a more deterministic behaviour
at the VM level without the need of concerning about the
particularities of Dalvik. Nevertheless, this approach has the
disadvantage of having to keep up with the release cycles
of the Android, more specially the VM itself, if one wants

Figure 5. Android Extended

to add these extensions to all the available versions of the
platform.

Two examples of this direction are [14] and [15]. The
work in [14] states that the implementation of a resource
management framework is possible in the Android platform
with some modifications in the platform. Although the re-
sults presented in this work are based on the CFS scheduler,
work is being done to update the scheduler to a slightly
modified version of EDF [16], that incorporates reservation-
based scheduling algorithms as presented in [17].

The work reported in [15] is being conducted in the
scope of CooperatES project [6], where a proof of concept
of a QoS-aware framework for cooperative embedded real-
time systems has already been developed for the Android
platform. Other important aspect of this work is the im-
plementation of a new dynamic scheduling strategy named
Capacity Sharing and Stealing (CSS) [18] in the Android
platform.

Both works show that it is possible to propose new
approaches based on the standard Linux and Android ar-
chitectures and add real-time behaviour to them in order
to take advantage of resource reservation and real-time
task scheduling. With both of these features, any of these
systems is capable of guaranteeing resource bandwidth to
applications, within an interval of time, without jeopardising
the system.

The third proposed approach, depicted in Figure 6, is also
based in Linux real-time. This approach takes advantage of
the native environment, where it is possible to deploy real-
time applications directly over the operating system. This
can be advantageous for applications that do not need the
VM environment, which means that a minimal effort will
be needed for integration, while having the same intended
behaviour. On the other hand, applications that need a VM
environment will not benefit from the real-time capabilities
of the underlying operating system.

Finally, the fourth approach, depicted in Figure 7, em-

Figure 6. Android partly Real-Time

ploys a real-time hypervisor that is capable of running
Android as a guest operating system in one of the partitions
and real-time applications in another partition, in a parallel
manner. This approach is similar to the approach taken by
the majority of the current real-time Linux solutions, such
as RTLinux [19] or RTAI [20]. These systems are able to
run real-time applications in parallel to the Linux kernel,
where the real-time tasks have higher priority than the Linux
kernel tasks, which means that hard real-time can be used.
On the other hand, the Linux partition tasks are scheduled
using the spare time remaining from the CPU allocation.
The main drawback from this approach is that real-time
applications are limited to the features offered by the real-
time hypervisor, meaning that they can not use Dalvik or
even most of the Linux services. Other limitation known
lies on the fact that if a real-time application hangs, all the
system may also hang.

V. CONCLUSION

At first glance, Android may be seen as a potential target
for real-time environments and, as such, there are numerous
industry targets that would benefit from an architecture with
such capabilities. Taking this into consideration, this paper
presented the evaluation of the Android platform to be used
as a real-time system. By focusing on the core parts of the
system it was possible to expose the limitations and then,
to present four possible directions that may be followed to
add real-time behaviour to the system.

Android was built to serve the mobile industry purposes
and that fact has an impact on the way that the architecture
might be used. However, with some effort, as proven by the
presented approaches, it is possible to have the desired real-
time behaviour on any Android device. This behaviour may
suit specific applications or components by providing them
the ability of taking advantage of temporal guarantees, and
therefore, to behave in a more predictable manner.

Figure 7. Android with a Real-Time Hypervisor

However, this effort must be addressed at the different
layers of the architecture, in a combined way, in order to
allow for potential extensions to be useful for the industry.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous referees
for their helpful comments. This work was supported by
FCT (CISTER Research Unit - FCT UI 608 and Cooper-
atES project - PTDC/ EIA/ 71624/ 2006) and RESCUE -
PTDC/EIA/65862/2006, and by the European Commission
through the ArtistDesign NoE (IST-FP7-214373).

REFERENCES

[1] Android, “Home page,” Jan. 2010. [Online]. Available:
http://www.android.com/

[2] Android-x86, “Android-x86 project,” Jan. 2010. [Online].
Available: http://www.android-x86.org/

[3] G. Macario, M. Torchiano, and M. Violante, “An in-vehicle
infotainment software architecture based on google android,”
in SIES. Lausanne, Switzerland: IEEE, July 2009, pp. 257–
260.

[4] RTMACH, “Linux/rk,” Mar. 2010. [Online]. Available:
http://www.cs.cmu.edu/∼rajkumar/linux-rk.html

[5] A. Corsaro, “jrate home page,” Mar. 2010. [Online].
Available: http://jrate.sourceforge.net/

[6] CooperatES, “Home page,” Jan. 2010. [Online]. Available:
http://www.cister.isep.ipp.pt/projects/cooperates/

[7] L. Nogueira and L. M. Pinho, “Time-bounded distributed qos-
aware service configuration in heterogeneous cooperative en-
vironments,” Journal of Parallel and Distributed Computing,
vol. 69, no. 6, pp. 491–507, June 2009.

[8] O. H. Alliance, “Home page,” Jun. 2010. [Online]. Available:
http://www.openhandsetalliance.com/

[9] D. Bornstein, “Dalvik vm internals,” Mar. 2010. [Online].
Available: http://sites.google.com/site/io/dalvik-vm-internals

[10] P. Inc., “Openbinder 1.0,” Mar. 2010. [Online]. Available:
http://www.angryredplanet.com/∼hackbod/openbinder/

[11] IEEE, “Ieee standard 1003.1,” Mar. 2010. [Online]. Available:
http://www.opengroup.org/onlinepubs/009695399/

[12] M. T. Higuera-Toledano and V. Issarny, “Java embedded
real-time systems: An overview of existing solutions,” in
Proceedings of the Third IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC
2000). Washington, DC, USA: IEEE Computer Society,
2000, pp. 392–399.

[13] R.-T. S. for Java, “Rtsj 1.0.2,” Jan. 2010. [Online]. Available:
http://www.rtsj.org/specjavadoc/book index.html

[14] R. Guerra, S. Schorr, and G. Fohler, “Adaptive resource
management for mobile terminals - the actors approach,” in
Proceedings of 1st Workshop on Adaptive Resource Manage-
ment (WARM10), Stockholm, Sweden, April 2010.

[15] C. Maia, L. Nogueira, and L. M. Pinho, “Experiences on
the implementation of a cooperative embedded system frame-
work,” CISTER Research Centre, Porto, Portugal, Tech. Rep.,
June 2010.

[16] C. L. Liu and J. W. Layland, “Scheduling algorithms for
multiprogramming in a hard-real-time environment,” J. ACM,
vol. 20, no. 1, pp. 46–61, 1973.

[17] D. Faggioli, M. Trimarchi, and F. Checconi, “An imple-
mentation of the earliest deadline first algorithm in linux,”
in Proceedings of the 2009 ACM Symposium on Applied
Computing (SAC09). New York, NY, USA: ACM, 2009,
pp. 1984–1989.

[18] L. Nogueira and L. M. Pinho, “Capacity sharing and stealing
in dynamic server-based real-time systems,” in Proceedings
of the 21th IEEE International Parallel and Distributed
Processing Symposium, Long Beach,CA,USA, March 2007,
p. 153.

[19] W. R. Systems, “Real-time linux,” Jun. 2010. [Online].
Available: http://www.rtlinuxfree.com/

[20] P. d. M. Dipartimento di Ingegneria Aerospaziale, “Realtime
application interface for linux,” Jun. 2010. [Online].
Available: https://www.rtai.org/

