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Abstract 

Internet-of-Things (IoT) devices equipped with temperature and humidity sensors, and cameras are increasingly 
deployed to monitor remote and human-unfriendly areas, e.g., farmlands, forests, rural highways or electricity 
infrastructures. Aerial data aggregators, e.g., autonomous drones, provide a promising solution for collecting 
sensory data of the IoT devices in human-unfriendly environments, enhancing network scalability and connectivity. 
The flexibility of a drone and favourable line-of-sight connection between the drone and IoT devices can be 
exploited to improve data reception at the drone. This article first discusses challenges of the drone-assisted data 
aggregation in IoT networks, such as incomplete network knowledge at the drone, limited buffers of the IoT 
devices, and lossy wireless channels. Next, we investigate the feasibility of onboard deep reinforcement learning-
based solutions to allow a drone to learn its cruise control and data collection schedule online. For deep 
reinforcement learning in a continuous operation domain, deep deterministic policy gradient (DDPG) is suitable to 
deliver effective joint cruise control and communication decision, using its outdated knowledge of the IoT devices 
and network states. A case study shows that the DDPG-based framework can take advantage of the continuous 
actions to substantially outperform existing non-learning-based alternatives.  
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Abstract—Internet-of-Things (IoT) devices equipped with
temperature and humidity sensors, and cameras are increas-
ingly deployed to monitor remote and human-unfriendly
areas, e.g., farmlands, forests, rural highways or electricity
infrastructures. Aerial data aggregators, e.g., autonomous
drones, provide a promising solution for collecting sensory
data of the IoT devices in human-unfriendly environments,
enhancing network scalability and connectivity. The flexibility
of a drone and favourable line-of-sight connection between
the drone and IoT devices can be exploited to improve data
reception at the drone. This article first discusses challenges of
the drone-assisted data aggregation in IoT networks, such as
incomplete network knowledge at the drone, limited buffers
of the IoT devices, and lossy wireless channels. Next, we inves-
tigate the feasibility of onboard deep reinforcement learning-
based solutions to allow a drone to learn its cruise control
and data collection schedule online. For deep reinforcement
learning in a continuous operation domain, deep deterministic
policy gradient (DDPG) is suitable to deliver effective joint
cruise control and communication decision, using its outdated
knowledge of the IoT devices and network states. A case study
shows that the DDPG-based framework can take advantage
of the continuous actions to substantially outperform existing
non-learning-based alternatives.

Index Terms—Autonomous Drone, Internet of Things, Data
aggregation, Cruise control, Deep reinforcement learning

I. DRONE-ASSISTED INTERNET OF THINGS

Energy-harvesting-powered Internet-of-Things (IoT) de-

vices are increasingly deployed on farmlands for precision

agriculture [1], remote highways for road surveillance [2],

electricity infrastructures for structural health monitoring,

or forests for environmental sensing. Autonomous drones

can serve as aerial data aggregators to collect sensing

data from geo-distributed IoT devices, hence extending

the coverage of IoT networks to remote and human-

unfriendly environments [3]. Figure 1 depicts an example of

drone-assisted data aggregation, where energy-harvesting-

powered IoT devices are deployed in a remote farm to

monitor crop growth for pest detection and yield prediction.

The IoT device can buffer sensory data in the queue. For

the data aggregation, the drone can patrol and physically

approach a ground IoT device to achieve a line-of-sight
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Fig. 1: Energy-harvesting-powered IoT devices can be deployed
in a remote farm to monitor crop growth and control the growing
environment. The autonomous drone can move around the IoT
devices for data aggregation. The IoT devices can be scheduled
to send sensing results towards the drone.

(LoS) air-ground connection, thereby enabling a high data

rate under all terrains and saving the transmission energy

of the IoT devices. The drone can perform beamforming

to enhance the signal-to-noise ratio (SNR) and reduce the

bit error rate at the drone. To connect a broad range of

IoT devices, the drone’s flight trajectory that is composed

of waypoints can be designed to provide a full coverage of

the IoT devices. The drone may adjust its moving directions

and patrol velocities in real-time, while flying along the

trajectory.

Low-power wide-area network (LPWAN) is a long-range

wireless transmission protocol, where the communication

range can be up to 10 km at the expense of low data

rates (ranging from 0.3 to 50 kbits/s) and consequently high

communication latency [4]. Take LoRaWAN for example.

The data rate is up to 50 kbits/s. It would take 1600 seconds

(or 26.67 minutes) for LoRaWAN to transmit 10 Mbytes of

data. For an IoT device which is around 10 km away from

the receiver, the data rate can be as low as 300 bits/s. It

would take 74 hours to complete the transmission. On the

contrary, the drone is able to move close to an IoT device by

taking advantage of its excellent agility and maneuverability

to shorten the communication distance. The drone-IoT LoS

communication can benefit from the excellent channel gain

for high-speed data transmission. Take onboard Wi-Fi with
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a bandwidth of 80 MHz for example. The data rate can

be up to 433 Mbits/s, and it only takes 0.18 second to

transfer 10 Mbytes of data from an IoT device to the

drone. Given a typical drone’s average speed of 72 km/h,

the drone can collect data from the IoT devices which

are 10 km away from the base station within about 500

seconds. In this sense, the use of a drone can substantially

improve the network throughput and coverage. The use of

the drone also allows for fast transfer of large data files,

and the substantially reduced energy consumption and data

backlogs of the IoT devices.

When the drone receives some urgent, high-priority data

from the IoT devices, the drone can immediately forward

the data to a remote base station. Otherwise, the data can

be buffered at the drone, and offloaded to the base station

when the drone returns or passes the base station. In most

cases, the urgent data requires fast response. The remaining,

less critical data with large sizes can benefit from the

short-range communication between the drone and the base

station, when the drone passes the base station and enjoys

an excellent channel condition.

In spite of consistent sampling intervals of the IoT

sensors, the data generation of the IoT devices can be

highly time-varying, resulting in dynamic arrivals of data

at the buffer of an IoT device. The reason is that under

many circumstances, the IoT device generates data only

when sensing the changes in values, to reduce the signaling

overhead of an IoT network and the power consumption of

the transceiver [5]. In some applications, the data generation

of an IoT device can be event-driven, for example, highway

cameras in unpopulated regions take photos only when

there are car accidents or emergency situations. Therefore,

it is reasonable to consider that the sensory data of the

IoT devices randomly arrives in their transmit buffers. On

the other hand, data packets can be periodically generated

at the IoT devices, leading to a predictable packet arrival.

Nevertheless, the battery energy levels and channel gains

can still be random and change over time due to the

unknown environmental variation.

II. JOINT CRUISE CONTROL AND COMMUNICATION

SCHEDULING

A. Motivations and challenges

The typical objective of joint cruise control and com-

munication scheduling is to maximize the amount of ag-

gregated data at the drone. To achieve this, it is important

to reduce both the data loss during data transmissions on

the air interface, and the data loss resulting from the buffer

overflow of the IoT devices. Despite the communication

range, memory chips, storage and data compression capac-

ity of IoT devices have been continuously improving, the

data buffer of the IoT device can still overflow for two

reasons.

• The first reason is that a data queue grows rapidly if

its incoming data rate is greater than its outgoing rate,

hence leading to a buffer overflow. This can be the case

whenever there are a large number of devices in an IoT

network or the trajectory of the drone is inadequately

designed, in which case, the drone cannot collect data

from the IoT devices in time. The buffers of the IoT

devices would eventually overflow.

• The second reason is that emerging IoT platforms,

comprising a considerable number of compact inte-

grated IoT devices (e.g., miniatured cameras used to

detect pests and wild animals [6], optoacoustic devices

used to identify insect species [7], etc.), generate

enormous data volumes. For instance, the size of a

high-definition picture or audio/video clip is typically

over a few megabytes. On the other hand, commercial-

off-the-shelf IoT devices have finite data storage, con-

strained by cost and energy budgets.

Since an IoT device cannot perform data transmission

when its battery level is flat, newly arrived data can

potentially result in the buffer overflow of the IoT device.

The IoT devices are equipped with rechargeable batteries

to harvest renewable energy from ambient sources, such as

solar and wind, and power their sensing and transmission

operations. With a finite capacity, the batteries can overflow.

The environmental conditions have a strong impact on the

energy that can be harvested. In this sense, the battery

levels of the IoT devices are an indispensable part of

the environment variables, and can substantially affect the

operation of the drone in the IoT network.

It is critical to improve the data aggregation by properly

designing the cruise control of the drone and communi-

cation schedules, preventing buffer overflows of the IoT

devices. Travelling salesman problem (TSP) can be used

for the drone to find a cost-effective way of visiting all

the IoT devices and returning to the starting point. In

TSP, waypoints of the drone are predetermined according

to the locations of IoT devices. Thus, the cost defined

in TSP is deterministic to travel between any two IoT

devices. In contrast, the problem of joint cruise control

and communication schedules is distinctively different from

the TSP. The reason is that any location in the target area

could be a potential waypoint of the trajectory. The next

waypoint, namely, the real-time patrol speed of the drone is

determined by the cruise control scheme in the continuous

domain. All the potential waypoints of the drone can be

connected (or linked) into a daisy chain. To achieve this,

the drone has to repeatedly fly over the target field to learn

online the time-varying dynamics of packet arrivals, energy

harvesting, and channel states of the IoT devices.

B. Bluetooth low energy enabled data aggregation

Several wireless transceivers can be used for the commu-

nication between the drone and the IoT device, e.g., Wi-Fi,

Zigbee, or 4G. However, the drone-assisted IoT network

with Wi-Fi or Zigbee can suffer from strong interference

effects with other wireless mobile devices that concurrently

function in 2.4 GHz. Mostly, the data traffic in a drone-

assisted IoT network is bursty, while large overhead of

Wi-Fi communications can result in low spectrum utiliza-

tion. Direct sequence spread spectrum (DSSS) is used in
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Zigbee for low-interference channel selection to alleviate

the radio interference. However, the channel selection in

Zigbee is static and does not adapt to the changing radio

environments and interference situations. Zigbee can hardly

be used in drone-assisted IoT networks, because of the high

mobility of the drone and channel dynamics. Although the

radio coverage of the drone can be extended by using 4G

Long-Term Evolution (LTE), widespread telecommunica-

tion facilities are often unavailable in rural and unpopulated

areas that have a limited or no network coverage.

Bluetooth Low Energy (BLE), a.k.a. Bluetooth 5.0, is a

new Bluetooth Core Specification for long-distance com-

munications, and can be considered for data aggregation in

drone-assisted IoT networks [8]. BLE is based on frequency

hopping spread spectrum (FHSS), which conducts carrier

sensing to prevent jamming signals. The received signal

can be restored at the receiver while the transmitter can

determine the receiving sequence order. The drone-assisted

IoT network based on BLE can transmit data in a high

speed, given the data rate of 2 Mbps at most. Moreover,

the radio coverage of BLE is up to 1 km. Thus, the drone

can extend the connection duration with the IoT devices,

thanks to the long communication distance of the BLE.

C. Contributions

As discussed in [9], deep reinforcement learning provides

a solution to resource allocation or data collection in drone-

assisted IoT networks. Deep reinforcement learning can

be trained to minimize the propulsion energy consump-

tion of a drone or maximize its spectrum efficiency. The

authors of [10] apply deep reinforcement learning to the

trajectory control and network resource management of a

drone to enhance cellular performance. Deep reinforcement

learning can enable the drone to improve the quality-of-

service (QoS) of sensing and communication with no a-

priori knowledge of the environment. Deep reinforcement

learning can also be applied to the attitude control of the

drone for tracking targets in unknown environments [11].

Distinctively different from the existing studies, this

article addresses a new problem of joint cruise control

and data collection in remote, human-unfriendly and vast

areas, where one or multiple drones need to patrol and

visit widespread IoT devices to collect data. The trajectory

planning of the drones is critical to prevent the buffer

overflows and the transmission failures of the IoT devices

resulting from the untimely visits and the lossy airborne

channels of the drones, respectively. The key contributions

and novelties of this article are summarized, as follows.

• We address a new challenge of drone-assisted data

aggregation in IoT networks, where a drone patrols

and visits widespread IoT devices to collect data. The

cruise control and data collection schedule need to be

jointly designed to prevent the buffer overflows and

the transmission failures of the IoT devices resulting

from untimely visits and the lossy airborne channels

of the drone, respectively.

• A new DDPG model is developed to achieve effective

data aggregation by learning and refining the actions

TABLE I: Typical drone-assisted IoT networks and their

deep reinforcement learning (DRL) solutions.

Drone-assisted IoT net-
works

DRL methodologies

[9] Spectrum access, data rate
selection and transmit power
control to minimize the
propulsion energy of the
UAV or maximize the
spectrum efficiency.

Deep Q-Network (DQN) and
double DQN (DDQN) with
experience replay on channel
and base station selection.

[10] Trajectory planning and ra-
dio resource management to
deliver the QoS to IoT de-
vices in a cellular network.

DQN-based trajectory con-
trol and resource manage-
ment, where the state is the
location of the UAV and
the action space contains the
power management and chan-
nel allocation.

[11] Attitude control of the drone
to adjust the precision and
accuracy of tracking targets.

Offline reinforcement learn-
ing (RL) is used to train ac-
curate attitude controllers.

This
paper

Joint cruise control and data
collection scheduling of mul-
tiple drones to prevent the
buffer overflows and the
transmission failures of the
IoT devices.

The new DDPG model is
developed to achieve online
cruise control and IoT device
selection. Its state is made
up of instantaneous coordi-
nates and velocities of multi-
ple drones, and time-varying
channels and battery levels of
many IoT devices.

of cruise control and communication schedule on-

the-fly in the absence of the complete knowledge

about the network states. The action space of the

new DDPG model consists of the continuous cruise

control, and the discrete selection of IoT devices for

data aggregation. The selection of IoT devices can be

first relaxed to be continuous for model training and

discretized for action taking.

• We demonstrate the new DDPG model on Google

TensorFlow, one of the most widely adopted and ac-

cepted machine learning platforms. Numerical results

show that the DDPG model can reduce the overall

packet loss by at least 52%, as compared to existing

non-learning heuristics. The performance evaluation

on TensorFlow is conducive to further commercial de-

velopment for real-world drone-assisted IoT systems.

Table I compares the typical drone-assisted IoT networks

and deep reinforcement learning methodologies applied.

III. INTELLIGENT DRONE-ASSISTED IOT NETWORKS

BASED ON DEEP REINFORCEMENT LEARNING

A. POMDP for Cruise and Communication Control

At each waypoint along the flight cruise, the drone may

not have the complete and up-to-date knowledge of all the

IoT devices, e.g., data queue backlogs, channel conditions,

and battery energy levels. Instead, the drone can only

observe the environment over time, getting some clues of

the actual underlying states. The online cruise control of

the drone and the scheduling of the IoT transmission can

be interpreted as a discrete-time Partial Observable Markov
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Decision Process (POMDP), which aims to maximize the

aggregated data and prevent the buffer overflows of the IoT

devices and the packet delivery failure of the scheduled

IoT devices. A state of the POMDP consists of a waypoint

of the drone, and the battery levels and data backlogs of

the IoT devices. The actions of the POMDP are the next

waypoint of the drone (including the instantaneous heading

and speed of the drone in Figure 2(a)), and the next IoT

device selected to upload data to the drone. A reward is the

aggregated data of all IoT devices.

Dynamic programming algorithms, such as value itera-

tion or policy iteration, are typically used to solve POMDPs

offline, provided that the a-priori knowledge of the state

transition probabilities of the system is available. The

optimal action-value function of the value/policy iteration

is estimated and updated based on the Bellman optimality

equation. The action-value function can be reinforced once

the value/policy iteration converges.

It is important to consider a practical scenario, where

the drone has no knowledge of the state transitions. This

consideration is reasonable since the complete state infor-

mation of the battery levels and data backlogs of the IoT

devices is hardly instantaneously observable at the drone

(due to typically less powerful radio of the IoT device). In

this case, deep reinforcement learning can help the drone

learn the optimal action of the POMDP on the fly at

each network state together with the state transitions, while

analyzing the action-value function online. As a result,

the data aggregation of the network can be enhanced by

adjusting the drone’s heading, speed and selection of IoT

devices, adapting to the bursty data and energy arrivals at

the IoT devices and the time-varying channel conditions of

the nodes.

B. DDPG-based continuous cruise control and communi-

cation schedules

Value decomposition networks (VDN) [12] and mono-

tonic value function factorisation (QMIX) [13] have been

used for deep reinforcement learning-based drone control.

VDN learns a joint action-value function which is the sum

of the action-value functions of all agents. Different from

VDN, QMIX replaces the “sum” operation with a mixed

network (the parameters of which are generated from the

complete network state to ensure monotonicity). As a result,

the action-value function can be generalized to a larger

family of monotonic functions. However, VDN and QMIX

are developed to learn the action-value function according

to discrete state and action spaces. For example, the motion

control of the drone can be discretized to five actions, i.e.,

{Up, Down, Left, Right, Hover}. In contrast, we consider

the cruise control of the drone in the continuous domain

in this article. The DDPG model that leverages actor-critic

neural networks is trained onboard at the drone to learn

the mixed actions of continuous flight trajectory and speed,

and the discrete communication scheduling.

The POMDP problem is often tackled by a reinforce-

ment learning approach, e.g., Q-learning. However, Q-

learning is known to succumb to the problem of curse-

of-dimensionality [14], making it unsuitable for cruise

control and data aggregation because of too many states

and actions.

An onboard DDPG-based cruise control and communi-

cation scheduling is developed, which can overcome the

dimensionality issue of Q-learning. The system architecture

is illustrated in Figure 2(b), where the state transitions of the

POMDP are unknown to the drone. Specifically, the DDPG

model leverages actor-critic neural networks to evaluate the

instantaneous headings and velocities of the drone, as well

as the data collection schedule of the IoT devices at every

instant. A policy gradient scheme can be developed with

the DDPG model to implement a stochastic behavior policy

for exploring and estimating a deterministic target policy.

The deterministic policy gradient allowes the policy to be

updated by projecting the network state to the action. A

replay memory can be used at the drone to store the training

experience at each learning epoch, where mini-batches are

taken as random samples of the learning experiences in the

replay memory. Using the mini-batches, the DDPG model

can be trained along with the network states. As a result,

the aggregated data of all IoT devices (i.e., reward) can

boost over the large, continuous state and action spaces.

At any moment, the drone can only observe the battery

level and data queue backlog of the selected IoT device

at a time. Nevertheless, the drone can exploit the training

experience in the replay memory, and evaluate the buffer

overflow and packet reception errors of different selections.

Each experience log in the replay memory is stamped with

its recording time, referred to as time-to-alive (TTA). TTA

indicates the time lapse since the last time an IoT device

was selected to upload its data to the drone. Based on the

observed state knowledge of the selected IoT device and

the TTAs of the unselected ones in the replay memory, the

complete network state can be approximated at the drone.

Accordingly, the network data loss can be evaluated and

another historical learning experience can be recorded. The

new DDPG model can conduct the experience replay to

explore and exploit online the time-varying dynamics of the

packet arrivals, energy harvesting, and channel conditions

of the IoT devices.

In particular, the action space of the new DDPG model

consists of the continuous cruise control, and the discrete

selection of IoT devices for data aggregation. Since DDPG

typically trains continuous actions, the selection of IoT

devices can be first relaxed to be continuous for the purpose

of model training and then discretized to facilitate action

taking. At the beginning of the training phase, the relaxed

discrete IoT device selection may give birth to classification

errors, resulting in a high network cost. These classification

errors can, though, be substantially reduced when the

DDPG model is sufficiently trained.

Offboard deep reinforcement learning can be carried out

offline, where cruise control and communication scheduling

decisions are made for each waypoint along the trajectory

before the drone takes off. Offboard deep reinforcement

learning for offline cruise control and communication
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(a) cruise model of the drone. (b) actions of the drone can be trained online by the DDPG.

Fig. 2: The drone can adjust the turning angle to control its heading. Actions of the drone can be trained by the deep reinforcement
learning-based cruise control and communication scheduling scheme.

schedules would require the drone to collect in prior the

network states at each waypoint of the trajectory, i.e., the

battery levels, data backlogs, and channel states of all the

IoT devices. However, the a-priori knowledge of the net-

work states is hardly acquirable. Therefore, it is of practical

value to run the onboard deep reinforcement learning online

for real-time cruise control and communication scheduling,

where the decisions are adapted to the real-time network

state dynamics at each of the waypoints. The DDPG-based

cruise control and communication scheduling can perform

online for training the instantaneous heading and velocity

of the drone, as well as the data collection schedule of the

IoT devices at every instant.

The DDPG-based cruise control and communication

scheduling is promising, and can be further extended

through the deployment and exploitation of drone swarms.

It is possible that the drones do not communicate or collab-

orate with each other since the drones can be deployed in

a wide target field, where the drones are out of communi-

cation range of each other. The drones have to individually

control their instantaneous headings, patrol speeds, and data

collection schedules, based on their independent observa-

tions of the network state. Each drone is expected to learn

the actions of the other drones implicitly from changes in

the battery levels and data backlogs of the IoT devices. To

this end, the DDPG can be applied to allow each of the

drones to act as an agent and learn this hidden Markov

process. In this case, the drones can always maintain active

communications with each other to coordinate their actions.

The action of an agent is trained according to the network

states, as well as the environmental changes resulting from

the actions of the rest of the agents.

Note that the new DDPG model can be potentially trained

offline in a simulator before being deployed in real environ-

ment. Once deployed, the DDPG model will continue the

learning to refine the model parameters, if needed. By this

means, the DDPG model can account for generic collision

or obstacle avoidance via the offline training and can adapt

to the specific real-world application scenario via online

refinement. Additionally, the drones are typically equipped

with vision-based techniques or utilize event cameras to

avoid collisions and adjust the flight attitudes.

IV. IMPLEMENTATION AND PERFORMANCE

A. Implementation of the DDPG-based strategy

The new DDPG model is based on deep reinforcement

learning techniques and can improve the data aggregation

by learning and refining the actions of cruise control and

communication schedule on-the-fly. The DDPG model can

be implemented on Google TensorFlow, one of the most

widely adopted and accepted machine learning platforms.

The performance evaluation on TensorFlow is conducive

to further commercial development for real-world drone-

assisted IoT systems.

Using offline datasets for the performance evaluation is

challenging in the context of the DDPG-based strategy, or

more generally, deep reinforcement learning. The reason

is that deep reinforcement learning interacts with the envi-

ronment and makes decisions which can lead to changes in

the environment. In the case of the DDPG-based strategy,

the decision of the drone on the trajectory and IoT device

selection affects the queue and battery statuses of both the

selected and unselected devices. To this end, a static real-

world dataset which does not interact with the drone or

respond to the drone’s decisions, would not be adequate to

evaluate the DDPG-based strategy.

B. Numerical analysis

Figure 3 demonstrates the flight trajectory of the drone

according to different deployments of the IoT devices. In

Figure 3(a), 100 IoT devices are randomly deployed in

the area of interest with the size of 1000 m × 1000 m.

As observed, the new DDPG-based strategy progressively

adjusts the trajectory of the drone, where the actions of the

heading and the instantaneous patrol speed of the drone are

carried out in the continuous action space. In Figure 3(b),

200 IoT devices are deployed in the area. The drone has
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Fig. 3: The flight trajectory of the drone according to deployments of the IoT devices.
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Fig. 4: Performance of the new DDPG-based strategy with
regards to the training episodes.

to maneuver over more IoT devices in a wider range to

enhance the data aggregation and reduce the packet loss

pertaining to buffer overflows and channel fading.

Figure 4 shows the packet loss rate under the new DDPG-

based strategy with regards to the training episodes. In

particular, an “episode” contains a series of consecutive

training epochs, where the onboard DDPG is trained to

produce the optimal actions. As shown in Figure 2, the

DDPG-based framework executes actions, forecasts the

next states, and updates the actor policy in every episode.

Figure 4 also shows the impact of the number of IoT

devices on the network cost of the new DDPG-based

framework, and the convergence of the framework. With

the increasing number of episodes (or in other words, the

training time), the network cost drops significantly and then

stabilizes.

In Figure 4, the DDPG-based strategy is compared with

FreeWalk in which the drone maneuvers randomly over the

area of interest [15]. It can be observed that the DDPG-

based strategy outperforms FreeWalk by 52% and 31% in

the presence of 200 and 100 IoT devices, respectively, once

the actions of the drone are sufficiently trained. The reason

is that the drone under FreeWalk does not adapt its flight

trajectory to prevent buffer overflows at the IoT devices.

In contrast, the DDPG-based strategy learns the battery

levels, data queue backlogs, and channel states of the IoT

devices; and comes up with the joint cruise control and

communication decision to minimize the data loss of the

entire network over a long time horizon.

V. CONCLUSIONS AND FUTURE DIRECTIONS

This article studied the challenges of real-time con-

tinuous cruise control and data aggregation in drone-

assisted IoT networks, as well as the deep reinforcement

learning solutions. A new architecture of DDPG-based

continuous cruise control and communication scheduling

was presented, where the actions of the drone are trained

online based on the incomplete and potentially outdated

knowledge of the drone on the network states. The on-

board DDPG-based strategy can be implemented on Google

TensorFlow. Performance analysis showed that the drone

can maneuver to enhance the data aggregation and reduce

packet loss pertaining to buffer overflows and channel

fading. The impacts of the number of IoT devices on

the network cost of the DDPG-based framework and the

convergence of the framework were also discussed in terms

of network cost.

As future research directions, the DDPG-based continu-

ous cruise control and communication scheduling will be

extended to drone swarm scenarios, where multiple drones

can cooperate for one mission. Multi-agent DDPG can be

individually trained on each of the drones (i.e., agents)

based on independent state observation, to decide a joint

action on collision-free cruise control and interference-free

communication schedules for all the drones. In addition, a

testbed of the drone-assisted IoT will be built. Experimental

measurements will be collected on the testbed to validate

the performance of the presented DDPG model.

Here, it is important to mention that, within a particular

network state, the action of a drone not only determines the

next state but also has a negligible impact on the actions

of the other drones. As a result, the network state observed

by a drone can be quickly outdated because of the actions

that the other drones take in the meantime. Consequently,

multi-agent DDPG could undergo slower convergence. A

potential remedy is to share the observations and actions

among all drones, so that a joint action can be trained for all

the agents. However, this would require the drones to main-

tain consistent and reliable wireless connections, which is

challenging in practice. Further to that, the enhancement

of data aggregation with different drone swarm mobility

patterns will be also considered in a future work.
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