

Dynamic Hierarchical Bandwidth Reservations
for Switched Ethernet

PhD Thesis

CISTER-TR-181004

Zahid Iqbal

PhD Thesis CISTER-TR-181004 Dynamic Hierarchical Bandwidth Reservations for Switched ...

© CISTER Research Center
www.cister.isep.ipp.pt

1

Dynamic Hierarchical Bandwidth Reservations for Switched Ethernet

Zahid Iqbal

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail:

http://www.cister.isep.ipp.pt

Abstract

Meeting system wide timeliness requirements within Cyber-Physical Systems (CPS) is a challengingtask due to
their typically complex networking infrastructure among other factors. Currentcommunication technologies do not
overcome this challenge, particularly when allowing adaptationof the system for efficient bandwidth usage. A
component-based design approach can helpcoping with the network complexity by allowing composition of
complex applications through theintegration of independently developed adaptive components while maintaining
their individualproperties. In this context, network reservations are an important design element that favors
composabilityin the time domain with online adaptation by providing temporal isolation. Based onthese principles,
we propose in this work a framework for supporting composability in Ethernetnetworks using ordinary COTS
switches and the FTT-SE protocol. We dedicate particular attentionto the worst-case response time analysis of
messages transmitted within reservations. Thisanalysis is a key element for guaranteed timeliness in an adaptive
framework.In the first part of our work, we develop a new worst-case network delay analysis for
sporadicreservations associated with asynchronous messages, which we call flat reservations, and assessits
efficiency through extensive simulation. Our results show that our analysis is accurate, with anexact match for a
significant percentage of messages in the message sets (up to 60% on average).Moreover, we were able to
identify the regions in the system configuration where our analysis isaccurate, thus providing a system designer
with an indication of confidence in our analysis.When multiple applications co-exist in the system, flat reservations
are not adequate to providethe desired level of isolation between different applications and to meet their timing
requirements.For this reason, we resort to the Hierarchical Scheduling Framework (HSF), an importanttechnique
to achieve composability, particularly in the time domain as it allows reserving and partitioningthe resources in
multiple levels. Hence, in the second part of our work, we implementan HSF that enforces temporal properties of
the partitions, using different reservation schedulingpolicies, namely polling and sporadic servers. Our results
highlight the strong partitioningcapabilities of our approach, with full temporal isolation across different
hierarchical partitions.Finally, in the third part of our work, we provide a novel method to generate server
interfacesthat minimizes the servers bandwidth requirement. We validate the approach with extensivesimulations
using random message sets and hierarchies.

FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Dynamic Hierarchical Bandwidth

Reservations for Switched Ethernet

Zahid Iqbal

Programa Doutoral em Engenharia Electrotécnica e de Computadores

Supervisor: Prof. Dr. Luís Miguel Pinho de Almeida

Co-advisor: Prof. Dr. Moris Habib Yasi Behnam

May 15, 2018

c© Zahid Iqbal, 2018

Dynamic Hierarchical Bandwidth Reservations for
Switched Ethernet

Zahid Iqbal

Programa Doutoral em Engenharia Electrotécnica e de Computadores

Dissertation submitted in partial fulfilment of the requirements for the

degree of Doctor of Philosophy in Electrical and Computer Engineering at
the Faculty of Engineering, University of Porto

Approved by:

President: Prof. Doutor José Alfredo Ribeiro da Silva Matos
Referee: Prof. Doutor Giorgio C. Buttazo

Referee: Prof. Doutor Reinder J. Bril
Co-advisor: Prof. Doutor Moris Habib Yasi Behnam
Referee: Prof. Doutor Paulo Bacelar Reis Pedreiras
Referee: Prof. Doutor Mário Jorge Rodrigues de Sousa

Supervisor: Prof. Doutor. Luís Miguel Pinho de Almeida

May 15, 2018

Abstract

Meeting system wide timeliness requirements within Cyber-Physical Systems (CPS) is a challeng-
ing task due to their typically complex networking infrastructure among other factors. Current
communication technologies do not overcome this challenge, particularly when allowing adapta-
tion of the system for efficient bandwidth usage. A component-based design approach can help
coping with the network complexity by allowing composition of complex applications through the
integration of independently developed adaptive components while maintaining their individual
properties. In this context, network reservations are an important design element that favors com-
posability in the time domain with online adaptation by providing temporal isolation. Based on
these principles, we propose in this work a framework for supporting composability in Ethernet
networks using ordinary COTS switches and the FTT-SE protocol. We dedicate particular atten-
tion to the worst-case response time analysis of messages transmitted within reservations. This
analysis is a key element for guaranteed timeliness in an adaptive framework.

In the first part of our work, we develop a new worst-case network delay analysis for sporadic
reservations associated with asynchronous messages, which we call flat reservations, and assess
its efficiency through extensive simulation. Our results show that our analysis is accurate, with an
exact match for a significant percentage of messages in the message sets (up to 60% on average).
Moreover, we were able to identify the regions in the system configuration where our analysis is
accurate, thus providing a system designer with an indication of confidence in our analysis.

When multiple applications co-exist in the system, flat reservations are not adequate to pro-
vide the desired level of isolation between different applications and to meet their timing require-
ments. For this reason, we resort to the Hierarchical Scheduling Framework (HSF), an important
technique to achieve composability, particularly in the time domain as it allows reserving and par-
titioning the resources in multiple levels. Hence, in the second part of our work, we implement
an HSF that enforces temporal properties of the partitions, using different reservation schedul-
ing policies, namely polling and sporadic servers. Our results highlight the strong partitioning
capabilities of our approach, with full temporal isolation across different hierarchical partitions.

Finally, in the third part of our work, we provide a novel method to generate server inter-
faces that minimizes the servers bandwidth requirement. We validate the approach with extensive
simulations using random message sets and hierarchies.

i

ii

Resumo

Satisfazer requisitos temporais ao nível de sistema é uma tarefa desafiante no contexto de Sistemas
Ciber-Fisicos (CPS - Cyber-Physical Systems), que se deve, entre outros fatores, à sua infraestru-
tura de rede tipicamente complexa. As tecnologias de comunicação atuais não resolvem este
desafio, particularmente quando se permite uma adaptação dinâmica do sistema para utilização
eficiente da largura de banda. Uma abordagem baseada em componentes pode ajudar a lidar com
a complexidade da rede ao permitir a composição de aplicações complexas através da integração
de componentes desenvolvidos independentemente, mantendo as suas propriedades individuais.
Neste contexto, as reservas de rede são um elemento de projeto importante que favorece a com-
posabilidade no domínio temporal. Baseado nestes princípios, apresentamos neste trabalho uma
abordagem que suporta a composabilidade em redes Ethernet utilizando switches COTS e o pro-
tocolo FTT-SE.

Na primeira parte do nosso trabalho, desenvolvemos uma nova análise de pior caso do atraso de
rede para reservas esporádicas associadas a mensagens assíncronas, que designámos por reservas
planas, e avaliámos a sua eficiência através de extensas simulações. Os nossos resultados mostram
que a nossa análise é precisa, com uma correspondência exata para uma percentagem significativa
do conjunto de mensagens (até 60% em média). Mais ainda, fomos capazes de identificar as
regiões na configuração de sistema onde a análise é precisa, fornecendo aos projetistas de sistema
uma indicação de confiança na nossa análise.

Quando múltiplas aplicações co-existem no sistema, reservas planas não são adequadas para
fornecer o nível de isolamento desejado entre diferentes aplicações e satisfazer os seus requisitos
temporais. Por esta razão, recorremos à Técnica de Escalonamento Hierárquico (HSF – Hierarchi-
cal Scheduling Framework), uma técnica importante para alcançar composabilidade. Assim, na
segunda parte do nosso trabalho, implementámos uma HSF que impõe as propriedades temporais
das partições hierárquicas, usando diferentes políticas de escalonamento de reservas, nomeada-
mente servidores de amonstragem ("polling") e esporádicos. Os nossos resultados realçam as
fortes capacidades de particionamento da nossa abordagem, com total isolamento temporal entre
as diferentes partições.

Finalmente, na terceira parte do nosso trabalho, propomos um novo método para gerar inter-
faces de servidor que minimizam os requisitos de largura de banda que garantem o cumprimento
das restrições temporais das comunicações associadas. Validámos a nossa abordagem através de
extensas simulações usando conjuntos de mensagens e hierarquias de servidores aleatórios. A val-
idação mostrou que o método que propomos para projetar servidores de amostragem ("polling") é
mais eficiente do que a abordagem tradicional de atribuir aos servidores as propriedades das men-
sagens que devem suportar. De facto, a nossa abordagem é exata no sentido em que uma redução
mínima nas propriedades do servidor leva à violação das restrições temporais das mensagens as-
sociadas.

iii

iv

Acknowledgements

The years spent in PhD make a memorable time of my life; and at the end of those years, looking
back, I find myself enriched with memories, with personal as well as professional development.
During this journey, I came across several wonderful people whom I want to thank.

My sincere gratitude goes to my thesis supervisor, Luis Almeida, whose guidance over the
course of thesis, patience, and encouragement has made this work possible. His scientific advice
has been invaluable to my work. I have learnt a lot from him. I thank for the continuous support
in terms of funds, and for his dedication to the DaRTES lab which made it a very pleasant place to
work in. I am grateful, also, to my thesis co-advisor, Moris Behnam, in particular, for close initial
interaction which helped to define the direction of our research, and for guidance to approach
the FTT-SE code through flow charts, and for reviews, and helpful feedback. The visit at MDH
allowed us to conclude an important part of the work, for which I would also thank Mohammad
for useful discussions. I enjoyed this time working and meeting other people, in particular, my
lab-mates Nabar, Jakob and Asha.

Next, I am thankful to Ricardo, the main author of FTT-SE. During the initial years, mainly,
discussions with Ricardo greatly improved my understanding of the parts of the code, in particular,
scheduling of the downlinks and the concept of blocks in the implementation.

I am grateful, also, to the members of my jury who gave their consent to analyse my work.
They provided valuable comments and suggestions; partly, addressed in the final document.

I would like to thank all my colleagues at DaRTES who made life at FEUP enjoyable. There
are a number of people to mention; recounting from the early days in FEUP, Pedro, Luis, Shuai,
then, João Reis, Paulo Amaral, Ana Rita, Julio, Luis & Daniel, and more recently, Inés, Sydney,
Hassan, Diana, Carlos, João, Moses and Aqsa. I have to thank Luís Oliveira for being always
available when I needed to discuss something, André for his help on FEUP grid, and acquainting
me with certain issues thereof, Luis Pinto, regarding different pointer-related issues in C program-
ming that helped me in cleaning some implementation bugs. I feel lucky to have known such nice
people. I thank Rui Carvalho and Bharat, close workplace neighbours, for their kindness.

I would like to thank administrative staff at FEUP and IT for their help in solving different
practical issues.

Among other people, I have to thank Cihan Deniz, a compassionate friend who has always
inspired and encouraged me, Ali Akca, for being a good friend and pleasant coffee company
ever since first years in Portugal, and some others who have moved away since 2016, including
Muhammed Ali, Selcuk Kaya, Yunus, and Yasin. I wish you the best in your future and hope that
we may cross paths. I thank Anis-ur-Rehman for his kindness, help and suggestions, in particular,
around various bureaucratic matters. I take this opportunity to thank other friends and house-
mates for their support and generosity, Mushtaq Raza, Kashif Mushtaq, Zeeshan, Hamza, Arsalan,
Ajmal, Syed Aftab Rashid, Ali Awan, Asif, Niaz Ali, Bilal, Anwaar, Saqlain, Saad Sultan, Raid,
Tallat, Saad Hassan, Shahkar, Hazem, Azaza, Musa, Abdul Razaq, Hassan and Nasser Alaraimi.
Thank you !!

v

vi

Lastly, I owe a deep gratitude to my family, my mother for her absolute love, my brothers and
sister, for their love, support, and patience, over the years during my PhD, especially, my eldest
brother, Muhammad Afzal.

Above all, I am thankful to God for His guidance and blessings.

The work in this thesis was supported by the grants (SFRH/BD/89731/2012) from Fundação
para a Ciência e a Tecnologia (FCT), (BIM/No20/2017 – B00308) and (BIM/No42/2017 - B00308)
from Instituto de Telecomunicações (IT).

Zahid Iqbal

I dedicate this work to my parents

vii

viii

Contents

Abstract i

Acknowledgements v

Acronyms and Abbreviations xvii

1 Introduction 1

1.1 System Characteristics . 2
1.1.1 The real-time nature of the underlying system 2
1.1.2 Heterogeneity in applications and requirements 2
1.1.3 Complexity challenge: rationale for using component based design . . . 3
1.1.4 The need to optimise the resource usage 3

1.2 Motivation . 4
1.2.1 Real-time service at the network layer 4
1.2.2 Real-time networks . 5
1.2.3 Bandwidth reservation . 6

1.3 Defining the Problem . 7
1.3.1 Hierarchical scheduling and its vision 7
1.3.2 Proposed solution . 8

1.4 Objectives . 10
1.5 Thesis Outline . 11
1.6 List of Publications . 12

2 Ethernet in Embedded Systems: the Automotive Case 15

2.1 Challenges of System Integration within an Automobile 15
2.2 Ethernet-based in-Car Communications . 17
2.3 Ethernet . 18

2.3.1 Probabilistic nature of Ethernet transmissions 18
2.3.2 Rationale for minimum Ethernet frame length 19

2.4 Switched Ethernet . 19
2.5 AFDX - Avionics Full Duplex Switched Ethernet 20
2.6 AVB - Audio Video Bridging Standard . 21

2.6.1 An AVB system . 22
2.6.2 Importance of synchronization . 22
2.6.3 Stream reservation protocol (SRP) . 24
2.6.4 Traffic scheduling in AVB . 25
2.6.5 Schedulability analysis for AVB . 27

2.7 Time Sensitive Networking (TSN) . 28

ix

x CONTENTS

2.8 Time-Triggered Ethernet (TTEthernet) . 30
2.8.1 Architecture model . 30
2.8.2 Traffic scheduling . 31

2.9 FTT-SE: a Brief Overview . 33
2.9.1 Handling synchronous & asynchronous traffic 34
2.9.2 Building traffic schedules . 34

2.10 A Qualitative Comparison of Different Technologies 34
2.11 Summary . 41

3 Traffic Scheduling Concepts 45

3.1 Server-based Scheduling . 45
3.1.1 Polling server . 46
3.1.2 Deferrable server . 46
3.1.3 Sporadic server . 48

3.2 Hierarchical Scheduling . 50
3.3 Guaranteeing Quality of Service . 53

3.3.1 QoS at network layer . 54
3.3.2 Scheduling and QoS in Ethernet . 56
3.3.3 Scheduling in FTT-SE . 57

3.4 Summary . 58

4 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE 61

4.1 Flat Servers within FTT-SE . 62
4.2 System Model . 64

4.2.1 Network model . 64
4.2.2 Traffic model . 65
4.2.3 Response time analysis . 65

4.3 Evaluation . 68
4.3.1 System setup . 68
4.3.2 Experiments . 69

4.4 Lessons Learnt . 79
4.5 Summary . 81

5 Supporting Hierarchical Reservations within FTT-SE using Polling Servers 85

5.1 Hierarchical Scheduling Framework in FTT-SE 86
5.1.1 Servers integration within FTT-SE . 87
5.1.2 Servers and streams model . 88
5.1.3 Scheduling model and execution . 91

5.2 Schedulability Analysis . 93
5.3 Evaluation . 97

5.3.1 Experimental setup . 97
5.3.2 Analysis results vs. observation . 98
5.3.3 Checking temporal isolation . 98
5.3.4 Verifying temporal isolation with random simulations 102

5.4 Summary . 103

CONTENTS xi

6 Supporting Hierarchical Reservations within FTT-SE using Sporadic Servers 109

6.1 Implementing Hierarchical Sporadic Servers . 109
6.1.1 Scheduling algorithm . 110
6.1.2 Replenishment management . 111
6.1.3 Processing message arrivals . 115
6.1.4 Handling message packets . 115

6.2 Evaluation . 116
6.2.1 Experimental setup . 116
6.2.2 Experiments . 117

6.3 Summary . 119

7 Design of Reservations 121

7.1 Server Design for Hierarchical Polling Servers 121
7.1.1 Modified system model . 122
7.1.2 Generating server interfaces . 123

7.2 Evaluation . 128
7.2.1 The worst-case behavior . 128
7.2.2 The average case behavior . 129
7.2.3 Root server utilization . 130

7.3 Summary . 131

8 Experimenting with Hierarchical Reservations on FTT-SE 133

8.1 Components of the Experimental Framework 133
8.1.1 Structure of hierarchies . 134
8.1.2 Generating application message set . 135
8.1.3 Filling in server parameters . 136
8.1.4 Repository of servers . 136
8.1.5 Message activations . 137

8.2 Application Design and Execution Flow . 139
8.3 Summary . 140

9 Conclusion and Future Work 143

9.1 Thesis validation . 144
9.2 Future Work . 146

xii CONTENTS

List of Figures

1.1 Illustrating bandwidth reservations . 6

2.1 Half duplex Ethernet . 19
2.2 Typical switch internal architecture . 20
2.3 sub-VL scheduling in ADFX . 22
2.4 Synchronization mechanism and delay calculation 23
2.5 Attribute propagation through the network . 25
2.6 An Ethernet frame with IEEE 802.1Q VLAN tag 25
2.7 talker advertise and listener ready propagation 26
2.8 An example of CBSA operation . 27
2.9 An example of time-aware shaper . 29
2.10 Time-aware shaper, guardband before critical transmissions 29
2.11 Time-aware shaper, preemption approach . 30
2.12 TTEthernet cluster example . 31
2.13 TTEthernet Rate constrained (RC) traffic . 33
2.14 The FTT-SE EC structure . 33
2.15 Downlink scheduling in FTT-SE . 35
2.16 Determininsm and QoS in Ethernet-based technologies 40

3.1 Background service . 47
3.2 Polling service . 47
3.3 An example of a high priority Deferrable Server 48
3.4 An example of Sporadic Server operation . 49
3.5 Critical instant of the system with sporadic server 50
3.6 A complex scenario of message scheduling with sporadic server (1) 51
3.7 A complex scenario of message scheduling with sporadic server (2) 52

4.1 Flat servers within FTT-SE . 62
4.2 Main system components . 63
4.3 Operation of the shapers . 64
4.4 Illustrating the sources of interference. 66
4.5 Impact of inserted idle time. 66
4.6 Experimental method . 71
4.7 Comparing analytic estimates and observed values of RT 72
4.8 Histogram of the percentage of messages per data set for each category 73
4.9 Reduced simulation trace . 75
4.10 Harmonic vs primes, pc of matches between analysis & observation 75
4.11 Harmonic vs primes, max pc increase of RT over RTo 76
4.12 Harmonic vs primes, pc increase of RT over RTo over all messages 76

xiii

xiv LIST OF FIGURES

4.13 Different period ranges, pc of matches between analysis & observation 77
4.14 Different period ranges, max. pc increase of RT over RTo 78
4.15 Different period ranges, pc increase of RT over RTo over all messages 79
4.16 Different values of LW , pc of matches between analysis & observation 80
4.17 Different values of LW , max. pc increase of RT over RTo 81
4.18 Different values of LW , pc increase of RT over RTo over all messages 82
4.19 Varying link utilization, pc of matches between analysis & observation 83
4.20 Varying link utilization, max. pc increase of RT over RTo 83
4.21 Varying link utilization, pc increase of RT over RTo over all messages 83

5.1 An example server hierarchy . 86
5.2 Partitioning the available bandwidth at different levels 87
5.3 Hierarchical Server Based Scheduling (HSS) architecture 88
5.4 Flat and hierarchical reservations . 90
5.5 Message scheduling with flat and hierarchical reservations 92
5.6 The scheduling model . 93
5.7 The supply bound function assuming the polling server. 94
5.8 The experimental setup, with three slaves and the master node. 97
5.9 Independent Server Hierarchies (ISH) prepared at each source station 98
5.10 Message response times with periodic arrival patterns 99
5.11 Response times of messages m4 and m5 with bursty m5 activations 102
5.12 The experiment setup for random simulations 104
5.13 Message response times with regular mode . 106
5.14 Message response times with induced congestion mode 107

6.1 Example of scheduling messages with a sporadic HSF 112
6.2 Independent Server Hierarchies (ISH) in each source station 117
6.3 Response times of messages m4 and m5 with bursty m5 activations 118
6.4 Messages in station B are protected from bursts in m11 and m13 120

7.1 An example hierarchy with six servers and four message streams 122
7.2 Different candidate interfaces for Srv28 to schedule AS53 126
7.3 Interface composition with rational approach 127
7.4 Minimum time to the deadline for the message sets 129
7.5 Interface composition with naive approach . 130
7.6 Distribution of average response time as percentage of deadline 131
7.7 Total utilization of the root servers per message set 132

8.1 FTT-SE internal layering (left) and experimental platform (right) 134
8.2 Adjacency list represenation for an ISH . 135
8.3 Application design and execution flow with HSF within FTT-SE 140

List of Tables

2.1 Comparison of different technologies . 43

3.1 A task system with two periodic tasks and a polling server 46
3.2 A task system with two periodic tasks and a deferrable server 48
3.3 A task system with two tasks and a sporadic server 50

4.1 Interference set of message m43 . 74
4.2 Experiment utilization values . 79

5.1 Server parameters for stations . 100
5.2 Specification of message parameters . 100
5.3 Messages measured and calculated response times. 101
5.4 Messages set parameters . 104
5.5 Servers’ parameters . 105

7.1 Message Parameters . 126
7.2 Interface candidates for leaf servers . 127

xv

xvi LIST OF TABLES

Acronyms and Abbreviations

ABS Antilock Braking System
ADAS Advanced Driver Assistance Systems
ADN Aircraft Data Networks
AFDX Avionics Full-Duplex Switched Ethernet
ASIP Application Specific Instruction-set Processor
AVB Audio Video Bridging Standard / Systems
BAG Bandwidth Allocation Gap
BE Best-Effort
CAN Controller Area Network
CBD Component-based Development
CBS Constant Bandwidth Server
CBSA Credit Based Shaping Algorithm
COTS Commercial Off-the-Shelf
CPS Cyber Physical Systems
CSMA / CD Carrie Sense Multiple Access with Collision Detection
DES Distributed Embedded Systems
DGS Distributed Global Scheduling
DiffServ Differentiated services
DM Deadline Monotonic
DS Deferrable Server
DSS Dynamic Sporadic Server
EC Elementary Cycle
ECU Electronic Control Units
EDF Earliest Deadline First
EDP Explicit deadline periodic
ES End System
ESC Electronic Stability Control
ET Event-Triggered
FCFS First come, first served
FIFO First in, first out
FLOWSPEC Flow specification
FPS Fixed Priority Scheduling
FQTSS Forwarding and Queuing Enhancements for Time-Sensitive

Streams
FTT-SE Flexible Time-Triggered Switched Ethernet Protocol
GARA Globus Architecture for Reservation and Allocation
GCD Greatest common divisor
HaRTES Hard Real-Time Ethernet Switching

xvii

xviii Acronyms and Abbreviations

HDTV High-definition television
HSF Hierarchical Scheduling Framework
HSS Hierarchical Server-based Scheduling
IP Internet Protocol
ISH Independent Server Hierarchy
LCM Least common multiple
LDAP Lightweight Directory Access Protocol
LEC Length of EC
LIN Local Interconnect Network
LW Length of Asynchronous Window
MOST Media Oriented Systems Transport
MPLS Multiprotocol Label Switching
MRP Multiple Registration Protocol
MTU Maximum Transmission Unit
NIC Ethernet Network Interface Card
NoC Network-on-Chip
NRT Non Real-Time
NS Network Switch
OEM Original Equipment Manufacturer
OMNeT++ Objective Modular Network Testbed in C++
PCP Priority Code Point
PROFINET Process Field Net
PROFINET-IRT PROFINET-Isochronous Real-Time
PS Polling Server
PTP Precision Time Protocol
QoS Quality of Service
Q-RAM QoS based Resource Allocation Model
rbf Request bound function
RBS Reduced Buffering Scheme
RC Rate-Constrained
RM Rate Monotonic
RMS Rate Monotonic Scheduling
RSVP Resource Reservation Protocol
RT Response time
sbf Supply bound function
SFD Store-and-forward delay
SRP Stream Reservation Protocol
SS Sporadic Server
ST Scheduled Traffic
TAS Time Aware Shaper
TBS Total Bandwidth Server
TM Trigger Message
TSN Time Sensitive Networking
TT Time-Triggered
TTEthernet Time-Triggered Ethernet
TTSoC Time-Triggered System-on-a-Chip
VL Virtual Link

Chapter 1

Introduction

The advancement in technology has greatly impacted the lives of people. The digital revolution

that marked the beginning of the information age allowed a widespread production and use of

digital logic circuits and its derived technologies such as computers and cell phones. The micro-

processor underlies this revolution, and with its steadily increasing power and shrinking dimen-

sions, it has enabled computer technology to be embedded into a wide range of objects of everyday

use. Examples include devices such as mobile phones, in-car navigation systems, portable music

players, telephone answering machine, robot controllers etc. Such systems use a computer system

inside a larger system to provide control and computation functions and are referred to as embed-

ded systems [1]. These systems have an ongoing interaction with a dynamic external environment

and are characterised by executing a predefined dedicated function.

Driven by demands for the economy of scale, and for simpler and more efficient solutions, there

has been a continuous evolution in the technology for embedded systems. This led to declining

costs of technology as well as an increase in the computing power. Moreover, to realise the ob-

jective of certain systems, connectivity was provided between multiple processors giving rise to

Distributed Embedded Systems (DES). These factors coupled with a widespread network infras-

tructure enabled to harness the benefits of technology in unprecedented ways [1, 2]. Embedded

systems thus find their applications in many areas such as consumer electronics, industrial automa-

tion, automotive and avionics industry, biomedical engineering etc.

Distributed embedded systems help realise the objective of resource sharing among distributed

components. It is possible to deploy distributed protocols over a network allowing different net-

work elements to coordinate their activities and share their data with each other to accomplish a

single task or a set of tasks. An example of such distributed coordination is a product assembly

line in industrial automation or a brake-by-wire system within cars.

Adding another dimension of complexity, we have systems that interact with a dynamic exter-

nal environment and combine models of both environment and computing platforms, known as

Cyber-Physical Systems (CPS), to improve their performance. For CPS to be open and flexible,

e.g., allowing applications to enter or leave the system or the system topology to change, we need

to provide resource efficiency in varying operational scenarios. The interconnection network is an

1

2 Introduction

important element in this respect. The networking medium is a shared resource, and there have

been tremendous efforts to devise strategies to access this medium efficiently. The network plays a

central role in supporting system-wide properties. However, current communication technologies

do not fully meet the communication requirements of CPS, particularly concerning timeliness and

reliability together with scalability, flexibility, and openness.

To this end, we postulate that the resource reservation paradigm is an adequate means to cater

for scalable, open and adaptive latency constrained communications towards efficient CPS. This

dissertation will strive to explore network resource allocation and scheduling strategies that, in

particular, allow applications with different levels of criticality, possibly with a non-continuous

operation, to share the network medium in an efficient manner.

1.1 System Characteristics

CPS integrate computation, networking, and physical processes. They encompass a broad scope in

which the system is not only real-time, networked and distributed but can be adaptive, predictive

as well as intelligent. They may also require security against malicious attacks, and intrusion de-

tection mechanisms depending on the application area. CPS thus need improved design tools and

design methodologies that can ease the development process, handle complexity, and in particular

support validation and verification. For example, the work in [3, 4] lists the challenges related to

CPS development whereas the work in [5] gives a concept map for CPS and lists several projects

currently addressing CPS related development.

In our work, however, we limit our focus to designing efficient bandwidth reservation mecha-

nisms for CPS. From this perspective, we list certain system characteristics that we must take into

account in the development of the work.

1.1.1 The real-time nature of the underlying system

CPS, due to their interaction with a dynamic environment, are necessarily real-time systems for

which correct operation depends on the logical result of the computation and frequently on the time

of the output delivery. In fact, failure to respond in time can be as bad as a wrong response. The

concept of the deadline governs the notion of real-time. For the system outputs to be acceptable,

these have to be generated by the deadline. The severity of the consequences that may result

from a deadline miss classifies the real-time systems as hard real-time systems and soft real-time

systems [6]. We consider CPS that impose strict requirements on their timing behaviour and

require that such requirements are met.

1.1.2 Heterogeneity in applications and requirements

A CPS intrinsically will consist of multiple applications, concurrently accessing a shared net-

work resource. These applications may exhibit different timing constraints and resource access

patterns. Efficient resource allocation is thus an important issue. It is necessary that disparate

1.1 System Characteristics 3

applications complete their computations within their timing constraints and do not impact the

real-time behaviour of other applications that use the same resources. More specifically, a misbe-

having application may miss its deadline but should not affect other applications. This property is

known as temporal isolation.

To reliably run combinations of such applications and effectively manage the resource is a chal-

lenging task. System performance is thus greatly affected by the resource allocation strategy.

Allocating the resource at a high rate may be inefficient whereas allocating at a lower rate may

result in long response times which may degrade service provided by the applications or render it

meaningless altogether.

1.1.3 Complexity challenge: rationale for using component based design

CPS rely, up to a large extent, on networking infrastructures, frequently large ones. These nec-

essarily play a central role in supporting the needed system-wide properties, being timeliness a

particularly important one as dictated by the dynamics of the associated physical processes. Ow-

ing to their complexity, large-scale CPS are hard to assess through a single holistic view. The

traditional approach addresses the challenge of complexity by partitioning the system function-

ality across several components and building them independently. Such an approach, however,

entails a standard design and development process so that different system parts can be seamlessly

integrated. Otherwise, on each system integration, additional development efforts need to be in-

vested in making system parts compatible, thus, increasing development costs and time-to-market

as well as quality risks. The traditional practice in the industry has been to build replaceable

system parts meeting pre-defined standards and then integrating them to make systems. Such

paradigm is known as Component-based Development (CBD). A component is a self-contained

system part that can be developed and tested in isolation and can be composed with the rest of

the system through well-defined interfaces [7]. Component-based development can, thus, address

the complexity of large-scale CPS by allowing a dependable composition of the system parts [8].

Therefore, we are also interested in modelling the communications in a composable way, i.e.,

knowing the temporal properties of the components, we want to verify that the system as a whole

or parts preserve their timeliness properties when different components interact in different possi-

ble manners. Thus, we need methods to ensure timing guarantees during the integration and reuse

of the system components.

1.1.4 The need to optimise the resource usage

Furthermore, CPS integrate with the physical processes through sensors and actuators to achieve

their functional objectives. Thus CPS have to be reactive and timely which imposes stringent

requirements on the usage of resources (in this case network bandwidth). With efficient use of

resources, more applications can be accommodated while meeting their requirements. This char-

acteristic relates closely to the one in Section 1.1.2, and essentially can be read as optimizing

resource usage in the presence of multiple heterogeneous applications. Particular constraints in

4 Introduction

most embedded systems (that will make part of CPS but nonetheless maintain their non-functional

requirements) dictate efficiency of resource usage as a foremost concern. A resource allocation

strategy aiming in this direction results in savings such as power, i.e., over-provisioning resources

may result in undue power consumptions. For such systems, a capability to tailor the resource

usage according to the needs of each application is a desirable feature [9].

1.2 Motivation

This dissertation focuses on the efficient management of the network bandwidth to support com-

plex dynamic network transactions with timeliness guarantees.

1.2.1 Real-time service at the network layer

Considering latency constrained applications, we find that common services at the network layer

are not adequate. In most data communications, reliable delivery of data is the desired goal. Ex-

amples include email, web etc. Real-time communications further require that data arrives in a

timely manner. However, FIFO queues within network switches and routers implement a best

effort service model. With this model, all packets receive the same quality of service. Under

light load conditions, such quality is good; however, applications receive poor service when the

network is heavily loaded. To this end, the works in [10, 11] explored more efficient non-FIFO

packet scheduling algorithms and the idea of allocating resources selectively. They support quality

of service (QoS) by having an admission control mechanism and defining adequate QoS metrics

such as the bound on maximum packet delay. With this model, applications are serviced along two

different QoS dimensions namely fidelity and latency. However, we observe that, if an application

needs low latency, there is a significant probability that it will need to tolerate some lost packets.

Applications that require high fidelity, on the other hand, may experience long response times.

Both of these situations are not suitable for applications that need hard real-time guarantees.

Similarly, using the Internet Protocol (IP), performance is not guaranteed; packets can be lost,

delayed, reordered, corrupted, and the task of rearranging and recovering is left to the protocols in

the upper layers. The service at the network layer, by itself, is insufficient; it just tries to deliver

the packets. Real-time applications often do not work well across the Internet because of variable

queueing delays and congestion losses. Traffic passes through many hops that are maintained by

different ISPs.

There have been some works that strive to support soft real-time applications using IP. Some archi-

tectures were proposed that provide QoS such as Integrated Services (IntServ) and Differentiated

Services (DiffServ) [12] and traffic engineering solutions such as Multi-protocol Label Switching

(MPLS) [13]. However, in spite of these solutions, it has been challenging to support soft real-time

applications over the Internet.

1.2 Motivation 5

1.2.2 Real-time networks

On the other hand, many networks capable of offering bounded latency, so-called real-time net-

works, have been developed throughout the years. In most cases, these focused on the strictness of

timing guarantees with hardly any support to on-line adaptation as required for efficiency reasons

and to support new trends towards open and evolvable systems.

In the industrial automation realm, these real-time networks have been known as field-buses, and

there have been many different technologies such as CAN [14, 15, 16], LIN [17, 18], FlexRay [19,

20].

1.2.2.1 On using Ethernet with QoS guarantees

The simplification of planning, deployment and maintenance as well as a reduction of costs pushed

towards more open networks and using flexible technologies such as general purpose Ethernet.

Ethernet has been entering the industrial automation domain and in distributed embedded sys-

tems and many variants appeared to cater for real-time requirements. Following this trend, several

attempts were made to reconcile the flexibility and openness of Ethernet with the provision of

deterministic QoS guarantees.

The automotive sector, in particular, has been devoting considerable attention to this combina-

tion [21]. One approach that is attracting significant attention and became standardised recently

is IEEE 802.1BA: Audio Video Bridging Systems - AVB [22]. This solution is based on re-

source reservation and subsequent enforcement of those reservations. However, it requires special

switches capable of handling resource reservation requests and doing traffic shaping, and AVB

switches are still almost non-existent in the market. Although the resource reservation may be

done dynamically, each reservation is for a fixed value (e.g. bandwidth), with remaining capacity

used only for background traffic.

Other technologies such as AFDX [23], PROFINET-IRT [24] and TTEthernet [25], have been

used in static scenarios with well-defined requirements, as typically found in distributed embed-

ded systems and industrial systems in general. These protocols can offer some limited forms of

reservations for specific traffic types. For example, time-triggered frameworks allow reserving

fixed windows or slots for the transmission of different kinds of traffic, both periodic and aperi-

odic traffic. The channel bandwidth is available on these slots or windows on a periodic basis. The

bandwidth allocation is exclusive, which means that if no traffic of the respective type is pending,

the bandwidth cannot be used by other types of traffic and is, thus, wasted. Moreover, fixed slots

within rigid cyclic frameworks impose a compromise between bandwidth and response time, i.e.,

low response times can only be achieved with high bandwidth requirements. Within AFDX [23],

end stations communicate through virtual links (VL) where a certain bandwidth is allocated. When

an end station has multiple applications, these are scheduled by Round-robin policy for using the

VL. This scheduling treats all applications equally and therefore can negatively impact an appli-

cation’s real-time behaviour.

6 Introduction

1.2.3 Bandwidth reservation

To introduce the concept of bandwidth reservation, we consider the case of soft real-time appli-

cations that can tolerate some deadline misses. Traditionally, such applications were scheduled

in the background after higher priority traffic was scheduled thus making their response times

very long or causing deadline misses especially in cases where the system was overloaded with

higher priority traffic. Providing bandwidth reservation for such traffic types with certain timing

may result in them being more responsive and getting good service. Hierarchical reservations,

on the other hand, realise the objective of composing a complex system with many applications

with sub-parts that need to share a common resource. Imagine an application that has some flows

with hard real-time requirements and others with soft real-time requirements. We can create one

reservation for the application and then we can subdivide this reservation into two reservations,

where a larger bandwidth can be allocated for the hard real-time flows and a smaller reservation

for the soft real-time streams. Moreover, the scheduler at the application level can assign a higher

priority to the reservation for the hard real-time flows (Figure 1.1). In this way, different flows

also receive a differentiated service as well as isolation in the temporal domain. Similarly, if there

are more applications in the system, these will be scheduled by a system level scheduler. Finally,

allowing dynamic reservations leads to efficient bandwidth utilisation. As a simple example, we

compare with a static scenario where bandwidth would be wasted if the allocated flows were no

longer available. With dynamic reservations, bandwidth can be allocated on request, and as well

the reservations can be terminated if an application leaves the system thereby leading to more

open and flexible systems. The aforementioned real-time protocols lack the flexibility to allow ei-

ther arbitrary reservation scheduling policies with a hierarchical composition to support complex

applications or the servers dynamic management for the sake of efficiency.

s1 s2 s3 s4 s5

X Y

app

τ1 τ2 τ3 τ4 τ5

higher bandwidth

hard real-time tasks

lower bandwidth

soft real-time tasks

RM / EDF

network

Figure 1.1: Illustrating bandwidth reservations; assigning different shares to different flows.
Scheduling enforces the allocated bandwidth to each flow {τ1, · · · ,τ5}.

1.3 Defining the Problem 7

1.3 Defining the Problem

Supporting multiple applications or applications with multiple components that access a single

shared resource and need timeliness guarantees is a challenging task. To understand this com-

plexity, let us consider CPU time to be a shared resource and a single scheduling strategy for

different applications. Even with specific priority assignments such as Rate Monotonic (RM) or

Earliest Deadline First (EDF), the system cannot provide isolation between different applications

and guarantee the level of service that applications will receive for cases where applications mis-

behave; i.e., do not respect their resource utilisation specifications. For example, a bursty high

priority application can starve a lower priority application of the CPU time, or if a particular ap-

plication job overruns its execution time, it may cause another application to miss its deadline.

This issue of simple priority-based scheduling being not adequate for application QoS guarantees

in complex systems has been stated in [11].

Reservation-based scheduling, also known as server-based scheduling, can solve this problem.

With this scheduling strategy, Q time units are guaranteed on CPU every P time units. This ab-

straction, known as server, helps providing temporal isolation between different applications. In

this way, a misbehaving application cannot negatively impact other applications.

1.3.1 Hierarchical scheduling and its vision

Traditionally, low priority aperiodic requests have been served in the remaining time after the

hard real-time periodic applications were scheduled. Server-based scheduling techniques have

been used to improve the response time of aperiodic requests without jeopardising the schedu-

lability of periodic tasks. To this end, the work in [26] proposed the Polling Server (PS) and

Deferrable Server (DS) policies and the work in [27] proposed the Sporadic Server (SS) policy.

These methods differ in the way reserves are replenished. These methods used static priorities,

e.g. Rate Monotonic (RM) for periodic tasks. Arguing against the low CPU utilisation of RM

policy, Spuri and Buttazzo [28] proposed new server algorithms under dynamic priorities, namely

Earliest Deadline First (EDF) for periodic tasks. They introduced a set of new algorithms such

as Dynamic Priority Exchange, Dynamic SS (DSS) and Total Bandwidth Server (TBS). The work

in [29, 30] supports soft real-time multimedia streaming through a reservation policy known as

Constant Bandwidth Server (CBS). When the budget is exhausted, the CBS principle allows in-

creasing its deadline and replenishes the budget immediately. DSS, on the other hand, becomes

idle until next replenishment when its budget is exhausted. Thus, CBS improves performance of-

fered to soft real-time tasks. In a simulation experiment which computes mean tardiness over all

instances of a soft task, CBS performs significantly better (achieves smaller tardiness of the task

set) in comparison to DSS. These algorithms varied concerning efficiency and implementation

overheads. All these works help designers of hard real-time systems to select the best reservation

technique according to their needs.

A complex application with sub-parts (components) can be allocated a certain bandwidth (parent

reservation). Then, this reservation can be divided to create child reservations that can be assigned

8 Introduction

to the sub-parts of the application. This division can continue through several levels if the sub-parts

have further components. This approach helps to deploy the component-based design at run-time.

It brings the following benefits:

• The system bandwidth is subdivided into reservations to run multiple applications.

• These reservations are scheduled by a system level scheduler.

• The reservations can be subdivided into smaller reservations that execute parts /components

of applications.

• By allocating applications to their reservations, we achieve temporal isolation.

• The reservations can be adapted on-line according to effective needs, reducing bandwidth

waste.

• A scheduler manages the (sub)reservations at each level. We can use a schedule that best

fits the requirements of the components to be scheduled at that level.

• Inside a reservation, each component can be analysed. This analysis can be independent of

other elements in the system. The component interface abstracts its resource requirements.

• The system level analysis can be carried out compositionally by considering component

demands through their interface.

1.3.2 Proposed solution

A component-based design approach can help coping with the network complexity by allowing

composition of complex applications through the integration of independently developed compo-

nents while maintaining their individual properties. In this context, network reservations are an

important design element that favour composability in the time domain by providing temporal

isolation.

Our work involves research and development of efficient network reservation mechanisms in single

switch Ethernet networks. Following a time-triggered approach using the Flexible Time-Triggered

protocol for Switched Ethernet (FTT-SE) [31] which combines the flexibility of online traffic

scheduling with the time-triggered model, we investigate the efficiency of flat reservations pro-

vided natively by the protocol and the effectiveness of implementing hierarchical server-based

scheduling. The thesis supported by this dissertation is as follows:

The resource reservation paradigm is an effective means to segregate the communications

from multiple heterogeneous applications in a distributed embedded system, potentially with

mixed criticality levels, diverse real-time requirements and evolving configurations, thus

supporting composability. In particular, we claim that this paradigm can be efficiently de-

ployed over Ethernet, using the FTT-SE protocol, providing multiple levels of traffic isola-

tion and constrained latency guarantees.

1.3 Defining the Problem 9

1.3.2.1 Motivating example

We consider the example of modern car technology. The growing number of automotive appli-

cations drive up the bandwidth requirement as well as the introduction of computer-based appli-

cations and control systems, the associated electronics and wiring result in higher overall system

costs. Automotive thus serves as an example case where Ethernet deployment is being considered

to achieve high bandwidth and a low system cost [32].

The electronics in a car are divided into domains where each domain implements certain func-

tionality [33, 32]. The powertrain is the group of components that generate energy to power the

vehicle on the road. Apart from including the engine, transmission, shafts, and wheels, powertrain

includes sensors and controls. Sensors measure flow, pressure, speed, torque, angle, and position

of various items. To make sure that the right amount of fuel is injected into the engine, pressure

sensors measure the fuel pressure, which affects the timing of the injection. Thus computer-based

control is responsible for sampling sensor values within certain periods and to actuate the valves at

certain frequencies. The admissible latencies of such tasks are typically in the order of microsec-

onds.

The chassis includes the internal framework that supports the powertrain, as well as all compo-

nents, such as brakes, steering, and suspension. Similar to the powertrain, the sensors and controls

for the chassis domain have exact timing requirements with maximum controlled latencies.

The body domain includes such things as heating and A/C, seat controls, window controls, lights,

etc. These controls and sensors typically require low bandwidth and can handle higher latency

(milliseconds).

Driver assistance systems include items such as in-vehicle navigation (using GPS or similar), au-

tomatic parking, collision avoidance systems, intelligent speed adaptation or advice, etc. These

systems typically have their sensors and their dedicated computers, which implement controls that

often interact with other systems (such as the powertrain, chassis). The driver assistance systems

often require more computing power and higher bandwidth communications to sensors, but they

can typically handle latencies in the hundreds of microseconds.

A car is a safety-critical system, and we can see that there are different sources of traffic sharing the

medium and having different latency and criticality requirements. Traditional Ethernet, however,

does not have a bandwidth control mechanism to allocate different shares to different streams, and

hence it cannot be used to transmit heterogeneous data from multiple sources safely. Without the

use of a reservation mechanism, we face an integration problem, i.e. interference in the temporal

domain may cause applications latency requirements to be missed.

Automotive is, therefore, an example of a system where communications can be modelled

using reservations, such that applications achieve temporal isolation and meet their requirements

independently of each other. Moreover, hierarchical reservations provide further benefits. For

example, when composing different applications in the system, the integrator has to know, only,

the high-level reservation of each application and not the sub-reservations that are internal to the

applications, simplifying the composition. On the other hand, many of the automotive systems

will work in certain conditions, only, and can be switched off in other. In that case, bandwidth

10 Introduction

can be managed dynamically, reclaiming bandwidth from systems that are not operating at each

moment and giving it to other systems that can take advantage of it for improved QoS. A work that

investigates operational flexibility for safety-critical systems is reported in [34]. With hierarchical

reservations, this management can be done at the high level that represents applications, only, and

the internal allocation is left for the application logic. Both composition and dynamic bandwidth

management become significantly more complex when there are flat reservations available, only.

1.4 Objectives

In this work, we aim at developing dynamic resource reservation mechanisms for CPS for the sake

of efficiency, flexibility and timeliness. In distributed embedded systems, it is hard to guarantee

timeliness in cases when the network depth grows, or changes occur in the system topology or

its dynamics, i.e., addition or removal of system components, software updates, clock drifts etc.

Such changes may negatively affect CPS applications especially those with hard real-time require-

ments, essentially due to mutual interference. The idea is to engineer communications for robust

CPS design that can adapt to changing scenarios within bounded latency.

We propose researching and developing efficient network reservation mechanisms primarily in sin-

gle switch Ethernet networks (and later extension to multi-switch networks) that support dynamic

resource reservation with dynamic reconfiguration and sharing of free resource capacity without

jeopardising the isolation properties of reservations. In particular, we aim to develop resource

reservations with the following features:

i) application-oriented semantics with a hierarchy, i.e., a complex application could be divided

into sub-applications and reservations can be associated with applications with a single high-

level interface but supporting internal nested reservations as requested by the applications;

ii) flexible reservations, which provide a minimum guaranteed QoS and then offer more when-

ever there are available resources;

iii) scalable solution so that it can work on networks with many flows associated with many and

heterogeneous applications. For example, from industrial equipment to vehicles.

iv) load-aware solution, allocating less additional resources on more loaded links, meeting end-

to-end constraints, acting on deadlines, on priorities or even on the period/capacity of the

reservations, according to what the underlying protocol allows.

We aim at providing a general solution that can positively impact on the design and operation

of CPS, particularly automotive and remote interaction systems. In particular, we will use the

following open-source Ethernet technology that is particularly adequate since it is amenable to

hierarchical reservations and allows open traffic scheduling policies, namely FTT-SE [35, 31].

1.5 Thesis Outline 11

1.4.1 Contributions

The contributions of this thesis are the following:

I) Analyzing the efficiency of flat sporadic reservations

This work concerns an extensive assessment of the efficiency of a delay analytic model for

asynchronous streams being scheduled within FTT-SE through flat sporadic reservations.

The efficiency study was carried out with a simulation framework that compared, for large

data sets, the maximum observed message response times from the protocol scheduler with

the corresponding analytic delay upper bounds. By changing system configurations along

different dimensions, we found out how did the analysis efficiency vary with such changes

and which configurations that would favour more detailed analyses. Such study is instru-

mental in providing guidelines for efficient system designs. This work has been published

in [36]. Parts of this work have been presented in [37], [38], and [39].

II) Implementation of different hierarchical resource reservation policies

This work presents a Hierarchical Scheduling Framework (HSF) with different server poli-

cies, namely polling and sporadic servers. We have extended the scheduling model within

FTT-SE with an implementation of the HSF that creates virtual partitions in the time do-

main by dividing and subdividing the network bandwidth in a hierarchical way. Different

applications can be mapped to different parts of the hierarchy. Empirical verification of the

effectiveness of this approach through simulation set-up and real-system runs as well as a

schedulability analysis for polling servers was presented in [40]. The work in [41] adapts

server-based architecture to use the sporadic server model for improved responsiveness.

III) Techniques to design reservations

In this work, we investigate the server design problem. This problem relates to choosing

values of the server parameters (i.e., budget and period), given a particular internal work-

load such that it is schedulable independently of other components in the system and uses

the least bandwidth [42]. The presented approach builds on the knowledge (requested band-

width) of the connected streams in a given hierarchy and generates interface values at the

leaf servers. While generating an interface at the parent node, all the children are evaluated

simultaneously concerning the available interface option for each child. This allows a par-

ent node to schedule all the children at each of its scheduling instant, which impacts on the

application response time.

1.5 Thesis Outline

The thesis is organised as follows. This introductory chapter is followed by Chapter 2 which

motivates the case of Ethernet in embedded systems with automotive as an example case. This

chapter also presents some Real-Time Ethernet-based technologies and illustrates our choice of

using FTT-SE in this work. Chapter 3 discusses some scheduling techniques that can be used to

achieve QoS within Ethernet. Chapter 4 presents an analysis technique and evaluation of native

12 Introduction

sporadic reservations within FTT-SE. This chapter concludes by discussing some features of the

message set that reduce the efficiency of the analysis. Chapter 5 presents the implementation

and analysis of hierarchical reservations with polling server policy in FTT-SE, whereas Chapter 6

uses the sporadic server policy. A resource efficient design technique for hierarchical polling

reservations is presented in Chapter 7. In Chapter 8, we present the implementation aspects and

design concepts for developing applications based on hierarchical reservations. This chapter also

presents the simulation framework that was used for evaluating the HSFs. Finally, Chapter 9

summarises the findings, validates the thesis and presents some future work directions.

1.6 List of Publications

Some of the contributions listed above or presented in this thesis have appeared in the following

publications.

(Chapter 5) Z. Iqbal, L. Almeida, R. Marau, M. Behnam, and T. Nolte, “Implementing Hierarchical

Scheduling on COTS Ethernet Switches Using a Master/Slave Approach,” in 7th IEEE In-

ternational Symposium on Industrial Embedded Systems (SIES 2012), pp. 76–84, June 2012

(Chapter 6) Z. Iqbal, L. Almeida, and M. Behnam, “Implementing Virtual Channels in Ethernet us-

ing Hierarchical Sporadic Servers,” in The 12th International Workshop on Real-Time Net-

works (RTN 2013) in conjunction with the 25th Euromicro Conference on Real-Time Sys-

tems (ECRTS 2013), July 2013

(Chapter 7) Z. Iqbal, L. Almeida, and M. Behnam, “Designing Network Servers within a Hierarchi-

cal Scheduling Framework,” in 30th Annual ACM Symposium on Applied Computing (SAC

2015), pp. 653–658, Apr. 2015

(Chapters 4 and 6) Z. Iqbal and L. Almeida, “Towards an analysis for hierarchies of sporadic servers on Ether-

net,” in 11th IEEE Symposium on Industrial Embedded Systems (SIES 2016), pp. 1–6, May

2016

(Chapter 4) Z. Iqbal, L. Almeida, and M. Behnam, “Efficiency study for sporadic servers on Ethernet

with FTT-SE,” in 9th International Workshop on Compositional Theory and Technology for

Real-Time Embedded Systems (CRTS 2016) in conjunction with the 37th IEEE International

Real-Time Systems Symposium (RTSS 2016), pp. 25–26, November 2016

1.6 List of Publications 13

(Chapter 4) Z. Iqbal, L. Almeida, and M. Ashjaei, “Analyzing the Efficiency of Sporadic Reservations

on Ethernet with FTT-SE,” in 22nd IEEE International Conference on Emerging Technolo-

gies and Factory Automation (ETFA 2017), pp. 1–8, Sept 2017

(Chapter 4) Z. Iqbal, L. Almeida, M. Ashjaei, and M. Behnam, “On the efficiency of sporadic servers

on Ethernet with FTT-SE,” SIGBED Rev., vol. 14, pp. 32–34, Nov. 2017

1.6.1 Other publications

Publications resulting from collaboration work related with but beyond this thesis, carried out

with other colleagues:

(I) M. Behnam, Z. Iqbal, P. Silva, R. Marau, L. Almeida, and P. Portugal, “Engineering and An-

alyzing Multi-Switch Networks with Single Point of Control,” in 1st International Workshop

on Worst-Case Traversal Time (WCTT’11) in conjunction with the 32nd IEEE International

Real-Time Systems Symposium (RTSS’11), pp. 11–18, Nov. 2011

(II) R. Marau, M. Behnam, Z. Iqbal, P. Silva, L. Almeida, and P. Portugal, “Controlling Multi-

Switch Networks for Prompt Reconfiguration,” in 9th IEEE International Workshop on Fac-

tory Communication Systems (WFCS 2012), pp. 233–242, May 2012

14 Introduction

Chapter 2

Ethernet in Embedded Systems: the

Automotive Case

Embedded systems have evolved greatly over the last years. One good example is that of au-

tomotive systems, which we will take as inspiration. Automotive technology witnessed a shift

from mechanical components to electronics to meet the demands for increased safety and cus-

tomer comfort, e.g., to accomplish functions such as engine control, auto parking, safety in cases

of over/under steering and comfort features such as air-conditioning. According to the work

in [45] electronics in a car exceeded 20% of the total vehicle value in 2011 and reporting statis-

tics from [46], the article [47] predicts the cost to be at 50% until 2030. Initially, car functions

were implemented through stand-alone Electronic Control Units (ECU). However, to extend the

functionality and leverage the benefits of data sharing, coordination was provided between ECUs

with early solutions being point-to-point links. Using this approach, however, for a system with n

ECUs, n× (n− 1) cables were needed. This resulted in heavy cabling, increased weight, and an

increase in the overall system cost. This problem was addressed by providing data exchange with a

broadcast communication model such as the one provided by a serial communication bus [48, 49].

2.1 Challenges of System Integration within an Automobile

The electronics in a car are typically divided into domains, where each domain implements certain

functionality [32]. Frequently, subsystems within the car are developed in a distributed fashion

with different teams responsible for different system parts. In the automotive supply chain, we can

identify the following important development roles. Original Equipment Manufacturers (OEMs),

such as GM or Toyota, are responsible for the final product in the market. OEMs provide the

product design specifications and finally integrate different ECUs to a functioning system. Tier-

1 suppliers, such as Bosch or Siemens, provide subsystems such as power-train management or

brake-by-wire subsystem to OEMs, and tier-2 suppliers are the chip manufacturers, such as Infi-

neon or ST [50, 51].

15

16 Ethernet in Embedded Systems: the Automotive Case

This brings us to the discussion of challenges and opportunities which lie with the so-called

f ederated or integrated architectures. In a f ederated architecture, each subsystem is imple-

mented on its own stand-alone distributed hardware base, consisting of ECUs and communication

channels (e.g., CAN). This would mean that each subsystem is independent, implementing its de-

fined functions and communicating with the rest of the system through gateways. This leads to

expensive solutions with many ECUs in the architecture. On the other hand, within an integrated

architecture, the number of ECUs, sensors or wiring points can be reduced thereby reducing the

overall system cost. For example, there are some sensors whose data are useful or necessary to the

computation being done in different subsystems, e.g., road wheel sensor can be required/ essential

to Antilock Braking System (ABS), instrumentation, Electronic Stability Control (ESC) and pos-

sibly others. Such sensors can be shared by the ECUs. However, a mechanism must be provided

to reduce the influence of one subsystem on another. In particular, within an integrated archi-

tecture, principles of composability must be supported; services provided by a component before

integration must remain intact after the integration and supporting non-interfering interactions (i.e.

communication system must meet the component’s temporal requirements regardless of temporal

behavior of other components). The work in [52] presents a Time-Triggered System-on-a-Chip

(TTSoC) architecture that helps integrating applications with different levels of criticality (non

safety-critical applications with high criticality applications). Each subsystem is realized with one

or more micro-components. A TTSoC may host several subsystems, composability is preserved

since each micro-component is encapsulated; i.e., temporal and spatial interference is prevented

by a special module Trusted Interface Subsystem (TISS) within each micro-component. TISS

controls access to the Network-on-Chip (NoC).

Integration and isolation are particularly relevant for the introduction of x-by-wire systems due

to their criticality. To address these concerns, redundancy in hardware and software components

can be provided, increasing the overall cost. Alternatively, the work in [33] proposes employing

verification and validation along the product design and development and supports component-

based design and application analysis methodology for critical components. Another aspect is the

existence of a large number of applications with diverse characteristics. Some control loops (e.g.,

break-by-wire, fuel injection) have stringent real-time requirements, while other applications re-

quire more computing power and a higher bandwidth (e.g., driver assistance systems). Finally,

due to inter and intra-domain communications there is a continuous increase in the amount and

heterogeneity of exchanged information. Today, such requirements are supported by using dif-

ferent networking technologies in various subsystems. For example, LIN with speed of up to 20

kbps, CAN up to 1 Mbps, FlexRay up to 10 Mbps, MOST up to 24 Mbps etc. An overview

of automotive communication technologies can be found in [53]. The work in [50] emphasizes

the need for methods and tools for system level analysis in order to verify the predictability or

prove composability and hence support the designers that must evaluate and choose the system

architecture.

2.2 Ethernet-based in-Car Communications 17

2.2 Ethernet-based in-Car Communications

Switched Ethernet due to its wide-availability, high bandwidth and low cost is now being con-

sidered as in-vehicle networking technology, in particular, to provide a single shared backbone

with increased bandwidth, integrating traffic from different domains. However, it must be able

to support all the different requirements outlined above, in particular, regarding determinism in

the timing behaviour. There are several approaches available now to achieve real-time commu-

nications over Ethernet in embedded systems including IEEE 802.1 AVB [22], FTT-SE [31], and

TTEthernet [25]. The work in [54] lists similar communication challenges and studies in-car com-

munication based on real-time Switched Ethernet backbone. The work in [55] studies the impact

of low priority unshaped traffic (best-effort) on the timeliness of high priority real-time traffic

when such traffic share communication links. This work investigates the performance of Ether-

net standards AVB and TTEthernet, in particular, credit-based shaper of AVB and time-triggered

traffic and rate-constrained shaping of TTEthernet. Evaluations are done via simulations in OM-

NeT++ [56]. The network consists of 7 switches and 15 ECUs (host nodes) with 100 Mbps links.

Traffic includes real-time control traffic, bandwidth-intensive media streams, and cross traffic.

Both protocols transmit the control traffic at the highest priority, i.e., for AVB with class A pri-

ority and TTEthernt with a TT schedule for the synchronous part or rate-constrained shaping for

the asynchronous part. A dedicated ECU generates periodic bursts of cross traffic that share links

with higher priority traffic. The maximum transmission unit (MTU) for the cross traffic is varied

between 46 B to 1500 B. Time-triggered class gives the best (least) maximum latency and jitter

for the control traffic in the presence of cross traffic owing to its inherent determinism and inde-

pendence of concurrent traffic. AVB gives the lowest performance in this case. For media streams,

however, the maximum values for both latency and jitter are smaller with AVB. Further, different

strategies to improve latency of real-time traffic are proposed, such as limiting the size of MTU.

The work in [57] addresses such a problem of selecting an MTU that maximises throughput in

FTT-SE. Other suggestions include restraining the cross-traffic through shapers, using links with

increased bandwidth, carefully selecting topology that reduces the number of hops on the route of

critical messages, or finally allowing frame preemption to improve high priority latency as given

with the Time-Sensitive Networking standard [58]. In an earlier work [59], authors considered a

similar setup but without cross traffic; they used a model derived from real in-car network config-

uration and traffic traces. In that work, both technologies (AVB and TTEthernet) met the desired

end-to-end latency requirement for control traffic, i.e. 100µs, whereas in [55] only the time trig-

gered traffic could comply with such requirement in the presence of concurrent cross traffic load.

Both works [59, 55] support the use of TTEthernet for transmission of critical control data.

The work in [32] proposed an architecture for inter-domain communications addressing the com-

plexity of future Advanced Driver Assistance Systems (ADAS). The architecture partitions the

applications into five domains; different domains connect with each other through a switched

Ethernet-based backbone. Further, three topologies are presented for the network, and each archi-

tecture is evaluated using INET framework within OMNet++. Traffic includes real in-car traces of

18 Ethernet in Embedded Systems: the Automotive Case

CAN or FlexRay data as well as analytically modelled data. Not considering any particular real-

time Ethernet technology, they evaluate two end-to-end latency requirements; a soft 10ms and a

hard 100µs requirement. Two scenarios are considered, with or without cross traffic. Besides,

prioritisation impact is examined. Soft requirements are met in all the settings, whereas for each

topology, prioritisation improves the end-to-end latency. Hard latency requirements are violated

with a small probability (∼ 3%) even without cross traffic. An interesting result of this work is

guaranteeing soft requirements in the presence of cross traffic utilising ∼ 80% link bandwidth.

To summarise the discussion, we refer to the work in [21] which presents an interesting survey

motivating the case for Ethernet in automotive communications pointing to the two main aspects

deemed inevitable in future automotive systems: the need for higher bandwidth, and a common

network technology to reduce the complexity. Additionally, Ethernet supports the IP stack and

opens the way to many exciting applications by integrating cars in the so-called IoT for example

with a possibility to offload computation intensive elements to data centres outside the car.

In general, a car represents an interesting example of a complex distributed embedded system

where multiple applications of mixed-criticality co-exist. Hence, different domains in the car may

benefit from specific switched Ethernet-based technologies. In the remainder of this chapter, we

present an overview of Ethernet, switched Ethernet and switched Ethernet-based technologies,

namely, AFDX, AVB, TTEthernet and FTT-SE. This chapter concludes by giving a qualitative

comparison of the different technologies and motivating our choice of using FTT-SE in our work.

2.3 Ethernet

Ethernet is a local area network technology developed in the 1970s whose first design principles

can be found in [60]. Ethernet originally provided a shared medium (shared Ethernet) for the

propagation of digital signals, and its construction was carried out using coaxial cables, twisted

pairs or optical fibres (Figure 2.1). The stations were connected to a shared medium and arbitrated

the network bandwidth in a distributed way. Ethernet offers synchronous serial communication.

By synchronous, we mean that the clocks in the sender and the receiver stations are synchronised,

and the data is sent at a constant rate. A transmitting station broadcasts bit sequences called

packets onto the medium and expects that the intended receivers will hear them. A receiving

station examines the destination address, and if the packet is not intended for itself, the station

discards such packet.

2.3.1 Probabilistic nature of Ethernet transmissions

Ethernet was, initially, half-duplex; the medium was shared, and two or more stations could trans-

mit packets onto the medium at the same time. Such packets would collide, interfering and be-

coming unrecoverable by the intended receivers. When the medium is idle, the transmissions are

successful. However, as more stations begin to transmit, the interference and the packet losses

increase. A single Ethernet segment is called a collision domain since all stations in that segment

are connected to the same medium and prevented from transmitting during a collision resolution

2.4 Switched Ethernet 19

process. After a collision, the sender aborts the current transmission attempt and tries to retrans-

mit after a randomly chosen period. The randomly selected waiting period before retransmission

reduces the probability of future collisions in case multiple transmissions are waiting to transmit.

2.3.2 Rationale for minimum Ethernet frame length

In shared Ethernet, all nodes in a collision domain must be able to detect collisions. In fact, if a

station does not know that its transmission was involved in a collision, it may incorrectly decide

that the frame was successfully sent and release the medium; hence the chance of a (possible)

successful transmission is lost. When a sender detects a collision, it sends a special signal, called

jam signal, to inform everyone that there was a collision.

The only time that an Ethernet controller can detect collisions on the wire is when it is in the

transmit mode. When an Ethernet Network Interface Card (NIC) has finished transmitting and

switches to receive mode, the only thing it listens for is the 64 bit preamble that signals the start

of a data frame. The minimum frame size in Ethernet, typically 64B at data rates below 1Gbit/s,

is specified such that, based on the speed of propagation of electrical signals in copper media, an

Ethernet card is guaranteed to remain in transmit mode, and therefore detecting collisions, long

enough for a collision to propagate back to it from the farthest point on the wire from it. Stations

transmit when the channel is idle else wait; in case of collision, stations wait for a random amount

of time and retransmit. This distributed arbitration mechanism is known as Carrie Sense Multiple

Access with Collision Detection (CSMA/ CD).

node node node node node

terminator

adapter

transmitted packetconnector

Figure 2.1: Half duplex Ethernet, nodes connected through a coaxial cable in a bus topology

2.4 Switched Ethernet

Switched Ethernet was introduced in the early 90s to overcome the problems faced by shared Eth-

ernet, in particular, non-determinism inherent to CSMA/CD. Switches implement an independent

collision domain per port; thus each port becomes a segment. When there is a single station con-

nected to each port, we say the network is micro-segmented. Moreover, switches are now full

duplex meaning that each link has two independent sub-links, one to communicate in each direc-

tion. Thus, the CSMA/CD arbitration is not needed1, and stations and switch can transmit at the

1 Modern Ethernet switches have ports that are full-duplex, however, CSMA / CD is still supported when legacy
equipment is connected which operates in a half-duplex mode such as a hub, and where simultaneous transmission is
treated as a collision.

20 Ethernet in Embedded Systems: the Automotive Case

same time without collisions, which allows many communications to co-occur, thus improving

global throughput. Switches maintain an address table, and hence when an Ethernet frame arrives

on one of its input ports, the switch can inspect the destination address, consult its address table

to find the destination port, and forward data only to the appropriate port. If that port is busy,

the message can be queued in memory and transmitted later (Figure 2.2). There can be multiple

queues per output port to manage different classes of traffic. The queue scheduling policies can

have a significant impact on the network timing behaviour [61].

2.4.1 Limitations of switched Ethernet for real-time communications

Traditionally Ethernet switches can handle message arrivals fast enough so that queues do not

build up at the input ports. However, queues may build up at the output ports whenever several

messages arrive in a short interval and are forwarded to the same destination port. Within tradi-

tional crossbar and memory designs, there is insufficient bandwidth to allow every input port to

write into the same output queue simultaneously. Hence, such a situation may lead to overloads in

which the output queues use up all the available memory, and further messages may be discarded.

Another condition known as head-of-line blocking can occur with switched architectures. Some-

times the switches need to do deep packet inspection or shaping in the input ports, which takes

time and slows them in handling the incoming packets. Thus, the incoming packets need to be

held in input queues, before they are effectively forwarded to the output ports. With FIFO input

buffers, the packet at the head of the queue is forwarded first. If its destination output port is busy,

it cannot be forwarded. It is possible that packets back in the queue have different destinations

and also on such destinations the output ports are not full. Thus, the input queues introduce the

blocking and degrade system performance.

In
pu

t p
or

ts

Output ports

Scheduler

Scheduler

Output queuesReceiving buffers

Packet
handling

Address lookup
Traffic classifier

Figure 2.2: Typical switch internal architecture (Source: [31])

2.5 AFDX - Avionics Full Duplex Switched Ethernet

AFDX [62] is a data network standard used by aircraft manufacturers, such as Airbus and Boeing,

to support safety-critical applications that need guaranteed bandwidth and deterministic quality

2.6 AVB - Audio Video Bridging Standard 21

of service. Shared Ethernet was not suitable to meet such requirements due to the possibility of

collisions and non-determinism inherent in CSMA / CD arbitration of the shared medium. More-

over, to meet the requirements for higher bandwidth resulting from an increase in the number of

avionics applications, and the needs for cost savings, it is desirable to use commercial off-the-shelf

(COTS) tools in Aircraft Data Networks (ADN), hence the use of switched Ethernet technology.

AFDX networks contain two types of devices, special Ethernet switches that perform traffic filter-

ing and policing, and the end systems (ES) that send or receive data through the network. Since

an aircraft is a closed system, AFDX statically defines the network topology and traffic flows.

End systems exchange Ethernet frames using virtual links (VL). A VL represents a unidirectional

connection from one source to one or more destination end systems. Logical isolation between

different VLs is achieved by allocating a specific bandwidth to each VL. In this way, the available

bandwidth to any VL is unaffected by the utilisation pattern of other VLs. A VL is characterised

by its identifier, minimum period between two consecutive frames of that VL known as Bandwidth

Allocation Gap (BAG) and the minimum and maximum lengths of VL frames. Different frames

on the same VL can have different lengths comprised between min and max frame length speci-

fied.

To achieve deterministic behaviour traffic shaping is performed in the ES, i.e. limiting the data

that each station may transmit guarantees that the switches are not overloaded whereas policing

is performed in the switches. In particular, switches check whether the sum of the frequencies of

all the messages transmitted on a given VL does not exceed the maximum frame frequency of the

VL. From the ES perspective, there can be multiple applications sending data on the same VL.

Each application generates frames at their rate which are scheduled according to Round-Robin

scheduling and inserted into the VL FIFO queue that will be used to put frames onto the physical

link (Figure 2.3). The number of applications per ES is limited to four, i.e., the number of sub-VLs

that can be created per virtual link. Also, the use of round-robin scheduling handles applications

without any sophisticated priority ordering. This is already an example of hierarchical scheduling,

despite very limited. To prevent data loss, AFDX employs redundant channels in which the same

data is sent on two networks simultaneously. Integrity checking on the end systems can remove

duplicate or wrong data.

2.6 AVB - Audio Video Bridging Standard

Ethernet AVB is a set of extensions to the Ethernet standard that provides time synchronised, low

latency streaming services for audio and video applications. AVB standard [22] achieves QoS

requirements for these streams through a combination of stream reservation and traffic shaping

mechanisms defined in the following IEEE standards.

• 802.1AS Timing and Synchronization for Time-Sensitive Applications (gPTP) [64].

• 802.1Qat Stream Reservation Protocol (SRP) [65].

• 802.1Qav Forwarding and Queuing Enhancements for Time-Sensitive Streams (FQTSS) [66].

22 Ethernet in Embedded Systems: the Automotive Case

3 ms 5 ms 7 ms

sub-VL FIFO

Round-Robin

VL FIFO

BAG BAG BAG

Figure 2.3: sub-VL scheduling in ADFX (adapted from [63])

• 802.1BA Audio Video Bridging (AVB) Systems [22].

2.6.1 An AVB system

An AVB network has the following devices: talker, a device which is the source of an AV media

such as a microphone or a digital camera; listener is a device which receives the AV media from

the network. Examples include speakers and monitor displays. A device can both be a listener and

a talker. end point is the generic term for devices that produce or receive an AV media (talkers or

listeners). stream refers to the flow of an AV media from a talker to a listener, and bridge refers to

the switch that scales the network by connecting endpoints or other bridges.

2.6.2 Importance of synchronization

Precise timing and synchronisation are important for time-sensitive communication between dis-

tributed nodes. The work in [67] underpins the concept; a distributed algorithm to achieve synchro-

nisation between events in a distributed environment is presented which relies on time-stamped

message exchange between communicating processes and can achieve a total order of the events.

Considering AVB, as the name suggests, target applications are the audio and video such as in-

vehicle infotainment, large-scale AV installations like theatres, professional audio/video equip-

ment etc. and more recent examples such as hybrid TV [68].

The synchronisation is pertinent within an AVB system primarily for the reasons of perceived value

to the end user. Relative timing between picture and sound is important, and human senses are ca-

pable of detecting slight delays between audio and video [69]. An ITU recommendation stipulates

the threshold for detectability between +45ms to −125ms [70] for traditional television. A posi-

tive value indicates sound is leading whereas a negative value indicates sound delayed. A recent

work gives an overview of some media synchronisation standards [71] underlining its importance.

Within an AVB system, synchronisation provides a common time base for sampling/receiving data

2.6 AVB - Audio Video Bridging Standard 23

streams from a source device and presenting those streams at the destination device with the same

relative timing. Imagine, a system that comprises a host node that is delivering data (the talker)

and two nodes that comprise the left and right speakers (the listeners). When all three nodes

are synchronised (share a single global clock), the left and the right speaker will produce sound

synchronously.

2.6.2.1 gPTP protocol

The clock synchronisation protocol for AVB is standardized as IEEE 802.1AS (gPTP) [64] which

is based on IEEE 1588 Precision Time Protocol [72]. The protocol selects one device in the net-

work to act as clock master. The master clock establishes the reference time for the network. The

protocol forms a synchronisation spanning tree connecting all the local clocks where the clock

master referred to as grand master is the root of this tree. The synchronisation is achieved by

precisely time-stamping packets as they leave the master and arrive at each slave node. PTP mea-

sures and compensates for any queuing or transmission delays. In particular, forwarding delays

in the bridges and communication delays on communication links are measured. In this way, the

protocol performs local clocks correction to bring these in agreement with the master clock, with

an accuracy of less than 1 µs specified between seven or fewer time-aware systems.

We present an example of calculating communication delay on the link between any two directly

connected time-aware nodes in the system. We consider, two bridges, A and C in an AVB network;

bridge A is the grand master. For this purpose, three messages are exchanged between A and C

(Figure 2.4).

Bridge A Bridge C

delay_Req

delay_Resp [t2]

Follow_up [t3]

t1

t2

t4

t3

Figure 2.4: Synchronization mechanism and delay calculation

24 Ethernet in Embedded Systems: the Automotive Case

• bridge C sends a delay_Req message to bridge A and locally stores the transmission point

in time t1.

• bridge A timestamps t2 when it receives delay_Req.

• at t3 bridge A sends a message delay_Resp which also contains t2.

• bridge C records point in time t4 when it receives delay_Resp.

• Finally, to inform bridge C of t3, bridge A sends a Follow_up message containing t3.

After this exchange, bridge C has learned t1, t2, t3 and t4. Assuming symmetrical links, bridge

C can approximate the communication link delay to bridge A as: (t4−t1)−(t3−t2)
2 .

2.6.3 Stream reservation protocol (SRP)

SRP allows endpoints to reserve bandwidth across a compliant network [65]. Within a network that

comprises AVB capable nodes (endpoints or switches), and legacy nodes, traffic shaping (stream-

ing QoS) is provided only within the AVB cloud. However, devices outside the AVB cloud can

communicate with the rest using standard Ethernet frames with best-effort QoS. SRP is based on

Multiple Registration Protocol (MRP) defined in IEEE 802.1Q. This protocol enables streams to

register attributes and distribute these across the network.

A network node (endpoint or bridge) that needs to communicate some data (i.e., a stream and its

attributes) shall declare the information on all the connected network ports. The recipient nodes

register the attribute information as well and declare it again. Each recipient repeats this process,

effectively propagating the information throughout the network. Using Spanning Tree Protocol,

MRP avoids loops and thereby congestion in the network. Figure 2.5 shows the principle of at-

tribute propagation. In this example, the bridges are represented with squares labelled V through

Z whereas circles (numbered 1 - 8) represent the endpoints. Node 3 is the source of attribute dec-

laration. We can see that the attribute is registered and declared across the network.

In particular, a talker registers a talker advertise attribute that contains important stream infor-

mation such as: StreamID, DataFrameParameters, TSpec, PriorityAndRank, and AccumulatedLa-

tency.

Stream bandwidth requirement AV traffic can utilize upto 75% on each switch port. The

bandwidth requirement for a stream can be calculated using TSpec which defines MaxFrameSize

which is the maximum frame size in the stream, and MaxIntervalFrames which is the maximum

number of frames within a class measurement interval (CMI). CMI can be regarded as the period

of the class. The value of class measurement interval is 125µs and 250µs respectively for class

A and B of AVB. With this information, the bandwidth BW for a stream is calculated as shown in

Equation 2.1.

BW =
MaxIntervalFrames

CMI
×8× (MaxFrameSize+overhead) (2.1)

2.6 AVB - Audio Video Bridging Standard 25

1
2

3

4

5

6
7

8

D R

V
W

X

Y Z

D

D

R

D D

D

R

R

R

D
D

R

R
R

D

R

D
R

D

D

R

R

D: Declared

R: Registered

Figure 2.5: Attribute propagation through the network (adapted from [73])

The overhead of a streaming frame is 42 bytes and comprises Ethernet header, preamble, CRC and

Inter-frame gap (Figure 2.6). Thus, for a stream with a frame size of 224 bytes, and considering

MaxIntervalFrames = 1, the bandwidth requirement is about 17 Mbits/s in class A.

Figure 2.6: structure of an Ethernet frame detailing IEEE 802.1Q VLAN tag

Thus, a talker registering a particular stream involves the following steps: the talker declares

that a stream is ready to transmit and registers talker advertise, which is propagated through the

network as described. A listener that is interested in the stream shall register a listener ready

attribute. This information is propagated across the network reaching the talker (Figure 2.7). A

bridge receiving listener ready attribute on a port can check if enough bandwidth is available. This

way, it is ensured that sufficient bandwidth is available along the path of the stream. Following the

receipt of listener ready at the talker, streaming can commence.

2.6.4 Traffic scheduling in AVB

Ethernet AVB uses priority-based non-preemptive scheduling for messages. A set of messages

with the same priority belongs to the same traffic class. Within a class, messages follow a FIFO

26 Ethernet in Embedded Systems: the Automotive Case

talker
AVB switch

AVB switch

AVB switch

non
interested

listener

interested
listener

Talker advertise

Talker advertise

Talker advertise

Talker advertise

Talker advertise

Listener ready

Listener ready

Listener ready

Listener ready

stream

Figure 2.7: talker advertise and listener ready propagation (adapted from [74])

order. To prioritise different classes of traffic, AVB uses IEEE 802.1Q standard. A 3-bit priority

code point (PCP) is used which refers to the IEEE 802.1p class of service (0 through 7) and maps

to the frame priority level (Figure 2.6). Divided into three categories, traffic is scheduled either

with a best-effort policy, with a credit-based shaping algorithm (CBSA) or with a time-aware

shaping algorithm. Time-aware shaping is defined by the Time-Sensitive Networking (TSN) task

group which we discuss in a later section. With these classes defined, the transmission selection

function works as follows: A frame is selected from a queue q for transmission if:

• there is a frame available in q

• no queue with a higher priority traffic class has a ready frame

Above is true, however, for the best effort traffic only. For other classes, further conditions must

be checked for message transmission.

2.6.4.1 Credit-based shaper

The credit-based shaping algorithm improves fairness between flows by avoiding bursts of AVB

traffic, delaying messages according to some rules and thus low priority traffic can be served.

CBSA applies to two stream reservation classes namely class "A" and class "B" corresponding to

audio and video traffic respectively and with class A having a higher priority than class B. A frame

of class A or B is selected for transmission only if the corresponding credit is non-negative. The

rules for credit change are as follows:

• when no AVB frame (class A or B) is available, the corresponding credit is set to zero.

• when an AVB frame is transmitted, credit is decremented at the rate defined by sendSlope.

• when an AVB frame is waiting to be transmitted (either because another frame is in trans-

mission or credit is negative), credit is accumulated at the rate given by idleSlope.

2.6 AVB - Audio Video Bridging Standard 27

Figure 2.8 shows an example scenario of a bridge shaping traffic at an output port. In particular,

it depicts three outgoing queues at a single output port. The queue for class A has three frames,

whereas the queues for class B and other traffic (class C) each have a single frame. Frame C

is on the link when frames A and B arrive. Since messages are transmitted non-preemptively,

AVB frames have to wait, and they start accumulating credit at their respective rates. When,

frame C completes transmission, two class A frames are transmitted next because class A has a

higher priority than class B. We notice that another frame of class A becomes ready during the

transmission of preceding class A frames. However, upon completion of preceding transmission,

the credit has become negative so its transmission cannot begin and credit starts to increase. At

this time, frame B is the highest priority frame eligible for transmission, and finally, the last frame

of class A is transmitted. In this example, we can notice that delay in the transmission of frame A

allows lower priority transmissions to commence.

The network latency requirement is 2ms for class A traffic and 50ms for class B traffic over seven

hops (=six bridges) considering a 100 Mbit/s Ethernet.

Figure 2.8: An example traffic shaping scenario at the output port of a bridge (adapted from [75])

2.6.5 Schedulability analysis for AVB

There has been substantial work regarding schedulability analysis of AVB. We refer to few such

works here. The work in [76] presents an analysis for shaped traffic in AVB by considering so-

called eligible intervals where there are pending frames and available credit for transmission, i.e.,

there is no idle time within an eligible interval. Two kinds of interference are considered, lower and

higher priority interference subject to the impact of shaping and priority. Arrival patterns of the

streams are not constrained. Non-preemptive transmissions result in lower priority interference in

an AVB network. They analyse a given stream, separately, only with higher or lower priority inter-

ference, and compare the results to a base-line case when the stream is scheduled interference free.

28 Ethernet in Embedded Systems: the Automotive Case

The interference delays the stream by at most one interfering frame. This work does not consider

simultaneous interferences (combination of higher and lower priority). An analysis considering

the impact of mixed interference (from higher and lower class) on a medium priority class is dis-

cussed in [77]. Another work reported in [78] presents a busy period AVB traffic schedulability

analysis. Factors influencing WCRT include interference by the traffic shaper (delay caused due

to the rules governing credit recovery and consumption), FIFO interference from other messages

in the same class, blocking by lower priority messages due to non-preemptive frame transmission,

and interference by higher priority class. To build their analysis, they use so-called phases, where

a phase is the time interval that begins and ends with a zero credit, or begins with a zero credit

and ends with message (under analysis) transmission, known as the final phase. They formally

show that lower priority may impact on shaped traffic (class A or class B) response time once, in

the last phase. For class A, the higher priority interference does not exist. Traffic shaper impact

is accounted by considering a minimum initial credit. Such credit is obtained considering a prior

maximum size message transmission in the same class. Finally, all the delays are combined to

derive equations for computing WCRT of shaped traffic in AVB.

2.7 Time Sensitive Networking (TSN)

Time Sensitive Networking (TSN) is a set of standards developed by the Time-Sensitive Net-

working Task group (IEEE 802.1). Its focus is to provide low latency and deterministic com-

munications. In particular, the relevant standard is IEEE 802.1Qbv which supports a new type

of traffic, so-called Scheduled Traffic [58]. TSN also improves the reliability of clock synchro-

nisation mechanism thereby supporting safety critical and control applications, in principle, by

introducing a redundant grand master in the network. With the presence of a primary and backup

grand master, the standard provides methods for synchronised clocks between the two, hence,

allowing a seamless transition from primary to the backup under failure conditions.

2.7.1 Time aware shaper

It is necessary to reduce interference from higher or lower priority traffic classes to reduce commu-

nication latency and communication jitter. Time Aware Shaper (TAS) helps realise this objective.

TAS allows time-based forwarding of traffic. According to the schedule defined for time-aware

traffic, the mechanism guarantees that at scheduled times, other queues get disconnected from the

transmission selection function. Hence, the port is idle at those times to transmit frames of the

time-aware traffic, thus, guaranteeing minimal latency. Figure 2.9 depicts the scenario at an out-

put bridge port with two queues: a higher priority queue with three time-aware frames (TA1-TA3)

and another low priority queue with frames (O1 and O2). The functionality of time-aware shaper

is enabled with a TA signal; when enabled, time-aware frames are transmitted, else lower-priority

traffic is transmitted. With time-aware shaper, benefits of cut-through switching can be gained too

as the frame forwarding process can begin as soon as the destination is known without having to

receive the complete frame first [79].

2.7 Time Sensitive Networking (TSN) 29

Figure 2.9 also shows a time-interval called guardband before the start of time-aware trans-

mission window. The purpose of guardband is to avoid conflict between traffic agnostic to time-

aware shaping and time-aware traffic. If a non time-aware frame starts transmission just before the

reserved time window for critical traffic, its transmission might extend into the reserved window

and cause critical transmissions to extend outside the window. Therefore, a guardband equal in

size to the maximum sized frame is placed before the reserved window starts (i.e., TA is enabled)

(Figure 2.10). Other frames can begin transmission if such transmission can be completed before

TA is set to be enabled.

TA enabled

TA disabled

Guardband

Time

O1 TA1 TA2 TA3 O2Data transmitted

Figure 2.9: An example of time-aware shaper (Source: [73])

Time aware window

Interfering frame TA1 TA2 TA3 TA4

late

Time aware window

Interfering frame

TA1 TA2 TA3 TA4

Guardband

Transmission request

Interfering frame

Delaying interfering frame

Figure 2.10: Time-aware shaper, guardband before critical transmissions (adapted from [80])

The guardband may, however, result in idle times and therefore bandwidth waste, for example,

when transmission starting within the guardband cannot complete before TA is enabled. Such

a situation delays the transmission and some idle time appears in the link until the start of the

reserved window. There have been different approaches to make efficient use of the guardband.

30 Ethernet in Embedded Systems: the Automotive Case

One method that allows starting transmissions within guarbband would require shorter frames as

we advance in time to the point where TA is enabled. Which implies searching outgoing queues

to find eligible frames. Another approach uses preemption. With this approach guardband can be

as large as the size of the largest fragment instead of the largest interfering frame. The preempted

frame can resume transmission after the reserved window (Figure 2.11).

Time aware window

part 1 TA1 TA2 TA3 TA4 part 2

Guardband

Figure 2.11: reducing the guardband, preemption approach (adapted from [80])

2.8 Time-Triggered Ethernet (TTEthernet)

TTEthernet [25] is a real-time Ethernet technology with the primary design objective to support

applications with strict temporal guarantees over standard Ethernet. Further, it aims at providing

a unified communication system supporting different traffic types (e.g., real-time, non-real-time,

bandwidth intensive) as well as integrating time-triggered and event-triggered traffic while being

compatible with standard Ethernet.

The protocol defines three traffic classes of different criticality namely Time-Triggered (TT), Rate-

Constrained (RC), and Best-Effort (BE) traffic. Time-Triggered traffic has the highest priority and

dispatches messages according to a fixed predefined schedule. Rate-Constrained transmission has

a lower priority than TT and is executed when TT communication is not present. RC traffic pro-

vides a bounded end-to-end latency and specifies a minimum time interval between two consec-

utive instances of a frame on the same data flow. Best-Effort traffic has the lowest priority, being

transmitted in a standard Ethernet communication paradigm with no delay constraints or tempo-

ral guarantees. The highest priority hard real-time communication is carried out using TDMA

based bandwidth partitioning. Communication is organized in communication cycles known as

major time frame.

2.8.1 Architecture model

TTEthernet network is a multihop switched Ethernet network organized in clusters, where a clus-

ter comprises End Systems (ES) that are interconnected with links and Network Switches (NS). To

explain, we refer to Figure 2.12 (borrowed from [81]) depicting an example cluster with four end

stations {ES1 · · ·ES4} and two switches {NS1,NS2}. The cluster can be modeled as an undirected

graph G (V ,E) where V = {ES1, · · · ,ES4,NS1,NS2} is the set of nodes in the system and E is

2.8 Time-Triggered Ethernet (TTEthernet) 31

the set of full duplex connections. A dataflow link li = [v j,vk] is a directed communication con-

nection between any two adjacent nodes. A dataflow path d pi is an ordered sequence of dataflow

links connecting a sender and a receiver. For example, d p1 in Figure 2.12 can be denoted as

[l1, l2, l3] = [[ES1,NS1], [NS1,NS2], [NS2,ES3]]. Further, the cluster has two applications App1 and

App2; App1 is a highly critical application with task set {τ1,τ2,τ3} whereas App2 is a non-critical

applications with task set {τ4,τ5}. Tasks in the task set are mapped on different ESes. Within the

cluster, physical links are shared by tasks of different criticality, e.g., messages from τ1 and τ4 can

interfere in the links l2 and l3. Critical communication that takes place within {τ1,τ2,τ3} needs to

be protected from non-critical communication. This is made possible by using virtual links which

are logical unidirectional communication channels from one source to one or more destinations as

defined in [62] i.e., vl1 and vl2 isolate critical from non-critical traffic.

NS
1

NS
2

ES
1

ES
2

ES
4

ES
3

τ
1

τ
3

τ
2

τ
4

τ
5

dp
1

dp
2

vl
2

vl
1

Full duplex, physical
connection

dataflow path virtual link

App
1
: τ

1
, τ

2
, τ

3

 high critical

App
2
: τ

4
, τ

5

 non-critical

dataflow link

l
1

l
2

l
3

l
i dp

j

vl
k

Figure 2.12: TTEthernet cluster example (Source: [81])

2.8.2 Traffic scheduling

In this section, we explain, the scheduling of TT and RC traffic. Precise clock synchronisation is a

pre-requisite for building TT traffic scheudles [82]. A complete set of schedules within a cluster is

denoted by S which contain the sending times and receiving windows for all frames transmitted

during a major time frame. The end systems maintain a sending schedule table SS whereas the net-

work switches maintain both a sending table SS and a receiving table SR. Communication schedule

is built and distributed offline; scheduling tables are stored within each ES, and NS of the cluster.

32 Ethernet in Embedded Systems: the Automotive Case

The schedule ensures that transmissions from different nodes on shared links are separated in time

to avoid conflicts and congestion. Building TT traffic schedules, however, is a complex problem,

for several reasons such as large network, the presence of a large number of TT messages, or de-

pendencies between specific messages.

When an ES has a time-triggered message to send, its local scheduler consults the scheduling table

SS, and forwards the frame to the next hop at the configured time. When the frame arrives in an

NS, the filtering unit within the switch identifies its traffic class based on a bit pattern specified in

the frame header. NS now consults its scheduling table SR to check if the frame arrived within the

valid time window, and if it is a TT frame, then it is passed on to a TT scheduler to be forwarded

to the next hop at the configured time. If the received frame is outside the window, or if it is a

duplicate frame, then it is dropped, thereby implementing containment/fault tolerance within the

NS. It is important to note that the duration of the time interval that the switch allows must account

for a synchronisation error between the source and the switch.

In contrast, RC transmissions are event-triggered, and no scheduling tables are maintained for this

class. The separation between different RC messages is achieved with bandwidth allocation. For a

virtual link vli that carries an RC frame fi, the designer chooses a minimum time interval between

successive instances of fi. This interval is known as Bandwidth Allocation Gap (BAG). The source

ESs enforce the BAG. Thus, an ES will ensure that for each BAGi, there is at most one instance of

fi. Thus, even when a task within an ES generates bursts of frames, these shall leave the ES within

specified BAG. Since RC messages do not follow a deterministic schedule, different sources may

create RC messages to the same destination simultaneously. Such messages will queue up in net-

work switches resulting in increased jitter (Figure 2.13). Additionally, NS also implement a leaky

bucket algorithm that ensures that the time interval between successive instances of a frame on a

vli, compensating for the maximum allowed jitter, is not shorter than the BAG time. The algorithm

drops the frame that violates such condition.

Finally, we consider the scenario where the RC and TT traffic is mixed. In principle, the protocol

transmits RC traffic only when no TT traffic is present. However, as noted earlier, an RC frame can

be sent almost at any time, and thus interference can happen at the link access. Such a situation

may arise when a TT frame is scheduled to be transmitted, but an RC frame is already transmit-

ting. To handle such cases, different integration policies are defined namely shuffling, preemption,

timely block and resume preemption. With the shuffling approach, when a TT frame arrives, an

ongoing RC transmission is not preempted. Instead, the RC frame completes its transmission,

and later the TT frame is transmitted. The implication is that now the TT frame transmission is

no more associated with a particular time instant, rather to a scheduling window. With the pre-

emption approach, also known as preemption restart, RC transmission is aborted, and the arriving

TT frame is transmitted instead. After TT frame finishes transmission, the complete RC frame

is resent. With timely block approach an RC frame is blocked from transmission if a TT frame

is scheduled during the transmission of this RC frame. With resume preemption a preempted RC

frame resumes its transmission from the point where it was stopped. A work in [84] studies the

impact of different integration policies on the delay performance of RC and TT traffic.

2.9 FTT-SE: a Brief Overview 33

f
a,1

f
b,1

f
b,2

f
b,3

f
b,1

f
b,2

f
b,3

f
a,1

f
a,2

f
a,2

f
b,1

 jitter

BAG
a

BAG
b

BAG
a

BAG
b

BAG
b

Figure 2.13: TTEthernet rate- constrained (RC) traffic (Source: [83])

2.9 FTT-SE: a Brief Overview

FTT-SE [31] is a master/slave protocol for real-time communication on Ethernet that exploits the

advantages brought by micro-segmentation on typical star-topologies, namely parallel forwarding

paths and absence of collisions. The protocol organises communication in fixed duration slots

called Elementary Cycles (ECs). The EC duration is a design-time parameter, tunable to balance

the application reactivity requirements and the associated overhead. Typical values range from

1 ms to tens of ms. Each EC starts with a Trigger Message (TM), issued by the master, which

contains the schedule for that interval. The remaining nodes in the system receive the TM, decode

it and transmit the messages indicated therein. Each EC is further divided into two windows, for

synchronous and asynchronous traffic classes, respectively (Figure 2.14). The share reserved for

the synchronous traffic is also a design-time fixed parameter. Typically, the master first schedules

the synchronous traffic up to the synchronous window and only then schedules asynchronous one,

using the remaining time in the EC. Windows overruns are not allowed by schedule construction.

TM Sync window

TM+tr

ECk

time

Async window TM

ECk+1

Figure 2.14: The FTT-SE EC structure

34 Ethernet in Embedded Systems: the Automotive Case

2.9.1 Handling synchronous & asynchronous traffic

The synchronous (or isochronous) traffic is periodically activated within the master node that

schedules according to some policy, e.g. using EDF or RMS. The Master naturally enforces the

traffic properties, being the slaves only task responding to the TM transmission orders. As opposed

to the synchronous one, which is triggered autonomously by the master in an isochronous way,

the asynchronous traffic is triggered by the slaves in an event-driven fashion. Therefore, FTT-

SE provides a signalling mechanism that aggregates transmission requests during each EC and

conveys them to the master in a specific minimum sized packet (see [85] for details). Once the

asynchronous requests arrive at the master, from all nodes in parallel, they can be scheduled with

any desired policy. The extra latency implied by this signalling mechanism ranges from 1 to 2

ECs.

2.9.2 Building traffic schedules

The master centralises the scheduling activity, allowing a smooth deployment of any scheduling

policy as well as performing atomic changes to the communication requirements. This last fea-

ture facilitates the implementation of mechanisms that enable admitting and removing message

streams, online, under guaranteed timeliness, and mechanisms for dynamic bandwidth manage-

ment.

When scheduling, the master uses a special transmission time accountancy per link to make sure

that the traffic indicated in each TM can be fully transmitted within the respective EC (see [86]

for details). This feature makes sure that all switch queues are empty by the end of each EC and

the traffic pattern at an EC scale follows the scheduling performed by the master. This is achieved

by using two virtual bins per port. The capacity of each bin is equal to the length of the respective

time window. One bin accounts for the uplink load while the other accounts for the downlink

load. While preparing a schedule, the system scheduler picks one message at a time from the

ready queue, computes its size and checks if it fits within the respective bins in the uplink and the

downlink. In detail, uplinks are tested simply by using the accumulated load from the respective

source; in the downlink, the scheduler takes into account the offset from the source and the impact

of jitter from interfering messages in the downlink. If the latest finishing instant for the message

under consideration accounting for all such delays is within the window and already scheduled

load in that bin is not affected, then the message is added to the schedule (Figure 2.15). Messages

that fit are scheduled and encoded in the TM which is broadcast by the master at the beginning of

each EC.

2.10 A Qualitative Comparison of Different Technologies

This section presents a brief qualitative comparison of the studied technologies, i.e., AFDX, AVB,

TTEthernet, TSN and FTT-SE. Looking at some aspects that are relevant in the design of efficient

CPS, we study how each technology fares in these aspects.

2.10 A Qualitative Comparison of Different Technologies 35

block 0 block 1 block 2

new message

20 60 90 160 170 200

240

70 100

Asynchronous Window

scheduled messages

Figure 2.15: Adding a message to a downlink, checking against the end of asynchronous window

• Supported priority levels

When multiple messages compete for the link access, priorities allow the conflict resolution

in the switch output ports. We can find two situations where switch needs to resolve the

conflict:

1. Two messages are received simultaneously in different input ports and need to be

routed through the same output port, or several messages are waiting to be transmitted

in the output port. Priorities determine how these messages shall be serialized.

2. A message transmission is ongoing, and another message is ready to be transmitted

through the same output port. If the protocol allows preemption, then a higher priority

packet can interrupt a lower priority transmission.

This, in turn, impacts on the performance that different applications receive as well as the

number of applications with different criticality levels that can be accommodated.

– AFDX virtual links have one of the two priority levels, high or low. AFDX switches

implement a FIFO scheduling at the output ports. This limits admission of traffic

with multiple criticality levels. However, AFDX use in the safety-critical avionics do-

main requires an offline definition of the flow characteristics and a static schedulability

analysis to ascertain the system timing. Thus, the system behaviour is guaranteed to

remain deterministic at runtime. The work in [87] presents a QoS aware AFDX that

combines fixed priority and FIFO scheduling in the switch output ports. This work

analyses the impact of additional lower critical load on the performance guarantees of

36 Ethernet in Embedded Systems: the Automotive Case

critical avionic flows using only the FIFO or a combined FP/FIFO policy. Such im-

pact is smaller with the combined scheduling. Priority based scheduling can improve

worst-case response times and minimise needed buffer size in switches [88].

– AVB uses PCP, a 3 bit field within IEEE 802.1Q VLAN tag, which defines up to eight

different priority levels. It determines the traffic class (=queue in which to place the

frame). Audio and video streams receive a higher priority; other traffic can use remain-

ing classes. When AVB is extended to support highly time-sensitive control traffic (or

the scheduled traffic (ST) as in TSN standard), scheduled traffic is assigned the highest

priority. Mapping critical flows in the ST class has clear latency improvement in com-

parison to when mapping these in AVB class A [89]. When frame priority is mapped

into classes, multiple frames from different flows mapped in the same class suffer from

mutual interference. Highly sensitive time-critical flows mapped to AVB class A can

suffer unacceptable delays; being delayed by shaper or by large class A frames.

– Within TTEthernet, priorities are meaningful when scheduling rate-constrained traffic,

as the time-triggered traffic follows a defined schedule. The standard allows multiple

priorities for the rate-constrained traffic. However, most works consider three priori-

ties, i.e., high, medium and low, each assigned to a traffic class [90, 91]. Contentions

typically occur in the switch outgoing ports, which are resolved by serving messages

belonging to the same class in FIFO order. TTEthernet employs specific integration

policies to handle the scenario when an RC frame transmission is ongoing, and a TT

frame arrives (refer section 2.8.2).

– FTT-SE assigns the highest priority to the time-triggered synchronous traffic. The un-

constrained aperiodic communications (asynchronous traffic) can either be real-time

or non real-time. The medium priority is assigned for real-time asynchronous traffic

whereas non real-time traffic is assigned the lowest priority. Within an EC, a time win-

dow is reserved for the synchronous traffic. Asynchronous traffic can be transmitted

in the remaining time in respective priority order. Since traffic scheduling activity is

centralised to the master node, it is possible to enforce any scheduling policy for the

streams of any traffic class.

• Supported traffic types

– AFDX supports event-triggered traffic only, but with timing guarantees.

– AVB supports two event-triggered traffic classes namely SR class A, and SR class B,

using stream reservations. These classes are given bandwidth guarantees with defined

limits on the delay. AVB also supports event-triggered best-effort (BE) traffic with-

out temporal guarantees and time-triggered (scheduled) traffic with the TSN standard.

With the support for scheduled traffic, priorities are overruled by the schedule. Achiev-

ing entirely deterministic communications amounts to creating offline schedules that

guarantee low jitter and deterministic latencies for critical traffic [92].

2.10 A Qualitative Comparison of Different Technologies 37

– TTEthernet supports three traffic classes, time-triggered (TT) traffic that follows a

predefined schedule, rate-constrained (RC) traffic that is event-triggered with a defined

bandwidth guarantee and bounds on delay, and best-effort (BE) traffic with no delay

guarantees.

– FTT-SE supports both time-triggered (synchronous) and event-triggered (asynchronous)

traffic classes. It also supports non real-time traffic which is the asynchronous traffic

without real-time requirements.

• Bandwidth reservation

Communication protocols need QoS mechanisms beyond simple priority assignments to

meet the diverse communication requirements. The goal is to manage the interference on

shared links, thus providing temporal isolation among different applications. Different tech-

niques allow achieving this objective such as either reserving strictly periodic windows as

in time-triggered traffic or controlling the rate at which traffic is submitted in the network,

for instance, shaping by CBSA in AVB or limiting the bandwidth through virtual links.

– Virtual links within AFDX specify the maximum available bandwidth to the applica-

tions. For any virtual link, two parameters namely BAG and the maximum admissible

frame size on that VL, determine the available bandwidth (bandwidth = max frame

size / BAG). The BAG limits the bandwidth only, but there may be BAGs without

any message to transmit2. The standard defines BAG values in milliseconds from the

set {1,2,4,8,16,32,64,128}. When multiple applications send data through the same

VL, designers must carefully choose BAG value to meet worst case scenario (multiple

messages arriving within the same scheduling period). Also, the combined bandwidth

of all VLs should not exceed the link rate, e.g., 100 Mbps.

– Within AVB, bandwidth reservations are provided using the stream reservation proto-

col (SRP) [65] for streaming classes A and B. At the most, 75% of the total bandwidth

can be reserved.

– Within TTEthernet, time-triggered traffic schedule is calculated and distributed offline.

Precise time synchronisation is necessary to route messages respecting this schedule.

Thus, nodes obtain exclusive network access at specific time periods (slots) leading

to highly deterministic systems. Bandwidth is reserved for the Rate Constrained (RC)

traffic class, and its management is similar to the AFDX protocol, i.e., using logical

point-to-point connections (virtual links vl). BAG is enforced by the ES i.e.; even when

the task may generate a frame fi in bursts, each BAG interval must contain at most one

instance of fi, thus respecting the bandwidth limit (size of fi / BAG). However, RC

traffic has a lower priority than the Time-Triggered traffic and may suffer delays in

2This situation may occur, for instance, when there are multiple messages multiplexed on the same VL and fre-
quency of VL scheduling (its period) is selected to accommodate the worst case scenario, i.e., all messages arriving
simultaneously. With such configuration, however, not all scheduling instants of the VL will find messages to transmit.

38 Ethernet in Embedded Systems: the Automotive Case

cases when a time-triggered message is transmitted simultaneously through the same

port.

– FTT-SE allows configuring separate reservations for the synchronous and the asyn-

chronous traffic classes. The share for each reservation is a design-time parameter,

configured according to the application requirements. Further, individual messages

can be allocated reservations within the share for the asynchronous traffic class.

• Synchronization

– AFDX end systems do not share a notion of synchronised local clocks or a common

global time reference.

– The clock synchronization protocol for AVB is standardized as IEEE 802.1AS (gPTP) [64].

It provides a synchronisation error of less than 1 µs between seven or fewer time-aware

systems.

– TTEthernet needs precise clock synchronisation for building communication sched-

ules for the highest priority time-triggered traffic. For this reason, it uses a failsafe

fault-tolerant synchronisation protocol SAE AS6802 [93]. Such schedules are pre-

pared and distributed offline and assign dedicated timeslots to each participant in a

TDMA fashion.

– FTT-SE relies on synchronisation achieved through the Trigger Message (TM). Master

broadcasts TM at the beginning of the EC, which contains the schedule for that EC.

Since all queues are empty by the end of previous EC, all slaves can receive TM with-

out being impacted by the queueing delays. Further, guard window and turn-around

time temporally isolate TM from the application traffic. Master does not specify any

offsets for slaves transmissions relative to the transmission of TM. The schedule build-

ing takes into account that all indicated messages will finish transmission within that

EC. If any message transmissions in the EC overlap, these messages are serialised in

the switch queues.

• Fault-tolerance

– Within AFDX, redundant channels are used. For each VL, identical frames are sent

on two independent networks. Thus, under normal operation, an ES will receive two

copies of each frame. The replicas are identified using a 1 byte sequence number

field associated with the virtual link. The receiving ES performs an integrity check to

see that the frames received from a network are in order. Following this, it performs

the redundancy management which decides whether the frame should be accepted or

dropped because its replica has already been received.

– Currently, no redundancy has been defined for AVB. However, to be a suitable technol-

ogy for the mission-critical systems, TSN standard must support fault-tolerance apart

from the determinism. The standard can combine SRP with redundancy protocols to

2.10 A Qualitative Comparison of Different Technologies 39

realise fault tolerance. Stream reconfiguration time, as well as the time needed by

the redundancy protocol, must be bounded and pre-determined. To this end, the work

in [94] explores two approaches, one that integrates mechanism of the redundancy

protocol inside SRP, and the other that decouples such mechanisms.

– TTEthernet provides fault-tolerance service at different levels. Scheduler task within

an ES isolates flows of different criticality and transmits frames by strictly following

the local schedule table even when the corresponding task may generate more frames

than scheduled, for instance, by becoming faulty. Likewise, the task within the NS

drops any frames arriving outside the designated window. Within TTEthernet, a virtual

link can duplicate messages through multiple redundant switches for increased fault-

tolerance.

– FTT-SE, currently, does not provide fault-tolerant services to recover lost messages

such as TM, or the slaves request messages. Also, the switch, the Master and the Mas-

ter communication link represent single points of failure in FTT-SE. Fault-tolerance as-

pects of the FTT-SE architecture were studied in the work [95], under the projects [96,

97], in particular, for the HaRTES architecture [98, 99].

• Dynamic QoS

In the following, we see which technologies that provide the flexibility of changing the QoS

of the communications online.

– Dynamic reconfiguration is not supported by AFDX; the flows are defined statically

considering the fixed worst-case requirements and thus remain unchanged during the

system lifetime.

– AVB supports reconfiguration of established streams. However, to update the stream

attributes, the talker must tear down the stream first, wait a specified amount of time

that is configured in the protocol, and then request the creation of this stream with

new attributes [100]. During this waiting time, other streams can be registered by

different nodes and may exhaust the available resources, thus potentially preventing

the creation of the stream with updated attributes. Moreover, the protocol does not

support reconfiguration of a given stream to a different traffic class.

– TTEthernet does not consider TT traffic to be flexible. Changes in the TT schedule

require global changes that are hard to enforce. However, if the application does not

use the bandwidth allocated for synchronous TT messages, it is dynamically released

and can be used for the asynchronous network traffic (RC or BE). For RC traffic,

bandwidth is defined through virtual links with offline configured BAG and maximum

frame size transmitted through the VL. The bandwidth usage respecting this limit is

enforced at runtime. This configuration remains fixed through system runtime. Thus,

TTEthernet does not support online changes to the communication characteristics of

RC flows.

40 Ethernet in Embedded Systems: the Automotive Case

– FTT-SE allows reconfiguring the QoS dynamically. Slaves can send a message to

the master requesting a change in the communication requirements, i.e., updating the

stream period or the size of the transmitted message. Master evaluates if sufficient

resources are available to carry out the change, in all the links. If it is possible to

make the transition, then, new parameters are broadcast to the slaves to update their

local databases. However, changing the traffic class of the stream, i.e., changing from

synchronous to asynchronous, is not supported.

Figure 2.16 shows a relative position of each technology on the spectrum of communication

determinism and QoS.

non-deterministic strictly-deterministic

Half-duplex Ethernet
(IEEE 802.3, CSMA/CD)

Full-duplex Ethernet
Switch
(IEEE 802.1Q)

Shaping and policing
(AVB, AFDX)

TDMA approaches
(TTEthernet, TSN)

Low QoS

Medium
QoS

High QoS

Highest
QoS

TT and online scheduling
(FTT-SE)

Figure 2.16: Determininsm and QoS in Ethernet-based technologies (adapted from [101])

2.10.1 Further remarks

We have studied different technologies that offer real-time communications over switched Eth-

ernet, namely AFDX, AVB/TSN, TTEthernet and FTT-SE. In general, these technologies handle

real-time applications using one or the other paradigm of communications, i.e., Time-Triggered

(TT) approach or the Event-Triggered (ET) approach. Each approach has its merits and limita-

tions. Using the TT approach, nodes obtain network access at specified time periods (slots). A TT

approach offers several benefits such as:

- minimising the buffers inside switches as the schedule is free of conflicts,

- offering temporal partitioning and a composable solution since participants get exclusive

network access at designated times.

Thus, a TT approach leads to highly deterministic systems and is ideal for systems with stringent

timing requirements. However,

2.11 Summary 41

- performance of the time-triggered approach relies heavily on precise clock synchronisation

services. A fault-tolerant clock service is needed.

- channel bandwidth is available on a periodic basis and is exclusive. When respective traffic

is not pending, other traffic cannot use the bandwidth, thus, the bandwidth is wasted.

- building global communication schedules is a complex problem which involves using non-

trivial optimisation algorithms, and which can be verified on minimal systems only [83, 84].

Modern systems will naturally consist of several applications and many messages, which

potentially limits the scalability of a TT approach.

In contrast, with an ET approach, communication is initiated in response to certain events which

may arise at any time during the system operation. An ET approach offers the following advan-

tages

- it lends better flexibility of the communications.

- may result in faster response times for the asynchronous events occurring at unknown times.

Depending on the network capacity and the load, at certain points, may show better real-time

performance than with time-triggered systems.

- no clock synchronisation or global schedule building is necessary. Thus, it is not neces-

sary to equip network elements (end systems and switches) with specific synchronisation

components.

On the downside, event-triggered approaches are subject to

- variable transmission jitter and non-deterministic delays since several messages may arrive

at any instant and queue up in switch ports.

An event triggered approach is inherently non-deterministic, however, as we studied, it can achieve

a level of determinism using techniques such as shaping or bandwidth reservation. The choice

for time-triggered or event-triggered communication greatly depends on the application, as noted

in other works [55, 21]. A realistic system will generally contain multiple applications, some of

which may communicate using the TT approach while others communicate using an ET approach,

for instance, the automotive system. Accordingly, the referred technologies in this chapter inherit

the merits as well as demerits of the respective communication paradigm. Table 2.1 provides a

quick overview of the different aspects studied above for easy comparison.

2.11 Summary

Over the last years, embedded systems complexity has increased significantly, leading to dis-

tribution with high-bandwidth networks, particularly Ethernet and its real-time flavors. In the

particular case of the automotive industry, that we used as a motivating example, car technology

42 Ethernet in Embedded Systems: the Automotive Case

has witnessed continuous developments led by emerging requirements such as comfort and safety

among others; moving from mechanical components towards electronics being a major shift. This

shift has enabled multiple applications in the automotive domain with demanding requirements

regarding timeliness and bandwidth. To this end, Ethernet has received a growing interest as a

possible network to replace the disparate communication means or converge them in a common

backbone.

In this chapter, we have studied AFDX, AVB, TTEthernet and FTT-SE. These technologies sup-

port varying QoS. We also compared these technologies along different aspects, and we choose to

use FTT-SE in our work. The following points motivate our choice.

As noted earlier, all the mentioned technologies except FTT-SE support limited priority levels,

mapping the frame priorities into classes, often employing the FIFO policy between different

flows in the switch queues. Thus, some applications may suffer unacceptable delays due to mutual

interference between frames of the same class. Moreover, as described in chapter 1, we envi-

sion supporting reservations in a multi-level hierarchy, and all the protocols as mentioned earlier

do not support such reservations. Some of the studied protocols provide temporal isolation of

competing flows using traffic shaping mechanisms, for example, virtual link scheduling within

AFDX, scheduling SR class A and B within AVB and rate-constrained traffic scheduling within

TTEthernet. These shapers are servers that specify the available bandwidth for associated mes-

sages in a given time window. However, these techniques essentially provide a hierarchy that is

limited to two levels only; at the top level, system scheduler regulates network access between

multiple shapers, and all individual servers are at the level below, controlling transmission of the

associated messages. For instance, the sub-VL concept in AFDX offers some similarity to the

hierarchical scheduling. However, multiple applications can send messages in the same sub-VL

queue which is FIFO, potentially degrading performance for a critical application. Furthermore,

messages from different sub-VLs are converged into a VL in a round-robin manner (disregarding

priority) and later transmitted in FIFO order respecting BAG interval between successive transmis-

sions. Time-triggered frameworks reserve fixed periodic slots which are in fact polling or periodic

servers. These frameworks impose a compromise between response time and bandwidth; more

bandwidth must be reserved to obtain shorter response times. However, these frameworks do not

allow arbitrary server policies with hierarchical composition. FTT-SE allows changing QoS of the

communications dynamically. The work in [102] observes that FTT-SE provides higher flexibil-

ity than AVB in this respect. Currently, FTT-SE supports dynamic management of the streams,

which is extensible for the servers. Finally, these technologies require specific modifications in

the switches, for instance, AVB bridges and TTEthernet switches, making them less general while

FTT-SE works on top of COTS Ethernet switches. Nevertheless, it requires all nodes to be FTT-

compliant.

2.11 Summary 43

Table 2.1: Comparison of different technologies

Technologies

AFDX AVB/TSN TTEthernet FTT-SE*

Priority levels 1 or 2 upto 8 3 arbitrary

Traffic types ET TT, ET and BE TT, ET, BE TT, ET, NRT

Class queue scheduling policy FIFO FIFO FIFO EDF, RM, DM,
FIFO

Bandwidth reservation ✔ ✔ ✔ ✔

Synchronization ✗ ✔ ✔ ✔

Fault tolerance ✔ ✗ ✔ ✗

Dynamic QoS ✗ ✔ ✗ ✔

Hierarchical scheduling 2 levels 2 levels 2 levels multiple levels

44 Ethernet in Embedded Systems: the Automotive Case

Chapter 3

Traffic Scheduling Concepts

In Chapter 2, we studied some candidate technologies for efficient communications in CPS, with

automotive as an example case. This chapter presents different techniques that we use in system

design, for instance, server-based traffic scheduling. Such techniques allow achieving the desired

Quality of Service (QoS). QoS refers to the perceived value in the performance of the system

and covers corresponding mechanisms that render a differentiated service across different flows,

typically realised by managing the interfering traffic in the network. For the real-time systems,

QoS is often gauged by the timeliness of their communications. QoS is a well-known concept in

the general-purpose networking domain. In this domain, however, timeliness requirements are less

stringent, and QoS is often measured by related metrics such as packet loss ratio, or throughput. In

this chapter, we also present the related work regarding QoS in networks and real-time Ethernet.

3.1 Server-based Scheduling

In this work, we consider the case of scheduling aperiodic traffic. Traditionally, soft aperiodic

messages have been assigned a low priority and were scheduled for the remaining time after pe-

riodic traffic had been scheduled. This approach known as background processing led to long

response times for aperiodic traffic when the system was overloaded. Thus it was not well suited

for aperiodic traffic that had stringent timing requirements as the utilisation provided to the ape-

riodic requests can be very low. Server-based scheduling has been used to solve this problem.

Servers have an associated budget per time interval making it possible to enforce a bound on the

network bandwidth that aperiodic messages may use. By assigning aperiodic messages to servers,

aperiodic traffic can have a desired share of the resource, and its impact on the remaining system

can be bounded too. Different server-based scheduling strategies exist that vary regarding average

response time for associated applications. We describe some typical server policies here. Note

that, since we will resort to common scheduling techniques applied on the processor resource,

we will mostly refer to tasks. However, these scheduling techniques are equally applicable to

recurrent messages transmitted over the network resource.

45

46 Traffic Scheduling Concepts

3.1.1 Polling server

Polling Server (PS) is a periodic task created to serve the aperiodic requests. A polling server

can be represented by the model (Cs,Ts) where Cs is the budget and Ts is the period of the server

task. At regular intervals equal to its period Ts, the server becomes ready and serves pending

aperiodic requests within the limit of its capacity Cs. If no requests are pending when the server

becomes ready, then it discards its budget immediately and suspends. Also, the server does not

retain any budget when the queue of aperiodic requests becomes empty. The server is replenished

periodically with full capacity.

3.1.1.1 Example

We consider an example task system given in Table 3.1 and observe the response time of aperiodic

requests when served in the background (Figure 3.1) or with a polling server (Figure 3.2). We

assign priorities to the task set using RM scheduling policy [103]. The polling server task τs is

given by the model (1,3) and runs with the highest priority under RM scheduling policy.1 Figures

show the task execution from time t = 0 until t = 30. Aperiodic requests arrive at t = 5, t = 12 and

t = 22 with demands of 1, 2, and 1 units of time respectively. Figure 3.1 shows that response time

of aperiodic requests with background service is poor. The service cannot begin until the periodic

tasks are completed. The response time of the three requests is 3, 7 and 6 respectively while they

need a maximum of 2 units to complete. Figure 3.2 illustrates the same example of aperiodic

service obtained through polling server. At time t = 0, all tasks are ready, τs takes the precedence,

but there are no pending aperiodic requests. Thus it discards its capacity. At t = 5, a request for

1 units arrives. τs schedules the request when it becomes ready at t = 6. The request arriving at

t = 12 is partially served at t = 12 and then it completes at t = 15. The response time of aperiodic

requests with the polling server is better, i.e., 2, 5 and 3 respectively. Thus we see that a polling

server shows improvement over background service if the server has a priority that is higher than

the lowest in the system. However, it is not always able to serve the requests immediately.

Table 3.1: A task system with two periodic tasks and a polling server

Execution Time Period Priority

τa 2 4 Intermediate
τb 3 10 Low
τs 1 3 High

3.1.2 Deferrable server

Similarly to the polling server, a Deferrable Server (DS) is used to serve aperiodic requests and we

represent it with the model (Cs,Ts) where Cs is the budget and Ts is the period of the server. When

1Total utilization of the task system in this example is > 1, i.e., 2
4 + 3

10 + 1
3 = 68

60 > 1. Thus, the system is not
schedulable. However, this example serves to explain the operation of the polling server and its comparsion to the
background service.

3.1 Server-based Scheduling 47

0 2 6 12 16 20

τa

(1 unit) (2 units) (1 unit)

4 8 10 14 18 22 24 26 28 30

0 2 6 12 16 20

τb

4 8 10 14 18 22 24 26 28 30

0 2 6 12 16 20

Aperiodic Requests

4 8 10 14 18 22 24 26 28 30

Figure 3.1: Background service

Polling Server

0 2 6 12 16 20

τa

4 8 10 14 18 22 24 26 28 30

0 2 6 12 16 20

τb

4 8 10 14 18 22 24 26 28 30

(1 unit) (2 units) (1 unit)
0 2 6 12 16 20

Aperiodic Requests

4 8 10 14 18 22 24 26 28 30

0 2 6 12 16 204 8 10 14 18 22 24 26 28 30

Figure 3.2: Polling service

the server executes (serving aperiodic jobs), the budget is consumed. Unused budget is retained

throughout the server period. Thus, even when a job misses a polling instant (upon the invocation

of the server), it can be served later in the period. In this way, deferrable server improves the

responsiveness of the aperiodic requests. The budget is replenished to Cs at multiples of Ts, but it

is not carried over from one period to the next.

48 Traffic Scheduling Concepts

3.1.2.1 Example

We illustrate the operation of DS through an example in Figure 3.3, which we borrowed from [104,

p. 131]. The task and server parameters are given in Table 3.2. The server runs at the highest

priority. Note that server replenishes its budget periodically. Also, since the server preserves its

remaining budget during the period, the request arriving at time t = 9 can be served immediately.

This request preempts task τ1 since Ts < T1. When the third request arrives at time t = 11, the

server capacity is zero; hence, its service is delayed until the next period. The fourth request

arrives at t = 16, but it has to wait until t = 18 to get service.

Table 3.2: A task system with two periodic tasks and a deferrable server

Execution Time Period Priority

τ1 2 8 Intermediate
τ2 3 10 Low
τs 2 6 High

Deferrable Server

0 2 6 12 16 20

τ1

4 8 10 14 18 22 24

0 2 6 12 16 20

τ2

4 8 10 14 18 22 24

0 2 6 12 16 20

Aperiodic Requests

4 8 10 14 18 22 24

0 2 6 12 16 204 8 10 14 18 22 24

2
1

(2) (1) (2) (1)

Figure 3.3: An example of a high priority Deferrable Server

3.1.3 Sporadic server

Another kind of server is the Sporadic Server (SS) that we represent with the model (Cs,Ts) where

Cs is the budget and Ts is the replenishment time of the server. Consider a request for task τ1

that arrives at time tarrival−τ1 . The server sets a replenishment instant for itself that is Ts after

the task arrival time i.e., the next server replenishment shall take place at tarrival−τ1 + Ts if the

server still has some capacity left, else, the replenishment is delayed to Ts after the previously

3.1 Server-based Scheduling 49

scheduled replenishment (i.e., as soon as the capacity becomes greater than zero). Let us say

that task requests k time units from the sporadic server. The server budget is decremented to

Cs− k units. At time tarrival−τ1 +Ts, k time units are returned to the current server capacity. If a

request for task τ2 arrives soon after, at time tarrival−τ2 needing j units from the sporadic server,

its capacity will be decremented to (Cs− k)− j units, and the next server replenishment will take

place at tarrival−τ2 +Ts for the consumed j units (Figure 3.4). In Figure 3.4, notice the aperiodic

request that occurs at time t = 7 when there is no available server capacity. Therefore, the next

replenishment instant is set Ts time units after the instant that capacity becomes greater than zero.

In our example, this is the replenishment instant occurring at t = 8, and thus, replenishment for

the request arriving at t = 7 is due at t = 15. Thus, a sporadic server enforces a bandwidth equal to

Cs/Ts and its worst-case impact on the rest of the system equals that of a periodic task with similar

parameters [104, p. 147]. Note that a sporadic server may serve a request immediately depending

on its relative priority and on whether it has enough capacity. When the capacity is exhausted, the

service is suspended until the next replenishment.

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12 13

1 unit

Ts

2 units 2 units

14 15 16 17 18 19

(replenishments) +2

+2

1 unit

Ts

Ts

Ts

+1

S
er

ve
r

ca
pa

ci
ty

un
it

s

+1

Figure 3.4: The sporadic server with Cs = 3 time units and Ts = 7 time units.

However, a sporadic server has more complex rules regarding its scheduling and replenishment

scenarios. We cover these aspects for the sake of completeness through an example which we

reproduce from [105]. This example highlights a case when a low priority task in a schedulable

system misses its deadline due to an effect known as premature replenishment.

3.1.3.1 Example

Consider a task system with two tasks and sporadic server that shall handle apeirodic requests

(Table 3.3). The priority is defined using deadline monotonic policy [106].

First, we check if this task set with sporadic server is schedulable. To determine schedula-

bility, we check whether the server and tasks meet their deadlines upon critical instant (released

simultanesouly at time t = 0.) We find that worst case response time for τ1 is 10 < D1, for τ2 is

99 < D2 and for τs is 30 < Ds, and therefore tasks and the server are schedulable (Figure 3.5).

50 Traffic Scheduling Concepts

Table 3.3: A task system with two tasks and a sporadic server

Execution Time Period Deadline Priority

τ1 10 200 20 High
τ2 49 200 100 Low
τs 20 50 50 Intermediate

Sporadic Server (τs)

0 10 30 60 80 100

τ1

20 40 50 70 90

0 10 30 60 80 100

τ2

20 40 50 70 90

(20)

0 10 30 60 80 100

Aperiodic Requests

20 40 50 70 90

0 10 30 60 80 10020 40 50 70 90

(20)

99

Figure 3.5: Critical instant of the system with sporadic server

Next, we consider another scenario where task τ1 arrives at time t = 41, and sporadic server

τs and task τ2 are simultaneously released at time t = 0. Moreover, three aperiodic jobs arrive at

time t = 0 requesting 18 units, at time t = 40 requesting 20 units and at time t = 90 requesting 20

units. Figures 3.6 and 3.7 depict this situation.

In this example sporadic server is executed at medium priority, depicting also the case where a

task misses its deadline. This happens due to the fact that an amount greater than server initial bud-

get may be accumulated through replenishments within a server period. In this particular example,

it allows three aperiodic requests to be issued which result in task τ2 missing its deadline with re-

sponse time of 117. Therefore, a sporadic server deserves careful consideration (refer [105]).

3.2 Hierarchical Scheduling

Hierarchical scheduling has received growing attention in the design of complex distributed em-

bedded systems with real-time requirements. The early work in [107] presents a two-level hierar-

3.2 Hierarchical Scheduling 51

10

Sporadic Server (τs)

0 5030 40

τ1

10 20

(18)

0 40

Aperiodic Requests

10 20 30

(20)

60

0 5030 40

τ2

20 60

50 60

100 5030 4020 60 70

70

70

70

Figure 3.6: A complex scenario of message scheduling with sporadic server (continued in Fig-
ure 3.7)

chical scheduler to schedule a system consisting of real-time and non-real-time applications. The

idea was to devise a method that could analyse the tasks in the real-time applications in isolation

and later could integrate the applications while ascertaining system schedulability. Their approach

creates a server with constant utilisation for each real-time application, and a single server man-

ages all non real-time applications. At the top level, the operating system schedules the servers

according to Earliest Deadline First (EDF) scheduling strategy. On the second level, the selected

server can apply any application-specific scheduling algorithm such as RM, EDF, Time Sharing

schedulers, to schedule a set of application tasks.

The concept of open systems was introduced in their work [108] to develop schedulability anal-

ysis for the cases when an independently developed application needs integration into a system

which has been previously analysed without this application. Most analyses in real-time systems

perform global schedulability analysis for closed systems in which all applications are known a

priori and are analysed together. For an open system, the decision to accept a new application is

based on whether the new application and the currently executing applications remain schedulable

after the new application is included in the system. This method can, however, be inapplicable

if the characteristics of the applications are unknown. The work in [108] builds on the two-level

scheduling hierarchy presented in [107] and extends this work to overcome certain limitations,

52 Traffic Scheduling Concepts

80

Sporadic Server (τs)

70 120100 110

τ1

80 90

(20)

70 110

Aperiodic Requests

80 90 100

130

70 120100 110

τ2

90 130

120 130

8070 120100 11090 130 140

140

140

140

117

Figure 3.7: A complex scenario of message scheduling with sporadic server. τ2 misses its deadline
(continued from Figure 3.6).

such as non-preemptive execution of applications and the impossibility to share resources across

different applications.

Limited forms of hierarchical scheduling, typically with two levels, only, have been used for many

years in the networking domain to partition the network in virtual channels and to bound the

burstiness of certain types of traffic. For example, traffic shapers are one form of servers that

enforce some level of hierarchical scheduling, limiting the amount of traffic a node can submit to

the network in a given time window. The shaper has one scheduling discipline associated with

its arrival queue, typically FCFS, and another scheduling discipline manages its output at a global

level. The leaky bucket is a common traffic server frequently found in networks that belong to

the category of shapers [109]. In general, network servers use techniques similar to those of CPU

servers, based on capacity (or budget) that is eventually replenished. Many different replenish-

ment policies are also possible, being the periodic replenishment as with the Polling Server (PS)

or the Deferrable Server (DS), the most common ones. However, it is hard to categorise these

network servers similarly to the CPU servers because networks seldom use clear fixed or dynamic

priority traffic management schemes. In fact, there is a large variability of Medium Access Con-

trol (MAC) protocols, some of them mixing different schemes such as round-robin scheduling,

first-come first-served, few priority queues, etc.

Many works in the literature address the issue of hierarchical scheduling and component-based

design [110, 111, 112, 113, 114]. The work in [110] addresses both the analysis and the de-

sign problem, i.e., given a set of tasks and a fully preemptive scheduler, it tests the schedulability

3.3 Guaranteeing Quality of Service 53

of a task set with given server parameters and later designs the server to utilise the least system

resources while making the workload schedulable. The underlying server model is periodic, and

their notion of server availability function is similar to that of resource supply in [112]. The design

approaches in [110], [113] and [111] consider two levels of hierarchy only. The server inter-

face composition towards multiple levels is thus not covered. We argue that a multilevel hierarchy

supports a more complex application composition and bandwidth distribution. The work in [113]

reports an increase in the remaining utilisation when server periods are exact divisors of the task

periods and task arrival times coincide with replenishment of the server capacity; such tasks are

called bound tasks in their work. The work in [115] presents an end-to-end resource reservation

mechanism taking into account both the computing and the communication resources. This work

also includes an accompanying analysis and a design method for the reservations.

In our work, we will use the knowledge of application parameters to design server interfaces;

however, application tasks can be released independently of the servers. The work in [116] de-

velops an incremental schedulability analysis that considers a periodic resource supply model. In

their approach, a component must export its worst-case resource demand depending on the task

model and scheduler. None of these works considers the specific case of polling server [26] within

an HSF. In general, all the previous approaches consider a general fully preemptive system/ap-

plication level task scheduler. Therefore, we considered two important aspects while designing

our approach; one is the non-preemptive nature of packet scheduling, and the other is the use of

polling server policy.

3.3 Guaranteeing Quality of Service

Over the years, a number of distributed resource management strategies were developed that han-

dle multiple heterogeneous resources, particularly CPU and network, occasionally integrating

disk, memory and energy, creating partitions and providing consistent reservations. There are

systems that must support applications having varying QoS requirements in terms of timeliness,

reliability or security. The work in [117] builds a model to manage QoS along such different di-

mensions and is known as QoS based Resource Allocation Model (Q-RAM). Applications may

specify their resource demand within a range (i.e., minimal and maximal resource requirements).

The model assumes that the resources are sufficient to meet the lower bound of resource demand

from each application even when the system cannot satisfy the maximal demand requested by ap-

plications simultaneously. They use the concept of utility function that computes the application’s

total utilization of all the resources. The application is feasible if it can be allocated the minimum

set of resources along each QoS dimension. The objective is to maximize the system utility while

guaranteeing that each application is feasible along each of its QoS dimensions. Relative impor-

tance of an application is taken into account while computing total system utility.

The work in [118] reports an implementation of the Q-RAM model to a radar system. A radar’s

54 Traffic Scheduling Concepts

function is to track targets. This function is achieved by transmitting a beam and receiving the re-

turn echoes, both in a non-preemptive fashion. Such systems change rapidly since the targets move

continually. Therefore, resource allocation and scheduling needs to be done frequently and in real-

time. The resources considered are time and energy. The problem becomes that of multi-resource

allocation and real-time scheduling. Using the Q-RAM model, the work aims to maximize the

total utility derived by tasks in the system while meeting the resource constraints.

The work in [119] considers network based reservations of heterogeneous resources and strives

to provide end-to-end QoS. For such reservations, communication may span geographical net-

works that reside in different administrative domains and thus have different control policies. To

achieve QoS, required resources need to be configured, reserved and allocated. The resources they

consider may include computers, networks, disk and memory. They present Globus Architecture

for Reservation and Allocation (GARA) that is based on the Globus tool-kit. This architecture

allows management of computational elements or resources and their reservations through co-

reservation and co-allocation agents that can have centralized or distributed implementations. The

Globus architecture has three main components, an information service, local resource managers

and co-allocation agents. Information service is based on Lightweight Directory Access Protocol

(LDAP) and structures the resources hierarchically. The entries within the information service

include information on resource attributes such as type, architecture, current state etc. To allocate

a resource, the application passes its requirements to the co-allocation agent. This agent, on be-

half of the application, uses a combination of queries to the information service, heuristics, and

application-specific knowledge to map application QoS requirements onto resource requirements,

and then discovers resources with those requirements, and allocates the resources. Within GARA

resource objects can encompass resources of different types such as network flows, memory, disk

etc as well as it is possible to make reservations in advance. The Globus system uses an exhaustive

search to choose the desired resources. Through a set of instructions, they create reservations and

allocate resources and carry out the management of these resources. However, the work does not

detail how the application semantic values are transposed to resource requirements. They consider

a large geographical area, and latency incurred in resource allocation may not be suitable for ap-

plications with hard real-time requirements. Moreover, there is a possibility of application being

blocked waiting until all the required resources are available i.e., in situations where a different

co-allocation agent might be holding a needed resource.

3.3.1 QoS at network layer

In the case of networks with multiple networking components, such as switches in a LAN, it is

common to find FIFO queues that implement a best effort service model. With this model, all pack-

ets receive the same quality of service. Under light load conditions, such quality can be sufficient;

however, applications may receive poor service when the network is heavily loaded. When there

exist multiple applications with differing requirements, e.g., email with a low-bandwidth require-

ment, HDTV with high bandwidth requirement, and time-sensitive audio conferencing, best-effort

3.3 Guaranteeing Quality of Service 55

Internet service model may be unsuitable. One solution is that applications specify their service

needs and the network reserves resources to meet these needs. To meet such aims, the early works

in [10, 11] advocate more efficient than FIFO packet scheduling algorithms and the idea of allo-

cating resources selectively. The underlying motivation is that packet scheduling greatly impacts

the resource allocation. This work is the basis for the Internet integrated services model. An

admission control mechanism decides which flows can be accepted to support quality of service.

With such admission control in place, a scheduling algorithm is effective since it can keep the

aggregate traffic load to the level where service commitments are enforced. In particular two types

of service commitments have been considered in this work; QoS commitment to individual flows,

and resource sharing commitments to collective entities. For the first case, quantitative service

commitments can be provided ensuring that the network will meet or exceed the contracted QoS.

QoS, in turn, is defined by a metric. An example of quantitative service commitment is to meet

the bound on maximum packet delay. An application’s usual behaviour can determine the value

of such a metric. The value is a threshold beyond which the application performance will degrade

significantly. Relative service commitment assures how packets of one flow shall be treated rela-

tive to the other flows. Priority ordering is an example of this kind of service commitment. This

work contends that per-packet delay is a fundamental measure defining QoS that an application

receives, and hence bounds on the minimum and maximum packet delay are of particular interest.

To discuss the case of real-time applications, audio-video live streaming applications are fre-

quently taken as examples. For such applications, network-induced jitter distorts the received

audio-video. To be able to reproduce the source signal as faithfully as possible, the receiver may

buffer the incoming packets after they arrive at the destination for a duration such that the playback

point of the packet is at some maximum offset delay from its original departure time. The data

that arrives after the playback point can be discarded. Two important dimensions in this respect

are the latency and fidelity. Latency is the same as the maximum offset delay that is chosen to

playback the signals. Fidelity is how closely the received signals match the original. Applications

that need a very high degree of fidelity known as intolerant choose the fixed offset value greater

than the absolute maximum delay of packets to avoid the possibility of late packets and hence the

resulting signal distortion. Applications receive a guaranteed service if a reliable upper bound to

the delay is given. Tolerant applications, on the other hand, do not need to specify a delay value

that is greater than the absolute maximum as they can tolerate some late packets. Frequently, these

applications can adjust the delay value they tolerate based on the experience of recent packets

received. In this way, it is possible to reduce the impact of the network latency on the application

performance.

In the Integrated Services Framework, the two classes of tolerant and intolerant applications can

be loosely mapped to soft and hard real-time applications as used in common literature for real-

time systems. In this framework, intolerant applications can be handled with a guaranteed service

model whereas the tolerant applications can be managed with a controlled service model. Hard

guarantees are provided for the intolerant applications only.

Whenever a link is to be shared among a collection of applications, in which QoS to individual

56 Traffic Scheduling Concepts

flows must still be guaranteed with adequate delay bounds, it is important to share the link in a

controlled manner to protect against overload situations. For this purpose, the Integrated Services

Framework proposes using reservations that can be enforced over the Internet Protocol with the

Resource Reservation Protocol (RSVP) [120]. This protocol establishes reservations along a com-

munication route for a TCP/UDP communication stream. The creation of reservations includes a

negotiation phase for reserving resources in every router along the respective route according to

the so-called FLOWSPEC of the respective stream. Nevertheless, more efficient network reserva-

tions, mainly under tight time constraints, require reservations that are supported on the data link

level.

3.3.2 Scheduling and QoS in Ethernet

Guaranteeing QoS on Ethernet is typically achieved with the so-called Real-Time Ethernet (RTE)

protocols, which use some limited forms of server-based traffic scheduling. Some protocols en-

force periodic communication cycles with reserved windows for different traffic classes (e.g.,

AVB [22], TTEthernet [25, 121, 122] and AFDX [62]). This is a trivial composition of several PS

that hardly support efficient use of the network bandwidth. In the context of switched Ethernet,

some works consider traffic shaping at the end nodes such that submitted traffic conforms to some

average rate or maximum burstiness that switches can handle [109]. In this respect, the same tech-

nologies (e.g., TTEthernet [25, 121, 122] and AFDX [62]) offer some traffic shaping mechanisms

in the end nodes, as we studied in Chapter 2.

However, due to infrastructural limitations, none of these protocols supports arbitrary server poli-

cies nor their hierarchical composition and dynamic adaptation or creation/removal. A step further

is given by Linux-TC (Traffic Control) [123], which provides a reconfigurable hierarchy of a wide

choice of server policies and traffic filtering at each node. However, it lacks a global coordination

scheme to enforce consistent management of the server hierarchies across the distributed system.

Focusing on Ethernet technology, several works attempted to provide resource partitioning and

reservations dynamically. EtheReal [124] was probably the first such protocol that used a tailored

switch that provided guaranteed-bandwidth network services based on explicit resource reserva-

tions. A connection set-up triggered a message that was sent back and forth along the desired path,

reserving the needed resources in all hops. Other examples include the special switch of Hoang

et al. [125] that forwarded a mix of real-time and standard IP traffic using Earliest Deadline First

(EDF) policy, with timeliness guarantees provided by adequate on-line admission control in the

switch and in the end nodes, or, more recently, the hard real-time communication over multi-switch

networks using ordinary Ethernet hardware proposed by Zhang et al. [126], just making use of a

dual-level traffic smoothing mechanism analysable by Network Calculus.

In general, solutions that provide real-time over Ethernet require specific modifications or support

in the hardware which incurs high deployment cost and limits their experimental use for possi-

ble extension or further research. The work in [127] presents Atacama, a hardware-based, open

framework that provides real-time communications in multi-hop switched Ethernet networks. End

3.3 Guaranteeing Quality of Service 57

stations with real-time data use Application Specific Instruction-set Processor (ASIP) which en-

ables defining and executing time-triggered schedules. Ethernet interface includes an arbiter to

differentiate the time-sensitive traffic from the best effort traffic. Real-time traffic is always pri-

oritised, reducing the bandwidth available to the best-effort traffic. Moreover, within the switch,

real-time frames are forwarded in a cut-through fashion thus reducing latency and jitter. Finally,

the recent AVB standard [22] uses SRP (IEEE 802.1Qat) [65], which is a two-stage (registration

and reservation) method for dynamic bandwidth reservation. Moreover, reserved channels are

shaped at the output link using FQTSS (IEEE 802.1Qav) [66]. The source nodes are expected to

be shaped, too, e.g., using a leaky bucket.

Looking back at all those protocols, they either provide rather limited priority levels (AVB) and/or

miss the semantic connection between streams of the same application (all), and/or make fixed

reservations along the streams paths without considering the load of each switch (all but Ethereal).

We attempt to resolve these limitations providing one single network reservations protocol that

caters to the needs of efficient CPS.

3.3.3 Scheduling in FTT-SE

Concerning FTT-SE, the work in [128] presented a proof-of-concept implementation of servers

within FTT-SE that was called Server-SE. However, this preliminary work missed a full perspec-

tive regarding hierarchical scheduling deployment and system analysis. The work in [99] presents

a similar server deployment approach but inside an Ethernet switch, while its analysis appears

in [129].

The work presented in this thesis refers to the following recent projects:

• the HaRTES project [98, 99], within which an FTT-enabled Ethernet switch was designed

and built that supports dynamic and adaptive isochronous and asynchronous channels with

temporal guarantees and mutual isolation;

• the Serv-CPS project [130] which is a continuation of the HaRTES project and which

provides dynamic hierarchical reservations within the FTT-enabled switch.

An early work exploring the scaling of FTT-SE [31] network is reported in [131] while a load-

aware resource reservation in FTT networks for isochronous channels was proposed in [132]. An

analysis of worst-case response time was developed either for single resources (each switch) [43]

as well as for multiple switches [44].

Mohammad et. el explored the delay analysis for multi-switch FTT-SE networks and multi-

HaRTES networks. The work in [133] presents a delay analysis based on network-calculus for-

malism for one particular scalable architecture based on FTT-SE. This multi-switch architecture

comprises multiple masters where a distinct master controls part of the network referred to as the

sub-network. This architecture entails design adaptations in the scheduling model such as addi-

tional partitions of the EC to schedule local and global traffic as well as multiple trigger messages

58 Traffic Scheduling Concepts

for synchronisation among different masters. On an example network, an evaluation of this anal-

ysis reports delay bounds that are up to 50% larger than with a corresponding simulation of the

protocol scheduler.

The work in [134] presents a multi-hop HaRTES architecture with an accompanying traffic for-

warding method called Distributed Global Scheduling (DGS). With this approach, the messages

that traverse several switches are buffered in each switch except the last switch en route, where

they are forwarded to the destination without being buffered. Hence, for a synchronous message,

a phase is defined in each switch on its route, which is the delay (in number of ECs), that the

message suffers from its activation in the source node to its scheduled time in that switch. A delay

analysis based on request bound and supply bound functions is presented for a single HaRTES

network and extended for multi-switches. The introduced phase in the referred traffic forwarding

method is not accounted for in the analysis adding to its pessimism.

The work in [135] proposes an improvement for traffic forwarding in a multi-hop HaRTES net-

work. Depending on the characteristics of the traffic, transmission window sizes can be different

in different links to improve the utilisation of available bandwidth. This method called Reduced

Buffering Scheme (RBS) modifies switch output queues to prioritise the traffic and avoids buffer-

ing incoming messages as long as they can fit within the transmission window on an outgoing link.

An iterative response time analysis is developed that accounts for the idle times in transmission

windows, considering the worst scenario when windows sizes are different between two links. The

two methods (RBS and DGS) are compared by evaluating their performance against two example

networks. For high priority messages RBS always performs better, for medium or lower priority

traffic, it performs better or equally in most cases.

The proposed work in this thesis is a continuation of these recent efforts towards supporting ef-

ficient CPS using FTT-SE as real-time Ethernet technology. In particular, our work focuses on

leveraging multi-level hierarchical scheduling to multiplex single-switch networks.

3.4 Summary

This chapter outlined server-based scheduling as a technique to achieve QoS in real-time networks

and presented some related work regarding hierarchical scheduling and QoS. QoS within the In-

ternet, in particular, at layer 3 and above, has been explored in the Integrated Services Framework,

where, the feasibility for enabling real-time applications was correlated with the performance of

the packet scheduling mechanisms inside switch queues.

In full-duplex Ethernet, QoS is achieved by managing the interfering traffic, inside the nodes and

switches. This, in turn, may be realised by different mechanisms, such as priority assignments to

the applications, traffic shaping policies, or by constructing time-triggered schedules where fixed

slots are reserved for different classes of traffic. In this chapter, we saw how the server-based

scheduling techniques could be used to deploy traffic shaping policies or even bandwidth reserva-

tions and thus achieve adequate QoS, particularly concerning timeliness. Moreover, we also saw

that real-time Ethernet protocols lack the support for multi-level hierarchies. Finally, this chapter

3.4 Summary 59

presented some lines of work carried out within FTT-based architectures including scalability of

FTT-SE, server-based scheduling within HaRTES, and multi-HaRTES architecture. The work pre-

sented in this thesis will provide multi-level hierarchical scheduling within single-switch Ethernet

networks to support the design of efficient CPS.

60 Traffic Scheduling Concepts

Chapter 4

Analyzing the Efficiency of Sporadic

Reservations on Ethernet with FTT-SE

Resource reservations, e.g., processor or network, can be enforced with server-based schedul-

ing, possibly hierarchical. Reservations are an effective way of isolating different applications

or their parts and thus, support composability and design of complex systems. However, when

reservations are not fully used, they become a potential source of resource inefficiency. This is

particularly relevant when reservations are designed according to worst-case requirements. In this

chapter, we analyze the efficiency of a specific worst-case network delay analysis for reservations

over Ethernet, taking the pessimism of the analytic worst-case delay as an indirect metric of po-

tential bandwidth efficiency. We focus on Ethernet due to its growing relevance in the distributed

embedded systems realm and we use the Flexible Time-Triggered Switched Ethernet protocol

(FTT-SE) [31] that allows any traffic scheduling policy, including hierarchical reservations. In this

chapter, we consider reservations associated with individual asynchronous messages that enforce a

minimum inter-transmission time. These reservations are simplified sporadic servers that deplete

their capacity upon each invocation and which we designate as flat servers.

The work presented in this chapter is built around [37] that provides an analytic model for the

worst-case response time of asynchronous messages within FTT-SE and [38] that gives a prelimi-

nary efficiency assessment with random message sets. We further assess the efficiency of this anal-

ysis using extensive simulation runs of the FTT-SE master scheduler and comparing the analytic

delay upper bounds with the observed maximum message response times under different system

configurations. Namely, we vary properties of message set, network configuration parameters and

protocol configuration parameters. Considering schedulable sets, our target is to understand how

the tightness of the analysis behaves. Tightness refers to how close is the analytical estimate of

message response time to the worst-case response time observations obtained from the protocol

scheduler within a given simulation trace. Our empirical findings can tell us which configurations

favor the analysis more. This knowledge can help system designers better tuning their designs

to improve network efficiency under strict timing guarantees. We took inspiration from a similar

effort developed in the past for processor scheduling, namely the Hartstone benchmark [136].

61

62 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

Despite the existence of worst-case delay analysis for most of the protocols referred in the pre-

vious chapters, to the best of the authors’ knowledge there is no wide study on their efficiency.

Even if some works discriminate analysis that are more efficient than other, they do not compare

with actual system runs. Such study is the aim of this work for the specific case of the asyn-

chronous traffic in FTT-SE. The analysis model present in this work derives from the analysis of

synchronous streams on a multi-switch FTT-SE network [44] being adapted to the case of a sin-

gle switch network and asynchronous streams protected with flat servers. In the remainder of the

chapter, Section 4.1 presents the operation of flat servers within FTT-SE. Section 4.2 describes

the system model and the response time analysis. In Section 4.3, we present the experimental

evaluation comparing analytic model and the FTT-SE scheduler execution. In Section 4.4, we pro-

vide some guidelines for system design based on the lessons learned through this study. Finally, a

summary of the chapter is given in Section 4.5.

4.1 Flat Servers within FTT-SE

FTT-SE schedules traffic in elementary cycles (EC) ensuring that traffic scheduled for one EC can

be transmitted in that EC thus avoiding the backlog in switch queue from EC to EC. This guarantee

is given by the schedule building which takes into account that the latest finishing instant for each

message in each link does not extend past the configured transmission window. Thus there will be

no messages left in the switch queues at the end of the EC [137]. The online scheduling of each

traffic class, namely synchronous and asynchronous, takes into account the size of the respective

reservations and is given in [31]. Within the reservation for asynchronous message streams, each

message is further associated to a simplified sporadic server that depletes its capacity in each

invocation (Figure 4.1). Such servers enforce a minimum inter-transmission time in the respective

streams and thus protect the rest of the system. We designate them as flat servers because they are

not meant to support further hierarchical decomposition.

tr

Synchronous Window Asynchronous Window

SM1 SM2 SMn AM1 AM2 AMn

EC

incoming messages
protection shaper

TM

Figure 4.1: Reservations for individual message streams within the asynchronous window

4.1 Flat Servers within FTT-SE 63

4.1.1 Operation of flat servers

Consider the three main system components in FTT-SE, i.e., the system database, ready queue,

and the scheduler. The record for each message is permanently available in the database during

the system execution. The global queue of the ready messages contains pointers to the message

items. In each cycle, the scheduler consults ready queue for selecting messages for transmission.

A message reference becomes available in the ready queue upon its activation and it is erased once

that message is scheduled for transmission (Figure 4.2).

Ready queueDatabase Scheduler

Figure 4.2: Main system components

Associated with a message item there are two variables, namely activation counter and replen-

ishment counter denoted henceforth by act_ctr and rep_ctr, respectively, that are part of the item’s

dynamic data and are used to manage the protection mechanism of flat servers, i.e., the minimum

inter-transmission time.

Within the scheduling loop, an item selected from the queue is eligible for scheduling (inser-

tion in the EC) if its act_ctr is 0. Otherwise, the scheduler skips the respective item and inspects

the following one. At the system start, act_ctr and rep_ctr values are 0 for all items. Hence, in the

beginning, each message is eligible to be included in the EC.

During the system execution, a message can be in either active or inactive state. Active mes-

sages are present in the ready queue. Inactive messages are present in the database since they are

not ready for transmission, yet. In a given EC, active messages can be classified as fully scheduled

or partially scheduled, only (note that FTT-SE considers a multi-packet message model). There

are two cases concerning the update of the dynamic data of each message:

4.1.1.1 Case A

When an active message is fully scheduled in a given EC (i.e., finishes transmission in that EC), its

record is erased from the queue (i.e., becomes inactive) and act_ctr= T + rep_ctr and rep_ctr= 0,

with T being the message minimum inter-transmission time or period for simplicity. Then, at the

end of the scheduling loop, all inactive messages do a count down to their next earliest activation

ECs: act_ctr = max(0,act_ctr−1) and rep_ctr = 0.

4.1.1.2 Case B

When an active message is partially scheduled (i.e., will not finish transmission in that EC either

because it is too long or due to interference of higher priority messages), just rep_ctr is decre-

mented at the end of the scheduling loop (i.e., rep_ctr = rep_ctr−1), keeping track of the cycles

64 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
act_ctr: 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
rep_ctr: -1 -2 -3 -4 0 0 0 0 0 0 0 0 0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T

act_ctr: 0 0 0 0 8 7 6 5 4 3 2 1 0

0

12 11

Figure 4.3: Operation of the shapers

for which a message remained in the queue waiting to be fully scheduled. Note that act_ctr=0

during the time in which a message is in Case B. Thus, when a message enters in Case A, the min-

imum time until that message can be activated again is reduced by rep_ctr (note it is a negative

value).

Therefore, when a message request arrives, the respective message can only become active if both

act_ctr=0 and rep_ctr=0. Else, it remains inactive until that condition is fulfilled. This is explained

in the example of Figure 4.3 referring to a message with the model (C,T) = (4packets,13ECs).

The tall arrow represents a new message arrival whereas a short arrow represents the EC when a

message finishes transmission. The figure depicts two situations in which the referred message

takes different times to be transmitted. In the upper situation the transmission is completed in 1

EC (Case A). When a second message instance arrives at t = 7 it cannot be immediately activated

since act_ctr is not 0, but only at t = 16 thereby separating consecutive activations by at least T .

In the lower situation, the message transmission takes 5 ECs during which rep_ctr keeps decre-

menting (Case B from t = 3 to t = 6). At t = 7 it enters Case A and starts the countdown with

act_ctr. Again, the instance arriving at t = 9 will be kept inactive until t = 16.

4.2 System Model

In this section, we describe the network and traffic model, followed by the response time analysis

of the traffic in the FTT-SE flat servers.

4.2.1 Network model

The switches are considered to be full-duplex where the input and output of a switch port are

isolated. Thus, the reception of a message does not influence on the transmission of a message.

In this work, we consider the store-and-forward type of switches in which a message is fully

4.2 System Model 65

received before forwarding to the output port. Therefore, messages that are crossing a switch

suffer from two types of delay. The first type occurs due to the hardware of switch, known as

fabric delay, which varies in different manufacturers. The second type is because of store-and-

forward transmission of messages. The fabric delay is denoted by ∆, while SFD identifies the

store-and-forward delay. The switch manufacturer usually gives the fabric delay. Moreover, the

store-and-forward delay equals the transmission time of the message.

4.2.2 Traffic model

We consider a set Γ of N messages characterized as follows:

Γ = {mi(Ci,Ti,Pi,Di,Mmaxi
), i = 1..N} (4.1)

Above, Ci represents the transmission time of the message, Ti denotes the period (or minimum

inter-transmission time Tmit) and Di denotes the relative deadline of mi. The model is deadline

constrained, i.e., Di ≤ Ti. Moreover, the priority of the message is shown by Pi and Mmaxi
is the

maximum packet size among the packets that compose mi. This means that large messages are

fragmented into smaller messages for transmission.

4.2.3 Response time analysis

We present an analysis when we use a two levels hierarchy, i.e., the asynchronous window at

the EC level and the flat servers at the asynchronous window level, each associated to one asyn-

chronous message [37].

A message transmitting from its source node to its destination node may suffer from different inter-

ference. These interferences include the uplink interference, the downlink interference, switching

delay and the effect of idle time in the transmission windows.

4.2.3.1 An illustrative example

To identify the interference messages might suffer and study its impact on response times, we will

consider the simple example shown in Figure 4.4 with five nodes connected to one switch and

exchanging four unicast messages. We generate this example by simulating the master scheduler

within FTT-SE.

The system configuration is the following: duration of EC LEC = 2000µs, duration of asyn-

chronous window LW = 819µs, and the maximum packet size for any message mi, Mmaxi
takes

128µs. Let us focus on message m33(C33 = 1424µs,D33 = T33 = 21EC) sent from node A to B,

thus comprising 11 MTU-sized packets plus a last packet of 16µs. Since C33 > LW , at least 2EC

are required to transmit the message.

The remaining traffic highlights three different types of interference, uplink , downlink and

indirect. The former is illustrated by the higher priority message m99(C99 = 1536µs,D99 = T99 =

19EC) that shares the same path. In this case, m99 interferes with m33 both in the uplink and

66 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

downlink, and the worst case occurs when they are both ready in the same EC. However, the

interference occurs in either uplink or downlink, only, and we need to consider the longest. In this

case, the resulting response time is RT33 = 4EC.

Downlink interference is shown with message m11(C11 = 949µs,D11 = T11 = 17EC) sent from

node D to B, thus sharing the downlink of m33. The combined interference of m11 and m99 on m33

can now lead to RT33 = 6EC.

Finally, we add message m51(C51 = 603µs,D51 = T51 = 13EC) sent from node D to C to illus-

trate indirect interference. This message interferes in the uplink with m11 that, in turn, interferes in

the downlink with m33. In a single switch case, this indirect interference does not further increase

RT33 that remains 6 EC.

Switch

Master

A B

DC

m33, m99

m11

m51

Figure 4.4: Illustrating the sources of interference.

In the following, we define different kinds of interference and sources of delay. Also, we

provide the analytic model for computing message response times.

4.2.3.2 Effect of the idle time

The scheduling model of FTT-SE allows us to transmit the scheduled messages within their as-

sociated transmission windows. In case the scheduler cannot fit a message inside a window, the

transmission of the message is postponed to the upcoming ECs (Figure 4.5). Therefore, the trans-

mission window is not fully used, being partially wasted. The wasted part of the window where

no transmission is occurring is called idle time. The idle time, in the worst case, is the maximum

packet size among the set of messages, which is calculated in (4.2).

Asynchronous window

12 45

8

I
5 3 8

time

EC(n) EC(n+1)
+1

Figure 4.5: Impact of inserted idle time.

4.2 System Model 67

I ≤ max
∀m j∈Γ

{Mmax j
} (4.2)

The inserted idle-time does not occur within the flat servers since their capacity is depleted

every invocation. However, it may occur once per EC in the asynchronous window. To account

for this effect, we define the inflation factor in (4.3), where LW is the length of the asynchronous

window (which we will also designate by transmission window) and LEC is the length of the EC.

This factor is used to virtually increase the messages transmission times so that, for scheduling

purposes, they always cover the full window whenever there is inserted idle-time [138].

α =
(LW − I)

LEC
(4.3)

4.2.3.3 Uplink interference

The message under analysis may suffer from higher priority messages transmitting together with

the message from the same source node. Therefore, the higher priority interference in the source

node should be added into the analysis. The interference is computed in (4.4), where ul(mi) is the

set of messages that share uplink with mi, hp(mi) is the set of higher priority messages than mi

and x is the estimated response time.

Also note that, within the ready queue, messages are sorted first according to their priorities, and

next by their ids. Messages with higher id take precedence over messages with lower id when they

have the same period. This sorting is considered in hp(mi).

Isi = ∑
∀m j∈hp(mi)∧m j∈ul(mi)

⌈

x

Tj

⌉

C j

α
(4.4)

4.2.3.4 Downlink interference

Similarly to the uplinks, the message may suffer from higher or equal priority messages in the

downlink. This interference is computed in (4.5), where dl(mi) is the set of messages that share

downlinks with mi.

Idi = ∑
∀m j∈hp(mi)∧m j∈dl(mi)

⌈

x

Tj

⌉

C j

α
(4.5)

4.2.3.5 Indirect interference

By definition, indirect interference is caused by the messages that delay the messages which create

direct interference with the message under study. Following several observations with the simula-

tor, we conjecture that this indirect interfering does not increase the worst-case response time of a

message and may even reduce it if sufficiently delaying the message that interferes directly in the

downlink. In a single switch network, indirect interference simply affects the moment at which the

messages that interfere directly in the downlink arrive at the downlink. In the worst-case, they all

68 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

arrive at the downlink at the same time, creating the maximum direct downlink interference that

was explained before. Thus, in single switch systems, we can discard indirect interference. This

was verified by simulation.

4.2.3.6 Switching delay

As mentioned in the system model, the message crossing a switch is delayed by two parameters,

i.e., the fabric delay ∆ and the store-and-forward delay. The switching delay is computed in (4.6),

where it is also inflated by α . Moreover, note that SFDi =Ci.

SDi =
SFDi +∆

α
(4.6)

4.2.3.7 Final response time

To find the final response time RTi of mi, it is required to solve Eq. 4.7.

RTi = x =
Ci

α
+SDi + Isi(x)+ Idi(x) (4.7)

Eq. 4.7 can be solved using fixed-point iteration method: RTi = min(xl) : xl = xl−1. Iteration

starts with x0 = Ci

α
. Since deadlines are also expressed as integer numbers of ECs, we round off

the analysis estimate to multiples of the EC; analysis reports a deadline violation if
⌈

xl

LEC

⌉

> Di.

4.3 Evaluation

In this section, we describe the system setup used for the experiments, and we also describe the

generation of message sets. Finally, we present the experimental methodology and discuss the

results.

4.3.1 System setup

The system consists of 10 slave stations connected to a single switch. A station can generate a

maximum of 5 messages. The duration of EC; LEC is 2000 µs whereas the size of the MTU

(Maximum Transmission Unit) is 128 µs. The size of the transmission window LW within an EC

varies across different experiments.

4.3.1.1 Utilization per link

We consider that each link is scheduled independently using the Rate-Monotonic (RM) schedul-

ing policy [103]. Firstly, we calculate the RM utilization bound for a link URM = n(21/n−1) and

reduce it by the factor α to account for inserted-idle time. Thus, maximum available bandwidth

for any link is given by Umax =URM×α [137]. We further reduce this bandwidth to avoid condi-

tions near schedulability threshold. The utilization value thus obtained is the effective bandwidth

4.3 Evaluation 69

available on the link and is denoted by U . Respecting this threshold when generating load per link

virtually eliminates non-schedulable sets. Several experiments will use different values of U .

4.3.1.2 Generating a random data set

For each node, the utilization U is distributed among messages being produced at that node us-

ing the UUniFast algorithm [139]. We present the pseudo-code of the algorithm that generates a

random message set (Algorithm 1). This algorithm has four inputs namely LEC the duration of

the elementary cycle, U the available bandwidth, n the number of nodes/slave stations, and m the

maximum number of messages per node. We select a source node beginning at 1 (line 17), and

generate messages being produced therein while choosing a random destination for each message

(lines 17 - 20). The choice of different message period (random, harmonic, primes) can be speci-

fied. The size of message j is computed using its bandwidth share V[j] from the utilization vector

V (line 23). This way the uplink utilization is constrained to U by construction. The bandwidth

available on a given downlink c is denoted by Uc
dl . Accounting for the jitter that messages have

when they arrive in the downlink, the used bandwidth in downlinks is smaller than U . We use

a heuristic where maximum downlink bandwidth is constrained to 70% of U (line 26). A new

utilization vector is generated every time we produce messages for a new source node (line 11).

The basic operation of the algorithm is thus to distribute the available bandwidth among messages

while respecting constraints. The number of messages in a given message set may be smaller than

m×n due to certain non-conforming conditions such as a message smaller than an MTU or when a

downlink is full. This procedure generates one random set. To generate a large data set consisting

of N message sets, the algorithm is invoked N times.

When adding messages to the set, certain utilization thresholds can be overcome. In that case,

we discard the messages. The uplink utilisation is constrained to U , given by the vector V and

distributed across m shares. The producer station starts as station 1 and then incremented by 1

until reaching station n (equal to the number of available stations). Each message will use the

bandwidth share from the utilisation vector V which is limited to m places. However, for each

message, both source and destination must be chosen; thus, we add the same utilisation to the

downlink, chosen each time randomly among the n stations except the producing one. Downlink

utilization is constrained to 70% U accounting for the jitter conditions1.When a message does not

fit in a given link, it is discarded (removed from uplink and downlink).

4.3.2 Experiments

In the following, we describe the experiments we carried out with many random message sets. For

a given message set, we execute an implementation of the FTT-SE master scheduler as well as run

1The 70% U bound on Uc
dl is not firm. In fact, as shown in lines 26- 27 of Algorithm 1, messages whose individual

utilization causes crossing that threshold are still accepted. Note that schedulability will be tested afterwords, anyway,
thus this is safe. The 70% U constraint aims, merely at facilitating the generation of schedulable sets since the arrival
of messages at the downlinks will be normally jittered, increasing the chances of non-schedulability

70 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

Algorithm 1 Generating a random message set

Input: LEC,U,n,m
1: procedure Glds ⊲ Generate Large Data Set
2: V← UUniFast(m,U)
3: A← 1 : n

4: j← 0
5: i← 1
6: msg_id← 0
7: p← 1
8: while i≤ m×n do

9: j← j+1
10: if j = m+1 then

11: V← UUniFast(m,U)
12: p← p+1
13: if p > n then ⊲ limit the number of producers to n

14: return

15: j← 1
16: msg_id←msg_id+1
17: msg_producer← p

18: S← A\ p

19: c← randi(S) ⊲ choose a random consumer, different from the source
20: msg_consumer← c

21: msg_period← randi(5,70)
22: msg_deadline←msg_period

23: msg_size← V[j]× (msg_period×LEC)
24: if msg_size < MTU then

25: continue

26: if Uc
dl ≤ 0.70×U then

27: Uc
dl ← Uc

dl +V[j]
28: else

29: continue

30: i← i+1

4.3 Evaluation 71

the analysis program. We then compare the longest observed message response times (RTo) with

the respective analytic upper bounds (RT) (Figure 4.6).

Random Data Set

FTT-SE Scheduler Analysis Program

Observed RT Calculated RT

Figure 4.6: Experimental method

4.3.2.1 A single set

First, we show the results for a single data set with a trace of 15000 ECs. We plot a message’s

calculated and observed response times as well as its period in number of elementary cycles (Fig-

ure 4.7). We see these values along each vertical line for any message in the set. The figure shows

that the deadlines, considered equal to their periods, are all met during the period of observation

and similarly that all response time values, observed and computed, are shorter than the corre-

sponding periods. We can also see some cases with an exact match between the observed and

calculated response time values, which indicate accurate analytical estimates.

4.3.2.2 Multiple simulations

We are interested in quantifying the analysis pessimism when system configuration changes, such

as properties of the message set, network configuration parameters or protocol configuration pa-

rameters. To address this concern, we carry out multiple simulations over several thousands of

message sets. In these simulations, we log results extracted from each data set and then compute

values of interest over the complete simulation run. In particular, we compute the following val-

ues: percent matches, this value gives the percentage of cases in the dataset in which observed

response time values are equal to the calculated values; difference above maximum, in a data set,

we choose the message which calculated and observed response time differs the most, and we cal-

culate its percent increase of the calculated over the observed values ((RT −RTo)/RTo)× 100%.

Finally, trying to better represent the pessimism across the whole data set, we calculate the percent

increase for all the messages referred to as percent increase of analysis over observed.

4.3.2.3 Impact of activation pattern

In this experiment, we study the impact of message activation pattern on schedulability. For this

case, we generate 1200 message sets with their minimum inter-arrival periods (given in number

72 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

0 10 20 30 40 50
Message Ids

0

10

20

30

40

50

60

N
u
m

b
e
r

o
f

E
C

s difference

RT Observed
RT Calculated
Period

Figure 4.7: Response times of messages in a random set as observed with implementation and
calculated with analysis program

of ECs) taken randomly from the set {4,8,16,32,64,128} and we trigger each message set peri-

odically (with no offsets) as well as sporadically. With sporadic activation, mi’s next activation is

triggered at an EC randomly chosen in the interval (Ti,2Ti− 1) from its previous activation. We

consider RM priority assignment and we break ties by giving higher priority to higher Id.

In each case, FTT-SE master scheduler runs 20000 elementary cycles. We measure message

maximum response time (RTo) from this simulation. Then, for each message, we take the dif-

ference between RTo values reported with its periodic and sporadic activation. For the message

set, we count the number of messages that reported larger RTo with each activation pattern, and

the number of messages that experience the same RTo. Our observations show that no activation

pattern favours the other significantly. Results indicate that, on average, the three cases are evenly

distributed each representing 33% of the total cases (Figure 4.8).

Figure 4.8 shows the histograms of the percentage of messages per set that meet the condition

of each case, namely larger periodic RTo, larger sporadic RTo, periodic RTo equals sporadic RTo.

In blue we can see how many sets have a certain percentage of messages with larger periodic RTo.

There is a predominance of sets with 10% to 30% messages reporting larger periodic RTo but the

distribution shows a long tail to the right, i.e., higher percentages, up to a few sets with 100%

messages exhibiting larger periodic RTo. On the other hand, the orange histogram reveals that

the majority of the sets have between 25% and 50% of messages with larger sporadic RTo. The

distribution of the percentage of messages per set that exhibit equal periodic and sporadic RTo is

shown in yellow and we also see a concentration between 30% and 50% messages. In this case,

4.3 Evaluation 73

though, the distribution extends more to the left, i.e., lower percentages, down to several sets with

no messages reporting equal periodic and sporadic RTo.

Figure 4.8: Histogram of the percentage of messages per data set for each category

Interestingly, we would expect RTo for periodic activations to be larger given their higher load.

Note that the average inter-arrival periods of the sporadic case are 1.5 ∗Ti. Moreover, releasing

the periodic messages simultaneously at EC = 0 leads to a well defined worst-case busy interval

at least in the uplinks, which is easy to capture in the observations. Yet, a significant number of

sets with sporadic activations present RTo larger than or equal to that of the periodic case. In our

system, however, with multiple links, simultaneous message transmissions do not interfere if they

do not share links. This effect softens the difference between both cases.

To illustrate one case in which a given message triggered sporadically exhibits a larger RTo than

when triggered periodically, we provide the following example. We choose message m43 from one

data set that reports RTo = 14 with periodic activation and RTo = 31 when messages in the set are

activated sporadically. Table 4.1 lists the messages that share links with m43.

We analysed the FTT-SE scheduler simulation traces to observe the ready queue state during

the time between activation and dispatch of m43 in each case. Figure 4.9 shows these traces

displaying the messages in Table 4.1, only, for the sake of clarity, and highlighting new message

activations. We observe m43 worst-case response time that occurred after activation in EC4107 and

dispatch in EC4138. For the periodic case, RTo occurs after activation in EC0 and dispatch in EC14.

This is when all messages are released simultaneously in EC0. However, the worst-case pattern is

a complex combination of interferences in the uplinks and downlinks. In this case, the high initial

backlog triggered by the periodic release generates the maximum interference in the uplinks but

not in the downlinks. Conversely, sporadic releases, given their random nature, tend to be more

efficient in finding pernicious interference patterns in the downlinks.

Moreover, note that messages are composed of multiple packets and might need multiple ECs

to complete transmission. In the referred example, m41 is activated simultaneously with m42 in

74 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

Table 4.1: Interference set of message m43

Description Message(s) Ti(EC) Srci Desti

Message under study m43 128 9 2

Uplink
interference

m41 128 9 6
m42 32 9 8
m45 16 9 8

Downlink
interference

m25 8 5 2
m19 128 4 2
m28 4 6 2
m35 64 7 2
m37 16 8 2
m48 128 10 2
m50 8 10 2

EC4105 (not shown in the figure). Priority order is maintained and m42 is scheduled before m41.

m42 is a large message (35 fragments). m42 is only partially scheduled by EC4107 in which m43

arrives. So, by virtue of sporadic activations, there is a sort of priority inversion. m41 has a lower

priority but m43 must wait for it since it precedes m43 in the queue. However, if m41 is blocked due

to interference on its downlink, m43 can be scheduled.

4.3.2.4 Harmonic vs Primes

In this experiment, we try to see how does the choice of certain period values impacts on the

analysis efficiency. We compare harmonic and prime periods. Harmonic periods are chosen from

the set {4,8,16,32,64,128} and prime periods are chosen from the set {5,7,17,31,67,127}. EC

duration LEC = 2000µs and asynchronous window size LW = 1049µs. The available utilization

U to generate the data set is approximately 31%. To exhibit all the interference patterns, FTT-

master scheduler should execute at least until the LCM of message periods. This is possible with

harmonic periods, but for the case of prime periods (LCM = 156948505), it is prohibitive in terms

of memory and time, in particular when we have to simulate over several thousands of data sets.

Therefore, our simulation trace for harmonic case consists of 400 ECs (which is >∼ 3 LCM), and

for the case of primes it is 15000 ECs. Also, the data set size is 99936 and 19991 message sets

respectively for harmonic and prime cases.

We can observe in Figure 4.10 that distribution for prime periods is more concentrated towards

higher matches whereas there are fewer matches with harmonic periods. The average number of

matches for message sets with prime periods is 40% of the total messages in the set, whereas, for

harmonic sets, the average is at 25%.

We observe in Figure 4.11 that for both cases i.e., primes and harmonic, the majority of the

datasets report analytic upper bounds that are up to 6 times the observations. However, the analysis

of primes fares better than that of harmonic; we further calculate that with prime periods, analysis

4.3 Evaluation 75

EC4107: m25 – m42 – m41 – m43

EC4108: m42 – m41 – m43

EC4109: m50 – m42 – m35 – m41 –

m43

EC4110: m35 – m41 – m43

EC4111: m28 – m35 – m41 – m43

EC4112: m35 – m41 – m43

EC4113: m35 – m41 – m43

EC4114: m35 – m41 – m43

EC4115: m45 – m41 – m43

EC4116: m25 – m45 – m41 – m43

EC4117: m28 – m45 – m41 – m43

EC4118: m45 – m41 – m43

EC4119: m45 – m41 – m43

EC4120: m41 – m43

EC4121: m41 – m43

EC4122: m41 – m43

EC4123: m50 – m41 – m43

EC4124: m28 – m41 – m43

EC4125: m37 – m41 – m43

EC4126: m37 – m41 – m43

EC4127: m25 – m41 – m43

EC4128: m28 – m41 – m43

EC4129: m41 – m43

EC4130: m41 – m43

EC4131: m41 – m43

EC4132: m45 – m43

EC4133: m45 – m43

EC4134: m28 – m50 – m45 – m43

EC4135: m45 – m43

EC4136: m25 – m45 – m43

EC4137: m43

EC0: m28 – m50 – m25 – m45 – m37

– m42 – m35 – m43 – m41 – m19

EC1: m25 – m45 – m37 – m42 – m35 – m43 – m41 –

m19

EC2: m45 – m37 – m42 – m35 – m43 – m41 – m19

EC3: m45 – m37 – m42 – m35 – m43 – m41 – m19

EC4: m28 – m45 – m42 – m35 – m43 – m41 – m19

EC5: m42 – m35 – m43 – m41 – m19

EC6: m42 – m35 – m43 – m41 – m19

EC7: m42 – m35 – m43 – m41 – m19

EC8: m28 – m50 – m25 – m42 – m35 – m43 – m41 –

m19

EC9: m25 – m42 – m35 – m43 – m41 – m19

EC10: m43 – m41 – m19

EC11: m43 – m41 – m19

EC12: m28 – m43 – m41 – m19

EC13: m43 – m41 – m19

Figure 4.9: Reduced simulation trace for message m43: sporadic (left) versus periodic release
(right)

0 20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Harmonic Periods [4,8,16,32,64,128]

(a) Harmonic

0 20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Prime Periods [5,7,17,31,67,127]

(b) Primes

Figure 4.10: Percentage of matches between calculated results and observed values

exceeds the observations by 6 times (500%) or larger for under 2% of the total datasets. With

harmonic periods, however, there are approximately 6% such data sets.

We generate another result that shows percent increase of analysis over observed values but for

76 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Harmonic Periods [4,8,16,32,64,128]

(a) Harmonic

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Prime Periods [5,7,17,31,67,127]

(b) Primes

Figure 4.11: Percentage increase in RT with analysis method over observed values

all the messages in the data set (Figure 4.12). Since there are on average 25% and 40% matches

between RTo and RT values per data set (see Figure 4.10), hence this result will have a long peak

at the point 0 on the horizontal axis indicating the cases of an exact match. This, however, makes

the plot readability poor, therefore, we start the plot with percent increase at 2% and keep the

horizontal limit to 500% (6 times increase). This range already covers the majority of data points.

There are about 0.66% of messages with harmonic periods that report 6 times or larger increase

(500% increase) whereas with prime periods this number is only about 0.08% of total messages.

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

20000

40000

60000

80000

100000

120000

140000

160000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

Harmonic Periods [4,8,16,32,64,128]

(a) Harmonic

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

Prime Periods [5,7,17,31,67,127]

(b) Primes

Figure 4.12: Percentage increase in RT with analysis method over observed values, displaying
percentages above 2%, only, to omit the peak at 0%

4.3.2.5 Different period range

Next, we experiment using different range of periods for the message sets. We choose message

periods within three ranges, namely short [5 · · ·10],medium [5 · · ·60] and long [5 · · ·500]. The size

of the asynchronous window is LW = 1049µs. The available utilization U to generate datasets is

approximately 31%. The simulation trace is 15000 ECs long. The dataset size is 19161 message

sets for short period range and 20000 for other ranges. Figure 4.13 shows more matches with

short period range, with decreasing matches for the large period range. On average there are 33%,

4.3 Evaluation 77

41% and 14% matches between analysis and observations. On average, short period range reports

smaller matches than medium range, but there is a larger concentration with higher matches per

set; using short periods, 29% of the message sets report matches in over 50% of the messages in

the respective sets whereas only 15% of the message sets with medium period range report such

match.

In Figure 4.14, we can see the maximum percentage increase over observed response time reported

with analysis program (i.e., diff_above_max). The calculations show that for periods in short

range, there are no datasets with an increase in RT of 6 times or greater, whereas for the medium

and long range of periods these values are 0.085% and 0.21% respectively.

In Figure 4.15, we see the percentual increase of the analytical over observed response times

computed for each message in the set. In particular, the number of messages that report an increase

of 3 times or larger is only at 0.06%, 0.16% and 0.68% of messages, respectively from experiments

with the short, medium and long range of periods. An immediate observation is that, in general,

analytical upper bounds do not exceed the observed values significantly. Since we keep the link

utilization fixed for the whole data set, message sizes can be very large with several fragments

when periods are long and smaller with short periods. Also, since the data sets are generated

following a sanity check on their schedulability, there is a higher probability for matches when

the range is short. For long periods, the response times RT and RTo, as well as their absolute

difference, can be larger compared with the case of short periods, but percentually smaller. This

explains the results shown in Figure 4.15.

20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

100

200

300

400

500

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Period Range [5 10]

(a) Period = [5 · · ·10]

20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

200

400

600

800

1000

1200

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Period Range [5 60]

(b) Period = [5 · · ·60]

20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

200

400

600

800

1000

1200

1400

1600

1800

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Period Range [5 500]

(c) Period = [5 · · ·500]

Figure 4.13: Percentage of matches between RT and RTo for different period ranges

4.3.2.6 Different window size

In this experiment, we change the size of the asynchronous window LW and observe its impact

on the analysis efficiency. We keep the same data set across different experiments. This allows

us to observe the variation in message response times as the scheduling window is enlarged. We

report experiments with three different window sizes (in microseconds) being {524,874,1574}.

The chosen period set is harmonic {4,8,16,32,64,128}, which allows us to execute the FTT-SE

scheduler for only 400 cycles and hence experiment with a large dataset i.e., 98795 message sets

while keeping the simulation time small.

78 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Period Range [5 10]

(a) Period = [5 · · ·10]

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Period Range [5 60]

(b) Period = [5 · · ·60]

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

500

1000

1500

2000

2500

3000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Period Range [5 500]

(c) Period = [5 · · ·500]

Figure 4.14: Maximum percentage increase of RT over RTo in the data set, varying the period
range

When varying network configuration parameters, we use harmonic periods. Despite having ob-

served a lower efficiency of the analysis in these conditions, we believe that using a message set

with prime periods would lead to similar effect in face of variations of the network configuration.

The approximate uplink and the downlink utilization values are respectively, 14% and 10%. Fig-

ure 4.16 shows the results of matches between the analysis and observations. We can see that as

the window is enlarged from 524µs to 1574µs, the frequency of matches between the analysis and

observation increases. On average there is 9%, 36% and 60% matches in the three cases. We ob-

serve in Figure 4.17 the maximum percentage increase over observed response time reported with

analysis program (i.e., diff_above_max). The number of datasets where analytic upper bounds ex-

ceeded the maximum observed response times by 6 times or greater is 10%, 5.62%, and 0.118%

of total datasets respectively for LW size 524µs, 874µs and 1574µs. In Figure 4.18 we see the

percent increase of the analytical RT over observed values for all messages in each dataset. For

better readability, the plot shows percent increase up to 500% or 6 times. This range already cov-

ers the majority of data points. There are 5.45%, 1.41% and 0.14% of total messages respectively

in experiment with 524µs, 874µs and 1574µs LW that report 3 times or larger increase in RT . A

change in LW has an impact on the inflation factor α and hence on the response time estimation

(RT). In general, larger LW increases α . Since α < 1, and is applied as a divisor, for the same

message the inflated C decreases as LW and hence α increases, directly reducing final RT (see

eq. 4.4 and 4.5). Conversely, a decrease of RTo is intuitive since all messages are multi fragments,

hence, there is a larger resource available to schedule more packets with larger LW . Since both

RT and RTo reduce, so the difference becomes smaller and smaller. This explains the smaller

differences and more matches as LW increases.

4.3.2.7 Different link utilization

In this experiment, we change the link utilization and observe its impact on the analysis. We ex-

periment with 20%, 60% and 90% of the guaranteed schedulable capacity of the asynchronous

window, which corresponds to a link utilization of URM×α . Other configurations include, LEC =

2000µs and LW = 1049µs. Message periods are harmonic chosen randomly from the set {4,8,16,32,64,128}

allowing a short simulation trace of 400 ECs. The dataset size is 100000, 99710 and 99936 sets

4.4 Lessons Learnt 79

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

Period Range [5 10]

(a) Period = [5 · · ·10]

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

10000

20000

30000

40000

50000

60000

70000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

Period Range [5 60]

(b) Period = [5 · · ·60]

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

50000

100000

150000

200000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

Period Range [5 500]

(c) Period = [5 · · ·500]

Figure 4.15: Percentage increase of RT over RTo computed over all the messages in the data set,
varying the period range

for the 20%, 60% and 90% cases, respectively. Table 4.2 shows the corresponding uplink and

downlink utilizations of the three cases.

Table 4.2: Experiment utilization values

U t Umax =URM(α) Uul =U t ×Umax Udl = 0.70(Uul)

0.2 0.34077 0.068 0.0476
0.6 0.34077 0.2044 0.1431
0.9 0.34077 0.3066 0.2146

Figure 4.19 shows that the number of matches between RTo and RT decreases as we increase

the link utilization. The average matches per message set are 58%, 29% and 19% for the three link

utilization cases, respectively.

In Figure 4.20, we see the maximum percentage increase over observed response time reported

with analysis program (i.e., diff_above_max). The calculations show that for experiments with the

three cases of growing link utilization there are respectively 1.53%, 4.47% and 6.073% of data

sets that report a maximum increase of 6 times or larger.

Figure 4.21 shows the percentual increase of RT over RTo for each message in the whole data set.

The number of messages with RT greater than 3 times RTo make approximately 0.5%, 1.43% and

3.37% of the total number of messages in the experiment for the three link utilization, respectively.

Concerning the 20% case, we observe that the size of the generated sets may be smaller. This

may happen when the initial U provided to Alogrithm 1 is small, leading to a reduction in the

interference within the message sets thereby reducing both RT and RTo. The percentual difference

reduces, too, leading to more efficient analysis. On the other hand, sets with larger utilization

experience more interference and hence longer response times. The differences are also larger in

percentage, meaning that the analytical estimates grow more than the actual observations.

4.4 Lessons Learnt

Schedulability analysis verifies a system’s timing using a model of the system and aims to capture

the worst case scenario of the system in execution. The efficiency of the analysis depends on how

80 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

0 20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

LW 524 µs

(a) LW = 524µs

0 20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

500

1000

1500

2000

2500

3000

3500

4000

4500

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

LW 874 µs

(b) LW = 874µs

0 20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

1000

2000

3000

4000

5000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

LW 1574 µs

(c) LW = 1574µs

Figure 4.16: Percentage of matches between RT and RTo for different values of LW

well the model can reflect the system characteristics. Given parameters of the system, if the worst

case estimates reported with the analysis are within certain bounds (as decided by the designers),

the users have confidence that the system will function as desired. Having such a confidence is of

particular importance as the system’s criticality increases. There are numerous analyses for several

protocols which are currently in use such as AFDX, AVB, CAN etc. And, there is a continuing

effort to provide further analyses for the same system which are less pessimistic. This effort is

carried out so that designers may improve systems’ efficiency, for instance, by allowing a higher

system utilization. The work in [50] lists several issues facing designers with regard to function

partitioning and subsystem integration, which arise in particular due to the real-time or reliability

constraints. For such a case, choosing a design which allows more applications, is desirable. To

make such a decision at this stage, the study can inform the designer.

In our case, the exercise has led us to make a couple of changes in the analysis to better reflect

the protocol, and thereby decrease the pessimism of the analysis estimates. One such change is

discounting indirect interference (Section 4.2.3.5) from the computation of final response time,

which was initially account for. In another change, we reduced the size of interference sets by

following a scheduling condition of the FTT-SE protocol that breaks ties among messages with

the same priority upon link access.

Moreover, by running simulations using large random data sets, we are able to observe how the

efficiency of the analysis varies and configuration where analysis is less accurate.

For example, between harmonic and prime periods, analysis of the primes is closer to the

actual worst-case response times that occur at run-time. This is expected since this periods pat-

tern generates rich relative offsets among the messages (generated periodically) that will trigger

worst-case conditions both in uplinks and downlinks. Conversely, if the periods are harmonic,

the analytical worst-case conditions may never occur, either in uplinks or downlinks, as long as

the messages are triggered periodically. This suggests a need for a more accurate analysis in this

particular case, when we have asynchronous messages that are essentially triggered periodically

with a period equal to their minimum inter-transmission time and their periods are harmonic.

Application period choice depends, mainly, on the underlying application dynamics. For instance,

a higher sampling rate in a control loop would imply a smaller period of the sampling task. Tradi-

tionally, an effort has been invested to find periods such that the system is schedulable [140, 141].

4.5 Summary 81

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

LAW 524 µs

(a) LW = 524µs

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

LAW 874 µs

(b) LW = 874µs

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

5000

10000

15000

20000

25000

30000

35000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

LAW 1574 µs

(c) LW = 1574µs

Figure 4.17: Maximum percentage increase of RT over RTo in the data set, varying LW

In this work, however, we consider schedulable sets, and we aim to empirically find out in which

ranges of periods make the analysis more or less accurate. We must take into account that in our

experiments we keep the link utilization fixed for the whole data set. Thus, message sizes vary for

different period ranges, being smaller with short periods and can be very large with several frag-

ments when periods are long. We observed that the analysis is less efficient when the period range

is longer, involving long periods. However, using long periods can be of interest, thus making it

worth improving the analysis for this case. As noted in [141], overload in real-time systems may

be dealt with using very long task periods or, in other words, executing jobs less frequently.

When a given work-load is schedulable with different transmission window sizes, the designer

can choose larger windows when faster response times are desired. On the other hand, smaller

window improves the bandwidth efficiency and leaves room for more applications. However, the

analysis is clearly less efficient in this case, thus improvements would be desired for scheduling

within very constrained partitions, too.

Finally, when the link utilization of the message set is low, the scheduling is less constrained and

the analysis becomes more efficient, too. On the other hand, increasing the link utilization led to a

degradation of the analysis efficiency. Unfortunately, increasing the utilization of partitions, as the

asynchronous window, in this case, is typically desired thus improving the analysis, in this case,

would also be worth.

4.5 Summary

Ethernet is a promising networking candidate for emerging distributed embedded systems. For

such systems, reservations provide the means to support composability and address complexity,

but they compromise bandwidth efficiency, too. In this chapter, we addressed the network reser-

vations for asynchronous messages within FTT-SE and we presented an extensive simulation to

assess the efficiency of a response-time analysis for those reservations. In general, we saw that the

analysis shows significant matches with the observations and just a few instances show more than

3 times, sometimes more than 6 times, the observations. We also saw that larger LW reduces the

analysis pessimism but at the expense of requiring more resources, and that a short range of pe-

riods also improves the analysis accuracy, exhibiting more matches. Nevertheless, we also found

82 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

50000

100000

150000

200000

250000

300000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

LW 524 µs

(a) LW = 524µs

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

LW 874 µs

(b) LW = 874µs

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

20000

40000

60000

80000

100000

120000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

LW 1574 µs

(c) LW = 1574µs

Figure 4.18: Percentage increase of RT over RTo computed over all the messages in the data set,
varying LW

that using longer period ranges reduces the average analysis pessimism. Lastly, in a more expected

note, we saw that lower link utilization lead to less pessimistic analysis. This study also identified

scenarios where the current analysis can be improved, namely harmonic periods, small partitions

and high partition utilization. Improving the analysis is left for future work.

4.5 Summary 83

0 20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Link utilization 20%

(a) Lower link utilization

0 20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

500

1000

1500

2000

2500

3000

3500

4000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Link utilization 60%

(b) Mid link utilization

0 20 40 60 80 100
Percentage of matches in the observed and calculated response time

0

1000

2000

3000

4000

5000

6000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Link utilization 90%

(c) High link utilization

Figure 4.19: Percentage of matches between RT and RTo varying link utilization

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

5000

10000

15000

20000

25000

30000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Link utilization 20%

(a) Lower link utilization

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

5000

10000

15000

20000

25000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Link utilization 60%

(b) Mid link utilization

0 500 1000 1500 2000
Percentage increase of the analysis over the observed response time

0

2000

4000

6000

8000

10000

12000

N
u
m

b
e
r

o
f

d
a
ta

 s
e
ts

Link utilization 90%

(c) High link utilization

Figure 4.20: Maximum percentage increase of RT over RTo in the data set, varying link utilization

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

50000

100000

150000

200000

250000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

Link utilization 20%

(a) Lower link utilization

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

Link utilization 60%

(b) Mid link utilization

0 100 200 300 400 500
Percentage increase of the analysis over the observed response time

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

Link utilization 90%

(c) High link utilization

Figure 4.21: Percentage increase of RT over RTo for each message in the data set varying link
utilization

84 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE

Chapter 5

Supporting Hierarchical Reservations

within FTT-SE using Polling Servers

When multiple applications co-exist in the system, or we have applications with multiple compo-

nents, flat reservations are not adequate to provide the desired level of isolation between different

applications and to meet their timing requirements. For this reason, we use hierarchical reserva-

tions; bandwidth is partitioned at multiple levels, and different partitions are assigned to different

applications. In this scope, Hierarchical Scheduling Framework (HSF) is instrumental to effi-

ciently deploy hierarchical reservations while also providing run-time temporal isolation between

various applications. In this chapter, we show how hierarchical scheduling can be efficiently im-

plemented using Ethernet with ordinary COTS switches and FTT-SE protocol. The scheduling

and replenishment of reservations is managed with the Polling Server (PS) policy. This chapter

also presents a response-time analysis of the traffic submitted within each partition. Finally, we

report some experimental results that validate the analysis and show that different partitions in the

network achieve mutual temporal isolation. The contributions of this chapter are the following:

• A multi-level hierarchical server-based scheduling architecture for Ethernet that works on

ordinary COTS switches based on the asynchronous communication services of FTT-SE.

• A response-time analysis of the real-time traffic within the servers in any level of the hier-

archy.

• A reference implementation that validates the proposed architecture.

This work follows closely the work carried out for the HaRTES switch [129] in which a hier-

archical scheduling architecture for Ethernet was also proposed. However, that work relies on

a tailored switch that has embedded support for hierarchies of servers in each port while in this

work we use FTT-SE, a software-only solution that works on top of ordinary COTS switches.

In [128], the authors presented a proof-of-concept implementation of servers within FTT-SE that

was called Server-SE. However, this preliminary work missed a full perspective regarding hi-

erarchical scheduling deployment and system analysis. The work reported in this chapter will

85

86 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

complement the work in [128] with an analysis similar to that presented in [129] but considering

the differences given the use of FTT-SE and ordinary COTS switches.

The chapter is organised as follows: Section 5.1 presents the concept of hierarchical server-based

traffic scheduling and its integration in switched Ethernet. This section also describes the servers

scheduling algorithm. Section 5.2 presents a response-time schedulability analysis. In Section 5.3

we present experimental results from a prototype implementation that validate the analysis and

show the practicality of the proposed architecture. Finally, we summarise the chapter in Sec-

tion 5.4.

5.1 Hierarchical Scheduling Framework in FTT-SE

The Hierarchical Server-based Scheduling (HSS) framework is formed by a set of servers con-

nected hierarchically in a tree structure. Each server manages a fraction of the network bandwidth

that it will provide to its children servers or streams as shown in Figure 5.1. Associated with each

server is a scheduler, a set of child servers or streams and an interface that specifies its resource re-

quirements. The streams are connected to the leaf servers of the tree, and they constitute the actual

application load that will consume the network bandwidth. When a server is scheduled, it selects

one of its ready children servers. The servers and streams scheduling is carried out by applying an

online scheduling algorithm. Then the scheduled child server will also use its scheduler to select

another child server, and the same procedure will be repeated down the tree until we reach a leaf

server which will finally schedule a message for transmission. The amount of bandwidth given to

the scheduled stream is limited by the remaining capacities of all parent servers and the consumed

bandwidth by the stream is decreased from the remaining capacity of the leaf server and all the

respective parent servers in the tree up to the root server. If the remaining capacity of a server is

exhausted, the server becomes suspended until its capacity is replenished.

server
s-2

server
s-1

server
s-5

server
s-3

server
s-4

server
s-6

server
s-7

stream 1 stream 2 stream 3 stream 4

Figure 5.1: An example server hierarchy. Bandwidth is allocated to each server. Application
messages arrive at the leaf servers.

5.1 Hierarchical Scheduling Framework in FTT-SE 87

5.1.1 Servers integration in FTT-SE: an architectural overview

For reference, an overview of the FTT-SE protocol is presented in Chapter 2, Section 2.9. We con-

sider asynchronous traffic which is scheduled within the asynchronous window of the EC. FTT-SE

inherently provides mutual isolation between two different traffic classes, i.e., synchronous and

asynchronous by constraining each class to its respective reservation. The parent reservation in

our framework is the asynchronous window. Figure 5.2 shows a conceptual design of bandwidth

partitioning. The top-level reservation is the asynchronous window, which we divide into two par-

titions, i.e., for two applications. The reservations at this level represent the root servers for given

hierarchies in our model (i.e., partition 1.1 and 1.2 in Figure 5.2). Then, for an application with

multiple components that need mutual isolation, we can partition a reservation further. However,

need for partitioning in more than three layers is seldom found in practice.

1.1.1 1.1.2

1.1 1.2

Asynchronous Window

Asynchronous Window

1.1

1.2.1 1.2.2 1.2.3

1

1.2

Figure 5.2: Partitioning the available bandwidth at different levels to provide mutual isolation
across multiple applications in the system

We assume that the system consists of a set of n nodes connected to one switch. The switch

has p ports, and the ports are full duplex. Each node is connected to only one port, and the input

to the switch that receives streams from the node is called uplink, and the output from the switch

to the node is called downlink.

The management of the servers’ capacity is performed according to the polling server technique,

as explained in Section 3.1.1, i.e., the server capacity is replenished periodically every predefined

period, and when a server is scheduled, and the required load is less than its capacity, the unused

capacity is discarded [26]. We also assume that the schedulers in all servers use the Rate Mono-

tonic (RM) scheduling policy [103].

88 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

The server hierarchy that manages all streams originating from one source node and going to

the same destination node is referred to as the Independent Server Hierarchy (ISH). Figure 5.3

shows a simple example of an HSS where one ISH manages all streams that will be directed to

the Node 2 from Node 1, i.e., if Node 1 sends streams to m different nodes, then the master node

should prepare m ISHs to manage the communication originated from this node. Note that, the

maximum number of destination nodes that a node can send messages to is limited to p−1 (i.e.,

1≤ m < n≤ p). In Figure 5.3, Di is the destination for streams managed by an ISH and refers to

the downlink in the Node i, whereas Ui is the source node producing the streams and refers to the

uplink in the Node i.

In the HSS architecture, the interface associated with each server abstracts the resource require-

ments of its children. Consequently, we can represent the resource requirement of each ISH by the

period and budget of its root server. Scheduling of the ISHs is thus easier since we do not need to

consider the details of each ISH, but only its interface parameters.

S S S

S S

S

S

S S

S

S

S S

S

S S

S

S S

mi mj mk ml

mm mn

mo

mp

mq mr

D2 Dn D1 Dn−1

U1 Un

D1 D2 Dn

Station 1 Station n

Figure 5.3: Hierarchical Server Based Scheduling (HSS) architecture

5.1.2 Servers and streams model

In our work, we use the HSS architecture to manage the asynchronous streams only. Asynchronous

message streams (AS) are modeled using the sporadic real-time model in (5.1), where Cx is the

message transmission time of a stream ASx instance, T mitx represents the respective minimum

interarrival time and Dx the deadline. It is assumed that a message stream instance may generate

several packets, which have a size comprised between Mminx and Mmaxx. Px identifies the parent

server, i.e, the server to which the stream is connected to and RTx is its computed response time.

5.1 Hierarchical Scheduling Framework in FTT-SE 89

ASx = (Cx,T mitx,Mmaxx,Mminx,Px,RTx,Dx) (5.1)

A server Srvx is characterized in (5.2) by its capacity Cx, replenishment period Tx, deadline

Dx equal to period, and a few data extracted from the set of children components, either servers

or streams, namely the maximum and minimum packet transmission times (Mmaxx and Mminx,

respectively). Moreover, the server Srvx is associated with a parent server Px and a corresponding

computed upper bound response time RTx. Despite the similarity between the characterization of

servers and streams, there is a fundamental difference since only streams imply actual transmission

time that uses the capacity of the respective servers. Servers merely characterize a reservation of

the network resource.

Srvx = (Cx,Tx,Mmaxx,Mminx,Px,RTx,Dx) (5.2)

In the remainder of this chapter we will refer to both streams and servers as components, in an

integrated way.

5.1.2.1 An illustrative example

We present an example to highlight the difference between flat and hierarchical reservations. Imag-

ine that we build soft real-time communication services for a set of applications using FTT-SE.

Thus, the asynchronous window is the available periodic resource to each application in our sys-

tem. Consider two applications A and B where A comprises message set {m35,m36}, and B

comprises message set {m37,m38,m39,m40,m41}. Assuming that, enough resource is available to

meet the periodic demands set forth by each application, we study in which ways the hierarchi-

cal reservations improve on the flat reservations. Now, imagine that these two applications or the

seven messages are being scheduled through reservation-based scheduling, following the setting

depicted in Figure 5.4 (left) for flat reservations or Figure 5.4 (right) for hierarchical reservations.

Regarding temporal isolation, respective server interfaces must guarantee isolation across different

messages irrespective of the way reservations are managed, i.e., flat or hierarchical.

We can see the results of message schedule with flat reservations in Figure 5.5 (a), whereas

the result of message scheduling with hierarchical reservations is shown in Figure 5.5 (b). In these

figures, the vertical axis shows the EC in which the message is scheduled for transmission. The

label on the box is the number of packets scheduled in that EC.

Flat reservations inherit the parameters (C, T) of the respective messages. Schedule building

is confined only by the window size, and thus when further packets cannot fit inside the trans-

mission window, scheduling is postponed to the following EC. Nevertheless, each reservation has

90 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

Figure 5.4: Flat and hierarchical reservations

the capacity to schedule a complete instance of the respective message. For hierarchical reserva-

tion, firstly, root servers are prioritzed according to their period, and then, at each internal level,

servers are selected based on priority and remaining capacity until the leaf server when messages

are scheduled. Hierarchical reservations, are confined, primarily, by the tight capacity of the re-

spective reservations.

In the flat model, applications receive a faster response time. As noted, flat servers provide

more bandwidth in each scheduling instance when compared to the root servers in hierarchies.

These root servers further divide the bandwidth among their child nodes, and consequently, the

available bandwidth at the leaf servers (where streams are connected) is much smaller. However,

the message set is the same in both cases. For flat reservations, the respective server has enough

capacity to schedule an instance of the message stream. And, thus, all the streams are scheduled in

the priority defined by the RM policy without being held on account of insufficient server capac-

ity. On the other hand, interface parameters for hierarchical reservations are tight that guarantee

schedulability closer to the deadlines. The messages comprise multi-fragments, and a message

completes transmission when its last fragment is scheduled. A message gets transmission oppor-

tunity only in certain ECs which depends on server availability. In particular, this example shows

the time until one instance of each message released at the beginning of the system execution

(started in EC 0) completes its transmission. In this example, we show the timeline until t = 55

which indicates the EC of the latest transmission i.e., that of m39. However, during this interval,

some messages could be released and complete their transmissions multiple times e.g., m37,m41.

The purpose of this example is, however, to highlight some difference between the two reservation

scheduling models. The hierarchical reservations lend a better control to the designer, smooth out

the traffic, and thus might provide a better transmission opportunity for other traffic. For instance,

– if we are interested in prioritising the applications that are composed of several messages,

this can easily be realised by setting the desired priority at the root server of the hierarchy.

– in a similar way, by creating branches, messages that belong to different sub-parts of the

application are isolated.

5.1 Hierarchical Scheduling Framework in FTT-SE 91

In general, a hierarchical reservation may multiplex several messages for accessing the resource.

Flat reservations, on the other hand, represent a single priority-based queue where each message

has to compete against all the rest for access to the resource.

5.1.3 Scheduling model and execution

In this section, we explain the scheduling model and how it is executed by the master node to

schedule all asynchronous traffic at each EC while at the same time respecting the underlying

FTT-SE communication protocol. Figure 5.6 shows how the hierarchical scheduling framework

is integrated with the FTT-SE master scheduler. The system consists of a database of ready

aysnchronous streams ASx as well as a repository of hierarchical servers. The FTT-SE master

uses a global named queue ART_S_QUEUE to handle the ready asynchronous traffic and build

the EC-schedules. Some of the streams are mapped in server hierarchies. Asynchronous mes-

sages that are not associated to a server hierarchy have, by FTT-SE construction, an associated flat

server (Chapter 4). Flat servers compete with root servers of ISHs for access to the asynchronous

window. In this case, FTT-SE uses a simple protection mechanism that enforces a sporadic arrival

behavior [85] in respective streams. Concerning the messages mapped in server hierarchies, the

scheduling is carried out in the following manner.

At every EC, the master node inserts all root servers of ISHs, that have non-zero remaining

capacity, in a ready queue according to the Rate Monotonic scheduling policy. Then, it picks one

server at a time starting from the head of the queue (highest priority) and then it schedules its inter-

nal children servers and messages based on the servers capacities and the size of the asynchronous

window. This operation is repeated for all servers in the ready queue in decreasing priority or-

der until all servers in the ready queue are covered or no more messages can fit in the EC. The

scheduled messages are encoded in the TM for transmission (EC-schedule).

When a root server is selected to be scheduled, it picks a child server that has the highest prior-

ity and non-zero remaining capacity. The selected child server applies its scheduling algorithm to

select the highest priority child server from its local servers and the selection process is repeated

until a leaf server is reached where asynchronous streams are available. The maximum amount of

transmission of the streams associated to the scheduled leaf server is limited by the minimum of

remaining capacities of all the servers along the path from this leaf server to the root server and

also by a fitness function. A specific fitness test is used to check how much transmission can be

allowed such that in the worst-case scenario, the packets can fit in a given EC. The fitness function

keeps track of the transmissions in each link and in each EC using bins with limited capacities that

represent the asynchronous window, one for the uplink (link that connects the source node to the

switch) and another for the downlink (link that connects the destination node to the switch), see

Figure 5.3. Note that when the scheduler adds a message to a bin associated with a downlink in a

switch, it takes into account the additional delay imposed by the switch on the message and also

the maximum jitter that the interfering messages in the downlink can have. If the message under

test fits in both bins totally or partially (the number of packets that can fit in the EC is less than the

total number of packets) considering all the other messages that also fitted before in the respective

92 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

5
1

0
1

5
2

0
2

5
3

0
3

5
4

0
4

5
5

0
5

5

35 36 37 38 39 40 41

3 2 3 1 2 1

1

1

1

1

11

1

12

1

1

2 1 2

1

1 1

2 1

1 2 1

2 1 1 1

1

2 1

1

1

2 1 2

5
1

0

35 36 37 38 39 40 41

2 536

3753

(a)

(b)

n

n

n

n

First 'n' packets

Last 'n' packets

Middle 'n' packets

Complete message

Message i

Message Ids

Time (EC)

Time (EC)

Message Ids

Figure 5.5: Message scheduling with flat reservations (a), and with hierarchical reservations (b)

5.2 Schedulability Analysis 93

ASx
AS1,
AS2
, ... ,
 ASn

Scheduler

TM

II
II

II

Switch

II
II

II

Up links Down links

ART_S_QUEUE: RM, EDF

Server's Mechanism

Figure 5.6: The scheduling model

bins, then that message is added totally or partially to the EC-schedule for the next EC to be later

encoded in the TM.

The bandwidth consumed by the message (amount of scheduled transmission) is discounted

from the capacities of all the servers on the path from the root server to the leaf server. If the

root server has still some remaining capacity, it continues traversing the server tree to schedule

other streams, until the capacity of the root server is exhausted or there is no more load to be

scheduled. Since we are using the polling server, then any unused capacity will be discarded from

the remaining capacity of the scheduled servers. This rule is applied for all servers in each ISH

that are scheduled and have load (transmission request) from their children, less than the offered

bandwidth (capacity) from the parents servers.

Note that assuming the number of nodes is n and each node may have up to (n−1) ISHs then

the upper bound on the total number of ISHs is thus n× (n− 1) and in each ISH, the scheduler

may visit all servers in the hierarchy. Let smax denote the maximum number of servers in an ISH,

then the scheduling algorithm may check smax×n× (n−1) servers at most in each EC.

5.2 Schedulability Analysis

In this section we present the schedulability analysis required by the admission controller that is

used to verify whether change requests to the server hierarchy including adding, removing and

changing the parameters of the components (servers and messages), are feasible, i.e., if all the

components will meet their deadlines after applying the changes.

94 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

Mmax

∏x+Δx- Өx

Өx

∏x+Δx

∏x

Өx

2 Өx

sbfx(t)

0

∏x ∏x

Δx

Figure 5.7: The supply bound function assuming the polling server.

We assume that the periods and budgets of servers are given (selected by the system designer)

and it is required to verify that all messages finish their transmission before their deadlines and all

servers can provide enough bandwidth to their respective children servers and/or frames. For this

reason, we use the two phase approach presented in [129] to evaluate the schedulability algorithm.

In the first phase, the values of Mmax and Mmin are evaluated (or updated after changes) for each

server in the hierarchy starting from the leaf servers where they are directly connected to the

streams, and propagating the maximum packet size and the minimum packet size to the parent

servers and the parent of the parent server up to the root server. For each server, the values of Mmax

and Mmin are equal to the maximum value of Mmax and minimum value of Mmin of all its children.

In the second phase, the response time of components (including the servers and streams) are

computed starting from the root server of each ISH and then continue to its children then the

children of the children down to the leaf servers and frames connected to them. The response time

RTx of a server/frame Γx is computed as follows;

RTx = wx +Mminx, (5.3)

wx = earliest t > 0 : rbfx(t) = sbfPx
(t)

where rbfx(t) is the request bound function of the server Γx that quantifies the maximum load

5.2 Schedulability Analysis 95

submitted up to instant t to the parent component Px by the component itself together with the in-

terference of higher priority components and it is computed using (5.4). And sbfPx
(t) is the supply

bound function associated to the parent component of Γx that computes the minimum bandwidth

supply provided to its children at instant t which can be computed using (5.6). Evaluating the re-

sponse time using (5.3) can be done using the algorithm presented in [129] with a bounded number

of iterations.

rbfx(t) = IHx(t)+Cx−Mminx (5.4)

where IHx(t) is the interference from higher priority components and it is computed as follows;

IHx(t) = ∑
Γ j∈hp(Γx)

⌈

t

Tj

⌉

×C j (5.5)

where hp(Γx) is the set of components that have priorities higher than that of Γx and share the

same parent server. However, this definition is valid only for all servers and messages except

the root servers of ISHs. For the root server, evaluating Γx is different because at this level, the

bandwidth is provided by the asynchronous scheduling window and the scheduling of messages

of each ISH depends on the fitness function explained in the previous section. Note that the

root servers abstract the bandwidth requirement of all associated messages and therefore each root

server can be modeled as a message with the transmission time equal to the root server capacity and

the period equal to the root server period. As a result, the schedulability analysis of FTT-SE based

on utilization bound presented as in [86], that takes the fitness function into account, can be used to

check the schedulability of the root servers. However, this analysis does not provide the response

time of the root servers that will be used in the analysis of their children servers, as will be shown

later in this section. Nevertheless, we will explain how to define hp(Γx) such that it takes the fitness

function into account when evaluating the response time of root servers. Let us define HPUΓx
as

a set of root servers that share the same source node as the root server Γx and have priority higher

than Γx. Also let us define HPDΓx
as a set of root servers that share the same destination node

as the root server Γx and have priority higher than Γx. Note that the fitness function considers

the interference from higher priority messages that share the same source or destination nodes

with the message under consideration and also the jitter that the interfering messages may have at

the downlink. Then the set hp(Γx) can be redefined for server roots as {Γ j}|Γ j ∈ HPDΓx
∨Γ j ∈

HPUΓx
∨Γ j ∈ HPUΓHPDΓx

, i.e., it includes all root servers that have priority higher than that of Γx

and share the same uplink HPUΓx
or the same downlink HPDΓx

or servers that may add a jitter to

the interfering root servers (HPDΓx
) that share the same downlink HPUΓHPDΓx

.

The above mentioned problem was not presented in [129] since the source nodes in that work

send their messages independently on the status of the downlinks that are connected to the destina-

96 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

tion nodes. Another difference between the analysis of FTT-SE and the analysis presented in [129]

is that we do not need to include the blocking that can be caused by lower priority components in

the computations of rbfx(t). The reason is that the beginning of the transmissions from all nodes

are synchronized with the reception of the TM sent from the master node at each EC and all traffic

that was supposed to be sent during the previous EC should have been received before the begin-

ning of the EC. So it is not possible to have a case where a higher priority message being ready to

be submitted just after a lower priority message has started its transmission.

Another important issue that should be considered in the analysis is the switch delay that the

messages suffer from when they are forwarded to their destination. In this work, we assume that

the transmission time of the messages include this delay.

To evaluate the sb fx(t), the explicit deadline periodic (EDP) resource model [142] is used

which is characterized by Ω = (Π,Θ,∆), where Θ is the units of the resource provided within ∆

time units (deadline) and with period Π of repetition. This way, mapping to our framework, a

server is defined as Γx = (Πx,Θx,∆x) = (Tx,Cx−Mmaxx,RTPx
). Note that the deadline is given

by RTPx
, i.e., the worst-case response time of the parent component. Also, according to FTT-

SE, the server capacity is strictly enforced and thus overruns cannot occur. Consequently, idle

time may appear at the end of each server instance whenever the capacity available is not enough

to transmit the next packet. The maximum inserted idle-time that a server component Γx can

suffer is upper bounded by the maximum packet transmission time managed by this server. The

impact of the inserted idle-time is accounted by deducing Mmax from the supply function, i.e.,

Θx =Cx−Mmaxx. The component that provide resources to the root servers is the asynchronous

window which can be modeled as Γ0 = (Π0,Θ0,∆0) = (EC,LW −Mmax0,LW). For the root

servers, LW which is the length of asynchronous window, is provided every EC and since the

provision time of LW is constant every EC then the deadline will equal to the LW .

Now the supply bound function, assuming a polling server type, can be evaluated as follows;

sb fx(t) =

{

bΘx +max{0, t−a−bΠx}, t ≥ ∆x

0, otherwise
(5.6)

where

a = (Πx +∆x−Θx), b =

⌊

(t− (∆x))

Πx

⌋

(5.7)

Note that, a in the previous equation (5.7) represents the maximum time that a server may not

get any resources from its parent server. Using a polling server, the worst case scenario can happen

when a server is scheduled at the beginning of its period and the server does not have any ready

transmission request so the budget will be discarded, and a transmission request arrives just after

that, and the server is scheduled as late as possible in the consecutive period (see Figure 5.7). Note

5.3 Evaluation 97

that for root servers of all ISH, this scenario will never happen because the transmission request is

queued from the previous EC and it is ready at the beginning of each EC, therefore we can remove

Πx from (5.7) that computes a. Finally, to compute the end-to-end delay of the messages, two

extra ECs should be added to the response time of messages to consider the delay caused by the

asynchronous traffic signaling mechanism.

5.3 Evaluation

In this section, we validate our proposed analysis with tests on a real prototype, and with a master

scheduler simulator which uses the server-based scheduling algorithm presented in Section 5.1.3.

Besides, we verify the property of temporal isolation among message streams that share the net-

work.

5.3.1 Experimental setup

We consider a single switch, three slave nodes (stations) (A, C and D) and one master node.

Figure 5.8 shows the experimental setup. Station A contains two applications, and each application

sends asynchronous traffic to another station. Each application has sub-applications and sub-sub-

applications, and they are managed in the master node using one ISH for each application as shown

in Figure 5.9. Station C has two applications, one sends messages to Station A and the other sends

to Station D while Station D has one application that sends messages to Station A (the details are

shown in Figure 5.9, where "D_X" in the figure indicates which destination node the traffic of each

application (ISH) will be forwarded to, i.e. X= A or C or D). The total number of messages that

are communicated through the network is 12, and 22 servers are used to manage the transmission

of these messages. We set the value of EC = 10ms, and the maximum packet transmission time

Mmaxx = 88µs. The length of the asynchronous window is approximately LW = 50% of the EC.

The details of the servers parameters and the messages parameters are shown in Table 5.1 and

Table 5.2 respectively.

Figure 5.8: The experimental setup, with three slaves and the master node.

98 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

6 5 4

3 2

1

10

9 8

7

28

27 26

25

22 21

20

24 23

m3 m2 m1 m5

m4 m15

m14

m13

m12 m11

DC DD DA DD

Station A Station C

34

35 36

37

m19

m20

Station D

SWITCH

DA

Figure 5.9: Independent Server Hierarchies (ISH) prepared at each source station

5.3.2 Analysis results vs. observation

In this experiment, we compare the response times of messages that were measured from the im-

plementation with the response times calculated using the analysis presented in Section 5.2. In the

implementation, we activate all asynchronous messages periodically (with periods equal to their

minimum inter-arrival times) to increase the load imposed on the network. Then we compute mes-

sage response times, and the response time of each message is measured after receiving the signal

from the slave station and right before dispatching the trigger message in the master node. Fig-

ure 5.10 shows the periodic arrival patterns and corresponding response times of certain selected

messages. Table 5.3 shows the measured response time (RT measured) and the calculated response

time (RT calculated). We can see that the estimated response times have higher values than the

measured response times, which is expected. The reason for this difference is that measuring re-

sponse times might not show the worst case scenario since it depends on the activation pattern of

the messages and this periodic activation pattern does not generate the worst-case response time.

5.3.3 Checking temporal isolation

In this experiment, we show that temporal isolation is achieved i) among messages streams in the

same ISH, i.e., belonging to the same slave station, and ii) among different network ISHs in the

same source node and also iii) from different nodes. We also iv) show the effect of adding a new

server in an ISH on the response time of messages in the same ISH.

5.3 Evaluation 99

−20 0 20 40 60 80
0

50

100

150

Time (EC)

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Messages Response Time

message 4

−20 0 20 40 60 80
0

10

20

30

Time (EC)

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Messages Response Time

message 5

(a) m4 and m5

−20 0 20 40 60 80
0

50

100

150

Time (EC)

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Messages Response Time

message 14

−20 0 20 40 60 80
0

20

40

60

Time (EC)

N
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

Messages Response Time

message 15

(b) m14 and m15

Figure 5.10: Message response times with periodic arrival patterns

100 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

Table 5.1: Server parameters for stations

Station ISH Id(x) Cx(µs) Tx (EC)

Station A

UA-DC

1 1998 4
2 1470 8
3 440 10
4 440 16
5 778 17
6 352 20

UA-DD

7 1682 6
8 528 15
9 902 12

10 714 23

Station C

UC-DD

20 2024 4
21 1936 8
22 880 16
23 792 16
24 704 18

UC-DA

25 1410 5
26 880 10
27 704 16
28 704 22

Station D UD-DA

34 1848 6
35 880 12
36 704 13
37 704 24

Table 5.2: Specification of message parameters

ISH Id(i) Ci (µs) T miti (EC)

UA-DC

m1 528 50
m2 440 40
m3 176 45

UA-DD
m4 352 35
m5 528 47

UC-DD

m11 616 40
m12 440 37
m13 440 35

UC-DA
m14 440 45
m15 528 33

UD-DA
m19 528 28
m20 440 50

5.3 Evaluation 101

Table 5.3: Messages measured and calculated response times.

Id(i) RT measured (EC) RT calculated (EC)
m1 32 45
m2 14 30
m3 17 35
m4 15 23
m5 25 43
m11 10 29
m12 21 31
m13 17 25
m14 22 38
m15 20 27
m19 18 20
m20 24 43

Considering case i) above, we study the temporal behaviour of an ISH in station A containing

messages m4 and m5 for station D. First, we consider periodic activation of m4 and m5 and see the

response times. Figure 5.10 shows the results, typical uniform distribution of response times with

polling servers.

Let us now select to burst m5, which is transmitted in the same ISH, by sending transmission

request every EC. We have measured the response time of m4, and it shows the same behaviour as

the first case when all messages are activated according to their specifications (see Figure 5.11).

In the experiment, we also note that the response times of all other messages in the network are

not affected.

Now we select messages that belong to the ISH that share the same source node. In this case,

we have messages m1, m2 and m3 that send requests to transmissions every EC. The results that

we measured show that the response time of m4 does not change.

In the third step, we burst the activations of m11, m12 and m13 which share the same destination

as m4 and again the worst case response time measured does not change.

Finally, we test the ability of the protocol to adapt after a change request. In this case, we

assume that the system requests to add a new server to be connected to server 10 in the station A.

The server parameters are Tx = 25EC, Cx = 178µs and this server will manage the communication

of a message with the following parameters Dx = T mitx = 50EC, Cx = 88µs. The admission

controller will first check if this server can be added without violating the time requirements of

all other messages. This is done by applying the analysis presented in this chapter and since the

priority of the new server will be less than the priority of server 10 which share the same parent,

it is only required to check the schedulability of the new server by obtaining its response time

and then check the schedulability of its message which is passed in both cases. Then the server is

added to the network, and we measure the response times of all messages and compare them with

the results of Experiment 1, which shows the same response times. This experiment shows that

102 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

−20 0 20 40 60 80
0

200

400

600

800

Time (EC)

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

Messages Inter−activation Time

message 4

−20 0 20 40 60 80
0

1

2

3
x 10

4

Time (EC)

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

message 5

−20 0 20 40 60 80
0

50

100

150

Time (EC)

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

Messages Response Time

message 4

−20 0 20 40 60 80
0

500

1000

1500

Time (EC)

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

message 5

Figure 5.11: Arrival pattern (left) and response times (right) of messages m4 and m5 when message
m5 has bursty activations.

the temporal isolation is kept for all messages even if other messages are misbehaving and also

in case of adding new messages. In addition, it shows that when we add a new server, we do not

need to re-calculate the response times of all servers and messages in the network, it is enough to

check the affected parts in the ISH that a server will be added.

5.3.4 Verifying temporal isolation with random simulations

Using the simulator reported in Chapter 8, we generate several system configurations at random

and verify the property of temporal isolation among message streams. For these experiments, we

consider 3 slave stations, and a maximum of 2 ISHs per slave station. The duration of the EC is

3 ms. The duration of the asynchronous window is 1377 µs and maximum sized packet transmis-

sion time (MTU) is 88 µs. Message size is chosen randomly between 1 and 7 MTU packets and

its minimum inter-transmission time is chosen randomly between 10 and 70 ECs. Across different

simulation runs, the number of ISHs and hence the total number of servers and message streams

are different. In a simulation trace consisting of 5000 cycles, we observe the message response

times when messages are scheduled in an HSF under a regular mode and an induced congestion

5.4 Summary 103

mode. In the regular mode, the activation pattern for each message in the set is periodic whereas in

the induced congestion mode, we choose at random 5 messages in the set such that these messages

deviate from their periodic activation pattern and generate 3 times higher load instead than with

the regular mode.

In the following, we report an example system configuration generated by the simulator (Fig-

ure 5.12). We have 3 stations connected to the switch. Station 1 has two applications, whereas

stations 2 and 3 each have one application. The applications in station 1 send data to the other

two stations, whereas stations 2 and 3 send data to each other. There are 19 total messages and 32

servers. The parameters of the message set are given in Table 5.4 and servers parameters are given

in Table 5.5.

Firstly, we schedule the given message set under regular mode. Figure 5.13 shows the message

response times. The blue lines extend from message minimum response time until its maximum

observed response time. The red dots indicate the message periods (equal to message deadline).

We can see that, with a periodic activation pattern, the message set is schedulable. Next, we in-

duce congestion in the network; we randomly pick 5 messages in the set and increase their offered

load. For the same message set, we ran the simulation 6 times, each time causing burst within

different messages. This way, we can reflect increased load in different parts of the hierarchy.

Results are shown in Figure 5.14. We can verify that property of temporal isolation is observed

among different streams. In particular, the bursty messages are indicated by dashed vertical lines

that extend beyond their deadlines (deadline == period and maximum message period in the simu-

lations is 70). Such messages achieve much longer response times during the observed simulation

trace. However, for better readability, we show results up to 100 cycles on the vertical axis. By

comparing each of these graphs to the one generated with regular mode, we can see that response

times of all the messages which respect their periodic activation pattern remain unaffected by the

burst in other messages.

5.4 Summary

In this chapter, we showed how multi-level hierarchical scheduling could be efficiently deployed

using FTT-SE. We presented a response-time based schedulability analysis that takes into consid-

eration the FTT-SE protocol together with the multi-level hierarchical server-based scheduling. In

addition, we presented a prototype implementation that validates the analysis of the architecture

proposed in this chapter. Furthermore, the results obtained from the prototype implementation ver-

ify the property of temporal isolation among message streams that share the network bandwidth

in case of overload and changes in the hierarchical architecture. In particular, the results highlight

the strong partitioning capabilities of our approach, with full temporal isolation across partitions

in different branches of the hierarchy.

104 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

Figure 5.12: The experiment setup for random simulations

Table 5.4: Messages set parameters

Id(i) Tmit (EC) Size (µs) Server
m35 69 197 3
m36 27 519 4
m37 25 241 9
m38 65 371 10
m39 64 588 11
m40 55 375 12
m41 20 411 13
m42 10 223 18
m43 49 508 19
m44 49 159 20
m45 51 569 21
m46 25 158 22
m47 51 384 23
m48 34 524 24
m49 60 291 28
m50 54 412 29
m51 65 395 30
m52 53 399 31
m53 44 322 32

5.4 Summary 105

Table 5.5: Servers’ parameters

Id(i) Tx (EC) Cx (µs)
3 69 264
4 9 176
2 3 440
1 3 440
9 8 88
10 32 264
6 8 352
11 9 88
12 18 176
7 9 264
13 4 88
8 4 88
5 1 704
18 3 88
19 24 264
20 24 88
15 3 440
21 25 352
22 25 176
23 25 264
16 25 792
24 5 88
17 5 88
14 1 1320
28 30 176
29 10 88
26 10 264
30 32 264
31 10 88
32 22 176
27 2 528
25 2 792

106 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

30 32 34 36 38 40 42 44 46 48 50 52 54

Message Ids

0

20

40

60

80

100

N
u
m

b
e
r

o
f

E
C

s

Response time

Figure 5.13: Message response time with regular mode. Red dots indicate the message period.
Blue lines extend from message minimum observed response time (RTo−min) to its maximum ob-
served response time (RTo−max) achieved in a simulation trace of 5000 ECs.

5.4 Summary 107

30 32 34 36 38 40 42 44 46 48 50 52 54

Message Ids

0

20

40

60

80

100

N
u
m

b
e
r

o
f

E
C

s

Response time

30 32 34 36 38 40 42 44 46 48 50 52 54

Message Ids

0

20

40

60

80

100

N
u
m

b
e
r

o
f

E
C

s

Response time

30 32 34 36 38 40 42 44 46 48 50 52 54

Message Ids

0

20

40

60

80

100

N
u
m

b
e
r

o
f

E
C

s

Response time

30 32 34 36 38 40 42 44 46 48 50 52 54

Message Ids

0

20

40

60

80

100

N
u
m

b
e
r

o
f

E
C

s

Response time

30 32 34 36 38 40 42 44 46 48 50 52 54

Message Ids

0

20

40

60

80

100

N
u
m

b
e
r

o
f

E
C

s

Response time

30 32 34 36 38 40 42 44 46 48 50 52 54

Message Ids

0

20

40

60

80

100

N
u
m

b
e
r

o
f

E
C

s

Response time

Figure 5.14: Message response times with induced congestion mode

108 Supporting Hierarchical Reservations within FTT-SE using Polling Servers

Chapter 6

Supporting Hierarchical Reservations

within FTT-SE using Sporadic Servers

Composability is an important property to build complex applications. In Chapter 5, we studied

an important technique to achieve composability, particularly in the time domain, i.e., multi-level

hierarchical server-based design. We used polling servers for reservation scheduling and replen-

ishment. This chapter presents our work when we manage the hierarchical reservations using

sporadic servers, instead, again implemented on Ethernet using FTT-SE. With the sporadic server-

based policy, we can observe an efficient network bandwidth utilisation with shorter application

response times.

In this chapter, we report the successful implementation of hierarchical server-based traffic schedul-

ing in FTT-SE using sporadic servers, which decouple response times from the allocated band-

width. Our specific contributions are:

• adaptation of the hierarchical server-based architecture to use the sporadic server model

• reference implementation of sporadic servers in FTT-SE

• experimental verification of low response time and temporal isolation between contending

applications

The chapter is organised as follows: Section 6.1 describes the implementation aspects of the hi-

erarchical server-based scheduling in FTT-SE using sporadic servers. Section 6.2 presents the

experimental evaluation from our implementation showing its practical feasibility. Finally, in Sec-

tion 6.3 we provide a summary of the chapter.

6.1 Implementing Hierarchical Sporadic Servers

We implement hierarchical sporadic servers as part of the FTT-SE scheduling algorithm. For im-

plementation purposes, we need a mechanism that can manage the activations and capacity of

servers following the particular server policy. For example, a polling server [26] must be activated

109

110 Supporting Hierarchical Reservations within FTT-SE using Sporadic Servers

and its capacity replenished periodically whereas a sporadic server follows a sporadic consump-

tion/replenishment model; it holds its capacity until it is requested, it can provide service immedi-

ately upon request as long as it has sufficient capacity available and it replenishes any amount of

consumed capacity one period after it was requested (Section 3.1.3). We use the same HSF inte-

gration approach and scheduling model described in Section 5.1.3, but with a different scheduling

algorithm due to using a different server policy.

6.1.1 Scheduling algorithm

In the case of polling servers, hierarchical scheduling is managed by having a queue of ready root

servers that are triggered periodically, following which scheduling internal to the ISH takes place.

With sporadic servers, two events can invoke the scheduling process:

(i) a message activation at the leaf server

(ii) replenishment for any server in an ISH

In both cases, the scheduling process once triggered begins at the root of the respective hierarchy.

The server-based scheduling is outlined in Algorithm 2. The main scheduling function server-

Function taskes as input the root server node of the hierarchy and count of the current EC. The

main tasks of this function include selecting an eligible leaf server node and then scheduling pack-

ets inside server queue, achieved respectively by the sub-routines findLeafServer (Algorithm 3)

and schServerPkts (Algorithm 4).

Given the root server node in the hierarchy, Algorithm 3 will return the next available leaf server

node in that ISH, and if the search does not return a leaf node, the function returns with the root

node of the hierarchy indicating that ISH cannot schedule packets. In particular, the root server

selects one of its ready children servers. A parent server checks two conditions to select one of its

child servers. For the first condition, it checks the remaining capacity and state of the server. A

server that is in ACTIVE state and has non-zero remaining capacity is eligible (see section 6.1.2

and 6.1.3). Following this, the child server with the minimum period is chosen, i.e., we use RM

scheduling policy. Other algorithms can be used such as such as Earliest Deadline First (EDF) or

Fixed Priority Scheduling (FPS) [112]. The selection functionality is encapsulated within routine

pickNextBranch (refer Algorithm 3, line 7). Then the scheduled child server will select another

child server and the same procedure will be repeated down the tree until we reach the leaf server

which will finally schedule a message for transmission.

The routine responsible for scheduling packets (Algorithm 4) checks the capacity available to the

server node (Algorithm 4, lines 3, 4). The amount of bandwidth given to the scheduled stream is

the minimum among the remaining capacities of all parent servers along the path from leaf to the

root. In particular, leaf server’s own capacity is given in line 3 whereas minimum remaining capac-

ity along server path is calculated using the routine getGuaranteedCapacity in line 4. Following

this, the message from the queue of server node is retrieved (line 6), and the size of next packet is

6.1 Implementing Hierarchical Sporadic Servers 111

computed (line 9). When a packet can fit within server’s capacity, the consumed bandwidth by the

stream is discounted from the remaining capacity of all the servers along this path (lines 15, 16).

Also, the future replenishment instants are set for the corresponding servers (line 17). Finally,

the server message queue is updated to reflect the state of served packets (line 18). If the server

capacity is exhausted, the message is moved to the global ready queue ART_S_QUEUE (line 12)

where the system level scheduler will schedule the transmission of packets that are already served.

Then, the server becomes suspended until its capacity is replenished.

Taking into account that we only consider the aperiodic traffic which is scheduled through

sporadic servers inside the asynchronous window of the elementary cycle, certain observations

are in order. Firstly, this arrangement prevents high priority unbounded interference from periodic

traffic. Secondly, sporadic servers are engaged in message scheduling under two events, upon mes-

sage activation and server replenishment. Concerning message activation, in a given EC, several

messages might be activated simultaneously. However, the mechanism deals with each message

in turn; a given message when activated, instantly triggers the corresponding sporadic server. The

server schedules messages within the limit of its capacity using an FCFS policy, barring the un-

availability of time within the asynchronous window. Upon replenishment, sporadic servers may

schedule enqueued messages following further rules (Section 6.1.2). In this scenario, the mecha-

nism will also perform all pending replenishments that are due in that EC. It is noteworthy that,

for the top level, all the sporadic root servers shall be checked in each EC for capacity replenish-

ments. Once a root server is chosen, higher priority internal server(s) will take precedence using

the available resource.

6.1.1.1 Example

We explain the scheduling algorithm through an example as shown in Figure 6.1 that shows differ-

ent phases of message scheduling in HSF. In particular Figure 6.1 (a) depicts an ISH in the initial

state. No messages have been active; the tuple represents (period,capacity,state) for each server

in the ISH. In Figure 6.1 (b), message m21 request arrives at server Srv4, and corresponding path

in the ISH from Srv4 up to the root Srv1 is activated. This is depicted with a bold line. Notice the

change in the state of servers along the bold path. In Figure 6.1 (c), the request has been serviced

partially. After service, the tuples have been updated along the bold path. Since, Srv4 is out of

capacity, its state is set as DEPLETED. Figure 6.1 (d) shows that another request m2 arrives at

Srv5; corresponding path is activated, depicted here in bold. The state of servers along the bold

path is also updated. Following this, in Figure 6.1 (e), m2 has been completely served. We can

notice how child servers share the capacity of the parent servers.

6.1.2 Replenishment management

An essential component of the scheduling model is the management of servers replenishment that

is done as follows.

112 Supporting Hierarchical Reservations within FTT-SE using Sporadic Servers

(a)

(b)

(c) (d)

(e)

Figure 6.1: Example of scheduling messages with a sporadic HSF

6.1 Implementing Hierarchical Sporadic Servers 113

Algorithm 2 Server based scheduling function

1: function serverFunction(s_node,ec) ⊲ server based packet scheduling in an ISH with server
node s_node in EC ec.

2: more_paths← true

3: while more_paths do

4: s_node = findLeafServer(s_node)
5: if s_node.s_level = L_ROOT then

6: more_paths← false

7: else

8: if s_node.s_level = L_LEAF then

9: id← SV_Get_id(s_node)
10: period← SV_Get_period(s_node)
11: msg_queue←M_Queue_db_get_msg_q(id)
12: rep_queue←M_Queue_db_get_rep_q(id)
13: schServerPkts(s_node,msg_queue,ec)
14: if s_node.capacity≤ 0 then

15: s_node.f_status← DONE

16: s_node.s_state← SUSPENDED

17: s_node← s_node.parent

18: return 0

attributes of
the selected
server node

Algorithm 3 Finding an eligible leaf server

1: function findLeafServer(s_node) ⊲ Given the root server node s_node in an ISH, find an
available leaf server node

2: while true do

3: if s_node.f_status = DONE then

4: break

5: if s_node.s_level = L_LEAF then

6: break

7: s_node← pickNextBranch(s_node)
8: if s_node.capacity≤ 0 then

9: s_node.f_status← DONE

10: s_node.s_state← DEPLETED

11: s_node← s_node.parent

12: return s_node

keep searching
in all paths,
return with
a leaf node

upon success
or the root

node on failure

114 Supporting Hierarchical Reservations within FTT-SE using Sporadic Servers

Algorithm 4 Scheduling packets from the queue of selected leaf server s_node

1: function schServerPkts(s_node,msg_queue, ec)
2: pkts_served← 0

3: cap← SV_Get_Capacity(s_node)
4: cap← getGuaranteedCapacity(s_node)
5: while true do

6: msg← ready_queue_next_item(msg_queue)
7: if msg = nil then

8: break ⊲ Server queue is empty
9: pkt← get_next_fragment(msg)

10: if cap < pkt.size then

11: if pkts_served > 0 then

12: move_to_queue(ART_S_QUEUE,msg,pkts_served,pkts_sch)
13: break ⊲ cannot serve more packets
14: pkts_served← pkts_served+1

15: update_capacity_on_path(s_node,pkt.size)
16: cap← cap−pkt.size

17: set_rep_on_path(s_node,pkt.size,ec)
18: ready_queue_decrease_item(msg_queue)
19: return 0

update the
state in ISH

once a packet
is served

We associate two queues with a server, a message queue and a replenishment queue. The

message queue holds the application messages that must be handled by the server whereas the

replenishment queue holds records for future replenishments of the server capacity. An entry in the

replenishment queue is a pair of the type (C, trep). This entry is set when a request is served either

partially or completely, thus, C is the capacity consumed and trep is the replenishment instant. trep

is computed as: trep = t +Tx where t is the EC in which C units of the request are scheduled for

transmission and Tx is the server Srvx replenishment period. When we schedule a replenishment

at an instant t, we know the request size that can be served (partial or complete), i.e., which is

within the limit of minimum available server capacity along the path. Thus, we replenish the

server with only this amount exactly one period later. Hence, our implementation does not suffer

from the premature replenishment effect. With this model in place, the scheduling algorithm for

hierarchical sporadic servers works as follows.

At ECi, we probe the replenishment queue for all servers. For each entry (C, trep) such that

trep == ECi, we replenish the server with C units. At this instant, we update the state as ACTIVE

for every server in the respective ISH that has a non-zero capacity, and invoke the server-based

scheduling serverFunction (Algorithm 2) from ISH root. This execution can schedule those mes-

sages that may have been left un-scheduled in the previous runs on account of insufficient capac-

ities either at the leaf server or an intermediate/root server level. With the replenished capacity it

may be possible to schedule such messages.

6.1 Implementing Hierarchical Sporadic Servers 115

Listing 6.1: The structure representing a message item in the ready queue
t②♣❡❞❡ ❢ s t r ✉ ❝ t r❡❛❞②❴q✉❡✉❡❴✐❞①
④

✈♦✐❞ ✯♠❡ss❛❣❡❴❉❇❴♣♦✐♥t❡r ❀
✈♦✐❞ ✯ r♣ ❀
✉♥s✐❣♥❡❞ ✐ ♥ t ♣❛❝❦❡ts❴♥♦ ❀
✉♥s✐❣♥❡❞ ✐ ♥ t t♦❴❜❡❴s❡r✈❡❞ ❀
s t r ✉ ❝ t r❡❛❞②❴q✉❡✉❡❴✐❞① ✯ ❧ ✐ ♥ ❦ ❀

⑥❘❊❆❉❨❴◗❯❊❯❊❴■❉❳❀

6.1.3 Processing message arrivals

The arrival of message stream activates the leaf server of the corresponding ISH as well as the

servers along the path to the root. Processing an ISH involves verifying all servers in the path

from that leaf (note that all servers receiving messages are leaves) up to the root. The scheduling is

then invoked from the root server, calling serverFunction (Algorithm 2). So, the servers along the

path become ready with new message arrivals. The capacity requested by a message, known when

the message is scheduled for transmission totally or partially, is discounted from the remaining

capacities of all the servers along the path up to the root. An entry is set in the replenishment

queue of all the servers along the path indicating the future replenishment instant and the capacity

to be added.

6.1.4 Handling message packets

An important part of the sporadic HSF implementation deals with the transfer of messages between

server ready queues and ART_S_QUEUE global queue (Algorithm 4, line 12). Note that FTT-

SE fragments large messages into small packets, which are individually scheduled and thus our

servers also handle messages as bundles of packets that are then processed individually.

The following is the structure (Listing 6.1) that represents a message item in the ready queues

where packets_no represents the total number of packets in the message.

We say a packet needs scheduling when it is already inside the global queue. We say a packet

needs to be served when it is still in the server queue. The two fields namely packets_no, and

to_be_served are used to denote the number of packets which are in one of the two states. Upon

initialization, to_be_served (denoted pkts_served in Algorithm 4) is the same as packets_no.

But, when a packet can fit in the server capacities, we only update to_be_served and not the

packets_no. When no more packets fit the server capacities, those that did (were served) are

copied to the global ART_S_QUEUE.

Hence, a message may be partially present in both the server queue and the ART_S_QUEUE

at the same time. This happens when a message is partially served and is partially scheduled.

116 Supporting Hierarchical Reservations within FTT-SE using Sporadic Servers

6.2 Evaluation

In this section, we perform an experimental validation of our implementation. Beyond showing

the feasibility of the hierarchical sporadic servers framework, we also aim at demonstrating the

superiority of these servers with respect to the polling servers used in [40] concerning their re-

sponse times. Note that with sporadic servers messages can be immediately served whereas with

a polling server a message has to wait until the next periodic replenishment to receive capacity.

Moreover, we also aim at verifying the temporal isolation capabilities of our sporadic HSF. In

our experiments, applications generate asynchronous traffic that is managed through hierarchical

sporadic servers only.

6.2.1 Experimental setup

Our experimental setup consists of one switch, a master station and three slave stations A, C, and

D. It is essentially the same setup used in Section 5.3 for the validation of the polling HSF. Thus,

the results are comparable. Station A contains two applications. These applications have distinct

components and data to send to the other two stations. The applications are managed in the master

node through an ISH where one ISH represents one application. Station C has two applications;

one sending traffic to station A and the other to station D. Station D has only one application that

generates data for station A. This setup is shown in Figure 5.8. Regarding the ISHs that we prepare

in the master station to manage the traffic generated by the applications, configuration of the ISH

in station D is different than the one shown in Figure 5.9. Figure 6.2 shows this arrangement.

❉❴❳ refers to the consumer of traffic generated by the respective applications; for example, in

station A,❉❴❇means that ISH will forward message {m21,m2,m3} to station B. The total number

of messages in the system is 12 and 23 servers are used to manage these message transmissions.

The parameters of servers and messages are given in Table 5.1 and Table 5.2 respectively.

We set the duration of EC = 10ms, and maximum packet transmission time is Mmaxx = 88µs.

The length of the asynchronous window is approximate LW = 50% of the EC.

For faster response, we set server parameters empirically following simple rules, e.g., the

capacity of the parent servers is more than the sum of their child servers. The capacity of each

server is multiple of 88µs i.e., the packet transmission time. Normally, the capacity of each server

is enough to schedule an instance of each of its children. This leads to short response times with

periodic message activations. However, in the case of overload, the server capacities may not

be enough for scheduling all jobs of a particular message stream. In this case, such messages

remain in their queues until capacities become available. The server design problem for sporadic,

deferrable or periodic servers, however, is orthogonal to the current work and it can be solved with

techniques available in the literature [110]. However as noted later, we have done some work in

this direction which we report in Chapter 7 for the design of polling servers, only, since they have

specific synchronization requirements.

6.2 Evaluation 117

6 5 4

3 2

1

10

9 8

7

28

27 26

25

22 21

20

24 23

m3 m2 m1 m5

m4 m15

m14

m13

m12 m11

DC DD DA DD

Station A Station C

34

36 35

37

m20

m19

Station D

SWITCH

DA

Figure 6.2: Independent Server Hierarchies (ISH) prepared for applications in each source station.

6.2.2 Experiments

In our experiments, we measure the response time of the message set when messages are activated

periodically, i.e. every T mit. We consider response time the duration in number of ECs measured

between the EC in which a message request signal is received in the master node and the EC in

which the message is dispatched by the master node ,i.e., included in the Trigger Message for

transmission. Also, we verify that temporal isolation is achieved among message streams that

share the network bandwidth. In particular, we consider three cases:

(a) temporal isolation between messages that belong to the same ISH thus the same application

(b) temporal isolation between messages that belong to different applications but share the same

source node

(c) temporal isolation between message streams that belong to different ISHs but share the desti-

nation.

First, we study case (a) above and we consider an ISH UA-DC that contains message set

{m4,m5}. To create a burstiness in the traffic generation by m5, we activate it with an inter-

arrival time that is shorter than 47 EC, which is its Tmit . We verify that the response time of m4 is

not affected by this change. Moreover, other messages in the network are not affected. Figure 6.3

shows the result for this case.

118 Supporting Hierarchical Reservations within FTT-SE using Sporadic Servers

−10 0 10 20 30 40 50 60
0

500

1000

1500

2000

Time (EC)

N
u
m

b
e
r

o
f
m

e
s
s
a
g
e
s

Messages Inter−activation Time

message 5

message 4

0 20 40 60
0

500

1000

1500

2000
M4 response time

0 20 40 60
0

200

400

600

800
M5 response time

Figure 6.3: Message activations and response time for m4 and m5. m5 has bursty activations

6.3 Summary 119

Next, we show the results of case (b) above; we consider station B that has two ISHs, i.e.,

UB-DC containing message set {m11,m12,m13} and another ISH UB-DA containing message set

{m14,m15}. We make m11 and m13 bursty (generating them with inter-arrival times that are shorter

then their own periodic activation) and verify that {m14,m15} sharing the same source node are

unaffected (Figure 6.4). Note that m13 has longer response times despite being in a separate branch

of the hierarchy. The reason is that its server s22 has a period of 16 EC while the server s21 at the

same level has a period of 8 EC. With RM policy s21 is favored over s22. Also, s21 has a bursty

stream connected to its child server s23. This configuration has the effect of consuming most of the

root server budget and resulting in longer response times for m13. However, the periodic message

m12 in the same ISH is unaffected. In particular, all the messages with periodic arrivals have a short

response time between 1 and 2 EC. This is one order of magnitude improvement with respect to

the polling HSF in Section 5.3.

6.3 Summary

This chapter addressed the implementation of hierarchical sporadic servers on Ethernet using FTT-

SE. We presented the scheduling algorithm explaining in detail the specific replenishment man-

agement policy of hierarchical sporadic servers. Furthermore, we made an experimental validation

of the system. Our results show that temporal isolation is achieved between message streams that

are sharing the network bandwidth. Moreover, we report response times shorter than with the

polling server policy.

120 Supporting Hierarchical Reservations within FTT-SE using Sporadic Servers

0 20 40 60
0

1000

2000
M11 inter−activation time

Time (EC)

n
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

0 20 40 60
0

1000

2000
M11 response time

Time (EC)

0 20 40 60
0

1000

2000
M12 inter−activation time

Time (EC)

n
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

1 2 3 4 5 6 7 8 9 1011
0

1000

2000
M12 response time

Time (EC)

0 20 40 60
0

2000

4000
M13 inter−activation time

Time (EC)

n
u

m
b

e
r

o
f

m
e

s
s
a

g
e

s

0 20 40 60
0

2000

4000
M13 response time

Time (EC)

(a) m11, m12 and m13

0 20 40 60
0

500

1000

1500
M14 inter−activation time

Time (EC)
1 2 3 4 5 6 7 8 9 1011

0

500

1000

1500
M14 response time

Time (EC)

0 20 40 60
0

500

1000

1500

2000
M15 inter−activation time

Time (EC)
1 2 3 4 5 6 7 8 9 1011

0

500

1000

1500

2000
M15 response time

Time (EC)

(b) m14 and m15

Figure 6.4: Bursty activations in m11 and m13 do not impact the response time of other messages
in the source station i.e. station B

Chapter 7

Design of Reservations

In previous chapters, we studied the feasibility of using network reservations with a Hierarchical

Scheduling Framework (HSF) to support the design of complex systems. Reservation interfaces

were manually chosen, potentially leading to inefficient resource utilisation. Moreover, when

system size grows, choosing server interfaces that are adequate for system schedulability becomes

a complex problem. This chapter presents an approach to design interfaces for reservations. We

aim to build interfaces that are tight, i.e. provide the least capacity which is sufficient for a given

workload schedulability. We focus on the design of polling servers in the hierarchies, applied to

FTT-SE. We also validate our approach with extensive simulations using random message sets

and hierarchies. Our approach to server design differs from other works in the literature on the

same topic [110, 111, 112, 113, 143], because we consider non-preemptive packet scheduling

and hierarchical polling servers. In particular, our approach focuses on meeting the following

objectives:

(a) Guaranteeing that message deadlines are met.

(b) Generating tight server interfaces to ensure efficient use of the bandwidth (i.e., a minor

decrease in the server capacity at any level of the hierarchy will create a deadline miss).

The chapter is organised as follows. Section 7.1 lists some considerations particular to the schedul-

ing of hierarchial polling servers. This section also describes the system model and details the

approach for designing server interfaces. Section 7.2 presents the experimental evaluation from

our implementation. Finally, in Section 7.3 we give a summary of this chapter.

7.1 Server Design for Hierarchical Polling Servers

An important design consideration when designing a hierarchical set of servers is the use of the

polling server policy (Figure 7.1). A polling server immediately discards its budget if it cannot

schedule a child server. And, for a message to be served in an HSF, all the servers along the

path from the leaf to the root server must be scheduled. For this reason, server periods along the

path must be multiples of each other and in phase (condition 7.4). Otherwise, we may have a

121

122 Design of Reservations

situation in which messages receive bandwidth only at Least Common Multiple (LCM) of server

periods on their path, which can typically lead to deadline misses, or they may not receive any

bandwidth at all if the servers in the path are harmonic but are out of phase. Moreover, the

constraint on simultaneous activation of all servers on any path of the hierarchy, typically leads to

a strict periodicity requirement at the root level, i.e., without any jitter. This is a strong constraint

for schedulability that, nevertheless, is typical in time-triggered communication schedules.

25

26 27

28 29 30

AS_53 AS_54 AS_55

AS_56

Figure 7.1: An example hierarchy with six servers {25 · · · 30}) and four message streams
{AS53 · · · AS56}

7.1.1 Modified system model

In what concerns the modelling of servers and message streams, we follow a slightly modified

approach with respect to the model used in Chapters 5 and 6 as shown further on. A large message

stream may generate several packets, which have a size of MTU (maximum transmission unit)

bytes except for the last packet that can be smaller. The MTU value can be configured to determine

the number of packets needed. Also note that, given the non-preemptive packets transmission,

the MTU value determines the blocking that lower priority packets can cause to higher priority

transmissions.

We consider N asynchronous streams (ASx), modeled as sporadic according to expression 7.1,

where Cx is the message transmission time of a stream ASx that includes all overheads, T mitx

represents the respective minimum interarrival time and Dx the deadline, which we consider equal

to T mitx. Px identifies the parent server, i.e, the server to which the stream is connected to, and RTx

is its computed response time. For the convenience of notation, we define Ĉx as the corresponding

message size in bytes, i.e., its original transmission requirement, C̃x as the corresponding message

size in the number of packets and T̃ mitx as the message minimum interarrival time expressed in

FTT-SE elementary cycles (EC).

ASx = (Cx,T mitx,Px,RTx,Dx) (7.1)

7.1 Server Design for Hierarchical Polling Servers 123

A server Srvx is characterized in expression 7.2 by its capacity Cx, replenishment period Tx,

deadline Dx to provide its full capacity when requested. Moreover, the server Srvx is associated

with a parent server Px and a corresponding computed upper bound on response time RTx. Despite

the similarity between the characterisation of servers and streams, there is a fundamental differ-

ence; streams would use the actual transmission time on the network, whereas servers merely

characterize a reservation of the network resource. We add one more attribute, Listx, to the model

of a server, which is the list of its child servers.

Srvx = (Cx,Tx,Listx,Px,RTx,Dx) (7.2)

Similarly to the streams model, we also define for convenience Ĉx as the corresponding server

capacity in bytes, C̃x as the corresponding capacity in the number of packets of MTU size and T̃x as

the replenishing period expressed in the number of EC. We are, thus, considering that the servers

provide their capacity as integer multiples of the maximum size packet and with a period that is

an integer multiple of the protocol EC.

7.1.2 Generating server interfaces

The presented approach has two steps. In the first step we generate interfaces for leaf servers

and in the second step we generate intermediate and root server interfaces. The design approach

aims to create server periods along the path that are multiples of each other and in phase. In the

following, we formalize this condition.

Let us consider the stream ASi which has the parent Pi (a leaf server in the hierarchy) and n is the

number of levels in the hierarchy. Let pathi denote the path in the server hierarchy that we use for

scheduling ASi. This path contains the leaf server where ASi is connected and the parent servers

upto the root of the hierarchy. Without loss of generality, we can refer root server to be at level

1 and the leaf servers at level n considering all branches of same depth (otherwise, consider any

shorter branch extended with servers equal to its leaf until fulfilling the previous requirement).

Then, to define pathi, we use an auxiliary element v which represents a parent server in the path,

and Par(x) returns the parent server for element vx, i.e., Par(vx) = Px. Equation 7.3 gives the path

used by ASi whereas the condition for the multiplicity of periods along this path is formalized

in 7.4.

124 Design of Reservations

v0 = Pi

vk = Srvg | Srvg = Par(vk−1) ∀k ∈ {1 · · ·n−1}

pathi =
n−1
⋃

i=0

vi (7.3)

Thus, the condition that we are interested in is given by the following expression:

∀vx,vy ∈ pathi Tx = hTy ∧ x < y ∧ h ∈ N (7.4)

7.1.2.1 Interfaces for leaf servers

Given a message stream ASx having the transmission requirement Cx and period T mitx, we describe

an approach to generate candidate interfaces (C̃, T̃) to connect to its parent server Px, where C̃ is the

transmission capacity in MTU packets and T̃ is the replenishing period in number of elementary

cycles.

Eq. 7.5 computes the number of packets that a parent server Srvx shall handle per instance of a

connected message stream.

C̃x =

⌈

Ĉx

MTU

⌉

(packets) (7.5)

Given that the stream ASx will generate C̃x number of packets, at most, in a T mitx interval, we

can consider multiple interfaces (c̃i,x, t̃i,x) with c̃i,x ∈ {1 · · ·C̃x}, so that the original bandwidth

requirement is respected (condition 7.6) where CMTU is the time taken to transmit one MTU and

LEC is the duration of the EC.

∀i ∈ {1 · · ·C̃x}, c̃i,x/t̃i,x×CMTU/LEC >=Cx/T mitx (7.6)

To respect condition 7.6 the values for t̃i,x should be computed as in expression 7.7.

Note that all so generated interfaces in the list Inter f acex (Eq. 7.8) meet the original transmission

request of ASx and can be used for its parent server Px. This procedure can be applied to all leaf

servers in the hierarchy. The list of candidate interfaces Inter f acex may contain pairs having the

same t̃i,x value for different c̃i,x values. For such a case, the presented approach keeps the pair with

the minimum c̃i,x value and eliminates the remaining pairs.

t̃i,x =









T̃ mitx
⌈

C̃x

i

⌉







 (EC) (7.7)

Inter f acex =
{

(c̃i,x, t̃i,x) : ∀i ∈ {1 · · ·C̃x}
}

(7.8)

7.1 Server Design for Hierarchical Polling Servers 125

7.1.2.2 Interfaces for intermediate servers

In the next step, we derive the interfaces for the intermediate and root servers of the hierarchy.

This is done by composing the individual interface at each leaf server such that the corresponding

parent interface can meet the combined demand of all the child servers.

Following our approach, for each intermediate server in the hierarchy we explore the space of

Inter f acek of all its users (child servers) computing the greatest common divisor (GCD) of periods

for each composition of child interfaces.

We then pick the child interfaces whose periods produce the maximum GCD. The maximum GCD

value computed above is taken as the period of the parent server being designed and its capacity is

the sum of the capacities of the corresponding child interfaces.

To develop our approach, we define the lists Tk and Ck as given in expression 7.9 and 7.10. These

lists contain, respectively, the t̃i,k and c̃i,k values of all the interface candidates in Inter f acek.

Tk = {t̃i,k : t̃i,k ∈ Inter f acek∀i ∈ {1 · · ·C̃k}} (7.9)

Ck = {c̃i,k : c̃i,k ∈ Inter f acek∀i ∈ {1 · · ·C̃k}} (7.10)

Then, for Srvx we define Sx (Eq. 7.11) as the space of all possible combinations of the interfaces

of the respective Nx child servers (note that Nx is the cardinality of Listx).

Sx = {(C1,T1)×·· ·× (CNx
,TNx

)} (7.11)

Note that, when the child servers are leaf servers, the cardinality of Sx is upper bounded by
Nx

∏
k=1

C̃k.

However, for higher levels in which there is no leaf server in Listx, then Sx is restricted to a single

combination.

Once we have defined Sx we now define the set Dx (Eq. 7.12) which contains the GCD of the

periods of all combinations in Sx. Note that both c and t are vectors with Nx dimensions.

Dx = {GCD(t) ∀(c, t) ∈ Sx} (7.12)

Finally, if (cv, tv) is the point in Sx that corresponds to the maximum element in Dx, then the

interface for an intermediate or root server Ix can be defined as in Eq. 7.13.

Ix = (Sum(cv),GCD(tv))∧ (cv, tv) : GCD(tv) = max(Dx) (7.13)

7.1.2.3 Illustrative example

We consider an example to understand the presented approach. Consider a scenario as shown in

Fig. 7.1. This is an example hierarchy that has six servers {Srv25, · · · ,Srv30} and four message

126 Design of Reservations

streams {AS53, · · · ,AS56}. Table 7.1 lists the parameters for the given message set. The size of

MTU is ĈMTU = 1492B or CMTU = 128 µs at 100 Mbit/s. Note that the transmission times already

account for all packet transmission overheads.

Using Equations 7.5 – 7.8, we generate candidate interfaces at the leaf servers where mes-

Table 7.1: Message Parameters

Id(x) T̃ mitx (EC) Ĉx (B) Cx µs C̃x

AS53 38 7065 613 5
AS54 25 3393 300 3
AS55 54 6341 555 5
AS56 60 2715 236 2

sage streams are connected. Let us consider the case of AS53; using Eq. 7.5, first we find it has
⌈

7065
1492

⌉

= 5 packets. Then, we find what interface shall Srv28 have considering that it schedules

from 1 to 5 packets at each scheduling instant. We explain these cases in turn:

If Srv28 serves a single packet (c̃1,53) then, t̃1,53 =

⌊

38
⌈ 5

1⌉

⌋

= 7 and hence the resulting interface

(1,7) can fulfil the AS53 demand;

if Srv28 serves two packets (c̃2,53) then, t̃2,53 =

⌊

38
⌈ 5

2⌉

⌋

= 12, interface is (2,12), and so on (Fig-

ure 7.2). We can see in Figure 7.2 (top) an instance of AS53 arriving at t = 0 and its deadline is at

t = 38. Then, we have a timeline for five different interfaces for Srv28. While, all these interfaces

can fulfill the transmission request, there is a trade-off between server utilization and message

response time. Also, the leaf servers are composed at the intermediate and root levels. And, the

interface at leaf is chosen in such a way that combined resource requirement at the root level is

optimized.

Table 7.2 lists the interface candidates for the leaf servers.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

 0 7 14 21 28 35 38 39 40

 0 12 24 36 38 39 40

0 19 38 39 40

 0 19 38 39 40

 0 38 39 40

server interface : (1, 7)

server interface : (2, 12)

server interface : (3, 19)

server interface : (4, 19)

server interface : (5, 38)

AS_53

5 MTU packets

deadline 38 EC

Figure 7.2: Different candidate interfaces for Srv28 to schedule AS53

7.1 Server Design for Hierarchical Polling Servers 127

In the next step, we derive the interface for the intermediate server i.e., Srv26 as well as choose an

Table 7.2: Interface candidates for leaf servers

Id(x) Inter f acex (packets, # EC)

Srv28 (1, 7), (2, 12), (3, 19), (4, 19), (5, 38)
Srv29 (1, 8), (2, 12), (3, 25)
Srv30 (1, 10), (2, 18), (3, 27), (4, 27), (5, 54)
Srv27 (1, 30), (2, 60)

interface for the leaf servers from their respective candidate interfaces. Let us consider the server

Srv26 with List26 = {Srv28,Srv29,Srv30}. Using expression 7.12 and Eq. 7.13, we choose the com-

bination that gives the maximum GCD. In this example, we obtain (2,12) for Srv28, (2,12) for

Srv29 and (2,18) for Srv30 meaning 2 MTU packets every 12 or 18 EC, which maximizes the GCD

among all period combinations, giving the gcd value of 6 EC.

And, then using Eq. 7.13, the interface at Srv28 is taken as (2+2+2,gcd(12,12,18)) or (6,6) i.e.,

6 MTU packets every 6 EC. The leaf Srv27 have no sibling servers, hence, we choose interface

(1,30) at Srv27.

Finally for the root server, we compose interfaces from Srv26 and Srv27. At this step, we sum up

the capacities from child interfaces and the period is chosen as the GCD of the periods from each

child. Thus the interface for the root server of the hierarchy Srv25 is (6+1,GCD(6,30)) or (7,6)

which translates into 7 MTU packets as the server capacity and 6 EC as its period. We refer to

the design approach as rational approach. Figure 7.3 depicts the interface composition for the

presented example using this approach.

Figure 7.3: Interface composition with rational approach

128 Design of Reservations

7.1.2.4 Schedulability issues

In what concerns schedulability, two base assumptions are fundamental to this work, namely the

strict periodicity of the root servers and the periods of the servers along each branch of the hierar-

chy being integer multiples of each other.

Starting from the leaf servers, the way we construct the interfaces, under strict periodicity, assures

that every message stream ASx will always get at least Cx service within T mitx, thus allowing it to

meet its deadline.

Then, when we compose several intermediate servers, the composition rules we follow, together

with the strict periodicity constraint, also guarantee that any user, Srvx or ASx, receives a service at

least equal to Cx within its T mitx. Note that T mitx is an integer multiple of the intermediate server

period and provides, in each activation, service equal to the sum of all capacities or execution

requirements of its users.

Therefore, our method assures schedulability as long as total utilization of the root servers is less

than 1.

7.2 Evaluation

We aim to verify that the message sets are schedulable with the presented approach and a large

percentage of messages is scheduled close to the respective deadlines. This indicates that the

approach assigns tight capacities to the servers.

We test our approach with simulation and randomly generated message sets and hierarchies.

The simulator executes the actual traffic scheduling EC by EC, exactly as the real operation of

the protocol and thus we consider it accurate. Message activation pattern is sporadic where we

enforce at least T mit separation between consecutive activations. The specific activation instants

are chosen randomly with uniform distribution between 0 and T̃ mit− 1 after the enforced T mit

separation to the previous activation. The duration of EC is 20 ms, and length of the asynchronous

window is 90% of the EC. Message period is chosen between 10 and 65 EC, and duration between

128µs to 896µs, i.e., 1 and 7 MTU packets. Deadline for each message is equal to its period.

We run our simulation with a large dataset comprising 1198 message sets where each message

set can comprise up to 72 messages depending on the configuration (hierarchies) generated for a

particular simulation run. We then observe the message response times.

7.2.1 The worst-case behavior

In this experiment, we measure the minimum time to deadline upon completion of message trans-

mission. It shows how close the response times are to the message deadlines. Let us consider

a message set M with n message streams. For each message stream ASi ∈ M (1 ≤ i ≤ n), first,

we log the time to the deadline for each of its scheduling instances, and we keep the minimum

in min_ttd_i. Then we save all observed minimum values for all n variables in a list T T Dmin.

Finally, we take the minimum time to the deadline for M, i.e., min(T T Dmin). With each message

7.2 Evaluation 129

Figure 7.4: Minimum time to the deadline for the message sets

set, first we check its schedulability; next, we decrease the capacities assigned to all servers by 1%

and rerun the simulation while keeping the same configuration (i.e. hierarchies and message sets).

Fig. 7.4 shows the results. We can see on top that with the proposed design approach 98% of the

message sets have at least one message with a response time 1 EC away from the deadline, and

with a 1% decrease in server capacities we observe a system saturation, with big deadline misses.

This is an empirical confirmation that our approach generates tight interfaces.

7.2.2 The average case behavior

Since each message in the set may have a different period, we normalize the response time value

for a particular message with respect to its period as follows:

nrtx = (RTx/T mitx)∗100

where RTx is the mean response time among all instances of the message stream ASx. The

value nrtx is saved in the list NRT mean that contains the average values for all messages in the

respective set. Then, we compute the average normalised response time for the message set as

mean(NRT mean), and we plot the histogram of these values for all message sets in Fig. 7.6.

Larger values indicate messages are scheduled closer to the respective deadlines, thus with less

slack indicating a tighter schedule. We can see that for 90% of the message sets the average

130 Design of Reservations

response times are above 70% of the respective deadlines. To present the effectiveness of this

approach, we also compare the average results with those obtained with a naive approach. In this

approach, leaf server’s interface is generated directly from the connected message stream model,

i.e., (Cx,T mitx). Then for the intermediate/root servers, the interface capacity is taken as the sum

of child interface capacities and the period is the gcd of child interface periods. Figure 7.5 shows

the interface composition using the naive approach for the example ISH given in Section 7.1.2.3.

Using the naive approach, we see that message sets have average response times no larger than

50% of the respective deadlines.

Figure 7.5: Interface composition with naive approach

7.2.3 Root server utilization

The interface at root server in a hierarchy abstracts the combined resource requirement from all

the connected streams in that hierarchy. For each simulation run, the message set is scheduled

with a set of hierarchies (1 or more). We compute the total root server utilization for all the

hierarchies. If this value goes beyond 100%, then the approach aborts. We plot the histograms for

bandwidth taken by the root servers for all message sets in Fig. 7.7. We can see that , on average,

the proposed approach leads to root servers that require less than half of the bandwidth requested

by the naive approach. This result also explains the difference in average normalized response

time, and it is consistent with the observed tightness of the server interfaces designed with the

proposed method. Therefore, the proposed method leads to a substantially more efficient design

than a naive approach as described. The reason is the better packing of servers that the proposed

method offers.

7.3 Summary 131

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

Average response times per set as percentage of deadlines

N
u

m
b

e
r

o
f

m
e

s
s

a
g

e
 s

e
ts

Normalized response time

Algorithm

0 10 20 30 40 50 60 70 80 90 100
0

500

1000

Average response times per set as percentage of deadlines

N
u

m
b

e
r

o
f

m
e

s
s

a
g

e
 s

e
ts

Normalized response time

Naive Approach

Figure 7.6: Distribution of average response time as percentage of deadline over all message sets

7.3 Summary

In this work, we presented an approach for server design in a multi-level hierarchical server-based

architecture over Ethernet with FTT-SE. We considered the polling server policy and the non-

preemptive nature of packet scheduling. Our results indicate that message sets are schedulable

with the proposed interfaces, and in general message response times are close to the deadlines.

Given an independently generated workload, we observed that the approach assigned tight server

interfaces, i.e., with low slack. In fact, a decrease in server capacities as small as 1% saturates

the system leading to strong deadline misses. This points in the direction of an HSF design that

requests the least system resources.

132 Design of Reservations

Figure 7.7: Total utilization of the root servers per message set

Chapter 8

Experimenting with Hierarchical

Reservations on FTT-SE

In this chapter, we present the experimental framework that we used for generating large, random

test data sets and server hierarchies. Such data is used for verification of hierarchical server-based

scheduling strategies. From the implementation point-of-view, FTT-SE has a layered structure

with three layers namely Interface, Management and Core layer. The protocol basic communica-

tion mechanisms such as transmission control and traffic scheduling are implemented within the

core layer [137]. In our experiments, we used a simplified structure that bypasses the first two

protocol layers and interacts directly with the core layer. Figure 8.1 shows a layered view of the

protocol structure and also depicts the level at which the simulator works. With such setting, a

sample test configuration can be used simultaneously to evaluate the traffic scheduling within the

FTT-SE core layer and analyse the corresponding scheduling strategy. This helps to verify the

system timing. In this chapter, we describe design principles and implementation aspects of the

simulator, and at the end, we discuss the design flow of applications using our HSF and how they

can be deployed.

8.1 Components of the Experimental Framework

For our experimental framework, focused on traffic scheduling with multi-level server hierarchies,

we defined the following essential capabilities as requirements:

(a) Specifying the structure of hierarchies

(b) Generating application messages

(c) Filling in the hierarchies with server parameters

(d) Generating a repository of server messages

(e) Processing hierarchies (message scheduling) upon events such as message activations and

server replenishments

133

134 Experimenting with Hierarchical Reservations on FTT-SE

Application

Interface

Management

Core

Switched Ethernet

F
T

T
-S

E

Switched Ethernet

Simulator

Core Analysis

F
T

T
-S

E
Figure 8.1: FTT-SE internal layering (left) and experimental platform (right)

8.1.1 Structure of hierarchies

Multi-level hierarchies exist in the form of a tree structure which we refer to as an Independent

Server Hierarchy (ISH). Within an ISH, the bandwidth allocated to the root server can be parti-

tioned at different levels, partitions being allocated to different logical sub-groups. We manage

the communication of an application with one ISH. Then, different streams in that application can

be assigned to different parts of the ISH. It becomes explicit that the application and hence the

individual streams therein have the same communication endpoints, i.e., source and destination.

The ISH representation and corresponding implementation follows the concept of adjacency list

which is commonly used to represent directed graphs. The code listing (see Listing 8.1) shows

a partial view of the structure of an ISH. Notice the presence of two I_Ptr fields namely list and

parent; any node in the hierarchy can have several child nodes and ith child is indexed in list[i];

a reference to the parent of any node in the hierarchy is given by a parent. I_Ptr is a pointer

of the type ish_node. In other fields item is the unique id of a given node, num_child_nodes is

the number of child servers and type defines if it is a ROOT, INTERMEDIATE or a LEAF server.

Listing 8.1: The structure representing an ISH node

s t r ✉ ❝ t ✐s❤❴♥♦❞❡

④

✐ ♥ t ✐t❡♠ ❀

■❴Ptr ❧ ✐ s t ❬▼❆❳❴❈❖▲❙✲ ✶ ❪ ❀

■❴Ptr ♣❛r❡♥t ❀

✐ ♥ t ♥✉♠❴❝❤✐❧❞❴♥♦❞❡s ❀

■❙❍❴◆❖❉❊❴❚❨P❊ t②♣❡ ❀

⑥

An adjacency list representation for a graph associates each vertex in the graph with the collec-

tion of its neighbouring vertices. For example, Figure 8.2 shows an adjacency list representation

(right) for an example ISH with 5 servers (left). Notice the pointer to the parent and the list of

8.1 Components of the Experimental Framework 135

child nodes. MAX_COLS given in Listing 8.1 is defined as 4 and hence we assume a maximum

of 3 child nodes per server (MAX_COLS−1). The hierarchical structures are randomly generated

with the possibility that no child server is generated which we indicate by a 0 in the adjacency

table, and this will be a null child in the ISH. The leaf nodes have all null children, represented by

0 entry in the corresponding adjacency tables, e.g., nodes 8, 44 and 23).

13 23 021

13 8 44 0

0 0 08

0 0 044

0 0 023

(a) Adjacency list

21

13 23

8 44

(b) Corresponding ISH

Figure 8.2: Adjacency list represenation for an ISH

8.1.2 Generating application message set

In our system, there may exist messages that are scheduled with servers, and other messages that

are scheduled directly through the system level scheduler (refer Section 5.1.3). In this case, the

application message set is generated differently, the difference being that server-based traffic needs

mapping to a server in the system. We describe here the case of server-based traffic. We generate

application messages and associate these to servers in our system. Messages are associated with

leaf servers only. Given the list of available leaf servers, we associate one message per leaf. The

total size of the message set thus equals the number of leaf servers in the system. In this work, we

make no preference concerning the ISH, or server in that ISH, to which each message is mapped.

The algorithm to generate a message set is shown in Algorithm 5. This algorithm assumes that

hierarchies (structures) have been prepared and are stored in the ISH database, which yet contains

only the skeleton, i.e., structures with ids of the servers already specified. The algorithm picks

next ISH from the database (element in line 5), and retrieves the list of its leaf servers (leaf_set

in line 6). Then, it generates an application message corresponding to each leaf server in the

ISH, assigning attributes such as period, deadline etc. (lines 8-15). The message inherits the

communication endpoints, i.e., source and destination, from the connected server (line 15).

136 Experimenting with Hierarchical Reservations on FTT-SE

Algorithm 5 Generating a message set, server-based traffic

1: function MSG_prepareSet()
2: msg_id← get_max_id_used() + 2 ⊲ generate a unique message id
3: j← 0

4: while j < ISH_db_getSize() do

5: element = ISH_db_getElementbyIndex(j)
6: leaf_set← element.leaf_array
7: for each item u in leaf_set do

8: msg_id←msg_id+1
9: set_maximum_id(msg_id)

10: msg_size← random(MTU,7×MTU)
11: msg_period← random(10,70)
12: msg_deadline←msg_period

13: msg_producer← element.source
14: msg_consumer← element.destination
15: msg_server← u
16: j← j+1

8.1.3 Filling in server parameters

We can choose the interfaces for servers in a multi-level hierarchical structure according to three

approaches with different complexity. These approaches are so-called the random composition,

the rational composition, and the naive composition approach. We have described the latter two

methods in Chapter 7. The random composition approach is based on heuristics and will not

always generate efficient interfaces or schedules without deadline misses. In our system, the mes-

sage size comprises a specified number of packets (a packet is the size of an MTU) chosen

randomly within a given range (for instance, between 1 and 7 MTU packets). Also, since only one

stream is connected per leaf server, and at run-time, we do not know which is the size of stream

(owing to the random selection), then, we can either choose an interface at the leaf server with a

capacity larger than the maximum stream size (for instance, over 7 MTU packets) and may po-

tentially incur wasted bandwidth when the size of associated stream is smaller, or we may choose

random capacity of the server in the same range (the one used to generate the stream), and incur

missed deadlines when the corresponding stream size is larger. For small systems, however, we

can set server parameters such that the capacity of the server is enough to schedule an instance of

the stream, and follow simple composition rules, e.g., the capacity of the parent servers is more

than the sum of their child servers. However, this approach is hard to accomplish when we have

large systems with several applications.

8.1.4 Repository of servers

The servers repository is the database of existing servers in the system. For any server in the sys-

tem, there is a corresponding entry in the repository that maintains a view of that server static and

8.1 Components of the Experimental Framework 137

dynamic attributes. Static attributes include period, budget, id, level in the hierarchy and commu-

nication end-points, whereas dynamic information includes its current capacity, finish status, state

and overrun flag. Each server with its attributes that include the interface created in the previous

step is stored in the repository, which is used by the system scheduler during system execution.

8.1.5 Message activations

In our system, message activations can be periodic or sporadic. Additionally, we can induce

bursts in a randomly chosen subset of the messages. The algorithm to activate the message set

is shown in Algorithm 6. Each simulation is run for a configurable number of cyles, denoted

simulation_cycles. Other input parameters include the message set MSG, its size sz and the acti-

vation option indicating whether the messages will be activated periodically or sporadically given

respectively with PERIODIC or SPORADIC. The algorithm to generate periodic activations is

simple; given the total number of simulation cycle and message k period, we find the total acti-

vation instants (line 3) for message k. Then, the array ACT[k] will contain the actual activation

instants for MSG[k] (line 8). With sporadic activations, the inter-arrival time between successive

instances of a message is chosen randomly in the interval (Tk, 2Tk−1) where Tk is the message

k period (lines 9 - 11).

The principle of the algorithm is to prepare arrays with corresponding activation instants for

each message and carry out message activations at specified instants during the system run. In

particular, during each cycle, we increment a counter h. For each message, we perform a binary

search in its activation array using the C library function bsearch. This function searches an

array of NUM_ACT[k] objects, the initial member of which is pointed to by the base ACT[k],

for a member that matches the object pointed to, by h. The size of each member of the array is

specified by function second last argument, whereas the last argument is the function to compare

two elements. When there is a matching activation in the cycle h, the message is activated (lines 13

- 17). After the pending activations for the current cycle have been updated, the scheduler is

invoked.

To account for the messages with bursty activations, we have formulated a method to create

bursts in randomly chosen messages, denoted by num_bursty in Algorithm 7. An important com-

ponent of the algorithm is the array seq which contains the indices of the messages in MSG. We

randomise the contents of this array (line 5), and then we choose the first num_bursty elements

from this array. These are the indices of the messages from MSG that we shall induce bursts in.

The routine check_if_in_seq checks for a message at index k if it belongs in the first num_bursty

elements of seq (lines 7 and 10). For a bursty message, the method involves increasing the size of

NUM_ACT array. In our settings, we increase the size 3 times or 200%. Next, for preparing the

ACT array, we prepare the successive activations instants which are chosen randomly such that

separated by Tk/2 or smaller (line 15). To reflect a different bursty pattern, we can change the

parameter num_bursty or the size of the array NUM_ACT in line 8.

Algorithm 7 is used in combination with Algorithm 6 where an additional flag in Algorithm 6

can control whether the bursty behavior is simulated.

138 Experimenting with Hierarchical Reservations on FTT-SE

Algorithm 6 Message activations

Input: MSG,sz,act_option
1: procedure activate_message_set ⊲ activating the message set
2: while k < sz do

3: NUM_ACT[k] = simulation_cycles/MSG[k].msg_period

4: k← k+1
5: while k < sz do

6: r← 0
7: for g in NUM_ACT[k] do

8: ACT[k][g]← g×MSG[k].msg_period

9: if act_option = SPORADIC then

10: r← r+ random(0,MSG[k].msg_period−1)
11: ACT[k][g]← ACT[k][g]+ r
12: h← 0
13: while h < simulation_cycles do

14: for k in 0 : sz−1 do

15: item = bsearch(&h,ACT[k],NUM_ACT[k],sizeof(int),cmpfunc)
16: if item ! = NULL then

17: MDB_update_status(MSG[k].msg_id)
18: invoke_scheduler()
19: h← h+1

prepare
activation

instants for
each message,

periodic or
sporadic

Algorithm 7 Formulating the bursty activations

Input: num_bursty,sz
1: procedure induce_burst ⊲ inducing bursty behavior
2: while m < sz do

3: seq[m]←m
4: m←m+1
5: randomize_seq(seq,sz)
6: for k in 0 : sz−1 do

7: if check_if_in_seq(k,seq,num_bursty) then

8: NUM_ACT[k]← (NUM_ACT[k]×200)/100
9: for k in 0 : sz−1 do

10: if check_if_in_seq(k,seq,num_bursty) then

11: f← 0
12: ACT[k][0]←MSG[k].msg_period

13: for g in 1 : NUM_ACT[k]−1 do

14: f← random(0,MSG[k].msg_period/2)
15: ACT[k][g]← ACT[k][g−1]+ f

8.2 Application Design and Execution Flow 139

Following the message activations, the system scheduler is invoked; it inspects the system

databases and schedules all the traffic (server-related and legacy traffic) in each cycle (Algorithm 6,

line 18). The system scheduler will process the hierarchies according to the algorithms detailed in

Chapter 5, and Chapter 6.

8.2 Application Design and Execution Flow

For a random simulation of our system, we specify two important arguments to the simulator,

namely, the maximum number of slave stations in the network, and the maximum number of ISHs

on each slave. These two arguments can determine the maximum number of messages in the

system. For instance, in a particular simulation, where we choose 3 slave stations and 3 ISHs

per slave, we can have a maximum of 9 ISHs. Then, considering other implementation specific

configurations (i.e., maximum of 3 levels in the hierarchy and a maximum of 3 child nodes for

a given parent server node), we can have 9 messages in one ISH, and hence, for this example

configuration, we will have 81 messages in total. Figure 8.3 shows how our framework is used.

Here, we assume that the two main arguments (number of slaves and ISHs) have been passed to

the program. The figure depicts the design and execution flow divided into two main phases, the

system setup phase and the system execution phase. By system execution, we refer to the schedule

building by the FTT-SE master in successive elementary cycles.

Notice the separation between the application program and the FTT-SE core layer. The appli-

cation program builds the main components of the system such as message sets, hierarchies and

servers. Moreover, the server design logic is contained on the application side. However, an HSF

demands to build two additional databases within FTT-SE core. These databases are the server

repository (Section 8.1.4) which stores information regarding all the servers in the system, and

the server hierarchy database. The latter is instrumental in establishing relations between differ-

ent servers in the system. For instance, we consult the hierarchy database to ask such questions

as, which hierarchy does the server belong to, or which are the child nodes or the parent node

of a given server. During the system setup, the application program can create and update these

databases within the core through specific calls as shown in Figure 8.3. During the system exe-

cution, messages are activated, and scheduler is invoked. The scheduler enforces the principles

of hierarchical server-based scheduling concerning capacity consumption, server replenishment

management, and prepares transmission schedules.

For experimentation purposes, sometimes, it is necessary to rerun the system by changing some

parts of the configuration while keeping other parts of the configuration constant. For example,

in server design approach (refer Chapter 7), initially, we run the system with sample hierarchies.

Next, we keep the same message set and hierarchies but change the server capacities by a cer-

tain value, and we rerun the system. Our purpose is to understand the impact on the application

response time. This exercise requires storing the system configuration and then using it for subse-

quent runs of the system. This is challenging when our system consists of several input data that

140 Experimenting with Hierarchical Reservations on FTT-SE

are required for its functioning. Our simulator supports this functionality. We can pass specific ar-

guments to the simulator, so that, it can either run a fresh simulation, or the one based on previous

input data.

Application FTT-SE Core

prepare hierarchy structures

prepare message sets

populate hierarchies

initialize core modules

server repositoryupdate server database

prepare server queues

add message sets in system db SRDBupdate system requirement db

add filled up hierarchies
hierarchy database

update server hierarchy db

activate message set system scheduler

process hierarchies

manage server replenishments

invoke scheduler

close modules

se
tu

p
th

e
sy

st
em

ru
n

th
e

sy
st

em

Figure 8.3: Application design and execution flow with HSF within FTT-SE

8.3 Summary

In this chapter, we presented essential elements of the experimental framework that generates

large, random message sets and hierarchies. We briefly described the hierarchical server structures,

8.3 Summary 141

interface composition rules, message set generation and activation principles. We also showed

how the experimental framework integrates with the FTT-SE core layer. Finally, this chapter

showed the design flow required to build applications for implementing hierarchical server-based

scheduling strategies as part of the FTT-SE master scheduler. In particular, we described the

specific repositories and highlighted important interactions between the application program and

the FTT-SE core to achieve this objective.

142 Experimenting with Hierarchical Reservations on FTT-SE

Chapter 9

Conclusion and Future Work

This chapter summarises the insights and findings of this thesis and outlines potential directions

for further research on the topic.

CPS present an integrated view of systems made of tightly integrated, heterogeneous components

consolidating control and communications with the physical environment. Such systems exceed

in scope and potential today’s embedded systems that are more focused on the computational plat-

form, only. CPS rely on the support from several areas including, but not limited to, networks,

control, security etc. Concerning the work presented in this thesis, we argued that the under-

lying communication network is an essential element to realise the objective of CPS. Thus, we

investigated techniques that allow efficient use of the network resource. The following important

considerations underline the importance of such communication design techniques.

- critical functions, frequently realised through distributed transactions on the network, must

satisfy specific timing requirements

- applications may access the medium in several possible heterogeneous manners (e.g., short

or long interarrival times, burstiness, higher or lower bandwidth requirements)

- dynamic behaviour of the system must be supported, i.e., failing links, changing application

requirements

We proposed to address these challenges using the resource reservation techniques, enforced with

server-based scheduling. This thesis set out to explore the topic of resource reservation in net-

works for complex and dynamic distributed embedded systems. We started with the scope of

the work, the motivation, and the associated research work. In Chapter 2, we explored several

real-time Ethernet-based technologies that are enablers of efficient communications for modern

CPS. Following a qualitative comparison based on some fundamental aspects impacting on com-

munications, we concluded that FTT-SE better fits our work. In Chapter 3, we surveyed common

server-based scheduling techniques, their hierarchical composition and how they should be adapt-

ed/reconfigured to support dynamic Quality of Service. The other Chapters, from 4 to 7, include

our main contributions that validate our thesis, namely the assessment of the efficiency of flat na-

tive reservations within FTT-SE, implementation of a hierarchical scheduling framework based on

143

144 Conclusion and Future Work

polling and sporadic servers in the context of the FTT-SE, and a method to design the reservations

considering polling servers. Chapter 8 includes a practical contribution to the design and execution

of applications based on multi-level hierarchies of servers.

9.1 Thesis validation

In Chapter 1, we stated the thesis supported by this dissertation as follows:

The resource reservation paradigm is an effective means to segregate the communications

from multiple heterogeneous applications in a distributed embedded system, potentially with

mixed criticality levels, diverse real-time requirements and evolving configurations, thus

supporting composability. In particular, we claim that this paradigm can be efficiently de-

ployed over Ethernet, using the FTT-SE protocol, providing multiple levels of traffic isola-

tion and constrained latency guarantees.

We showed the validity of this claim in two parts. Firstly, we focused on simple sporadic

reservations or flat servers. These servers control the burstiness in respective messages such that

the inter-transmission time of the message is never less than the server period. Thus, these reserva-

tions shape the traffic submitted by individual streams, in that, other messages remain unaffected

regarding their response times, whenever one or more messages arrive in bursts. This isolation

was established in Chapter 4, together with an analytic worst-case delay model that was shown to

be efficient in the sense that it captured the exact worst-case in a relatively large fraction of the

messages in random sets, with residual cases of large deviations.

The study in Chapter 4 also provides the system designers with specific guidelines regarding the

impact of the system configuration (either network, protocol or workload parameters) on the re-

source efficiency.

Concerning workload parameters, we changed message periods in two ways, experimenting with

harmonic or prime periods, or using message set periods in different ranges.

For the first experiment, the analysis estimates were more accurate for messages with prime pe-

riods, i.e., on average, a match occurred in 40% messages of each prime set against 25% for

harmonic. This is due to relative prime periods generating all possible relative offsets, as opposed

to harmonic periods, thus exposing the true worst-case interference patterns.

Regarding the change in period range, we experimented using periods in three different ranges in

our experiments, small (5,10), medium (5,60), and long (5,500) and we observed that a short

span of periods is bound to present higher matches to the analytic estimates, considering the

schedulable sets. For the long range of periods, the actual absolute difference can be signifi-

cant, though the percentual increase is not.

Concerning the protocol configuration parameters, we changed the size of the transmission win-

dow. We observed that when flat servers were scheduled within a larger partition, associated

streams got short response times and the analysis reported better accuracy.

Finally, we experimented changing the available link utilization. In different experiments, we used

9.1 Thesis validation 145

20%, 60% and 90% of the schedulable capacity of the transmission window. We observed that

the analysis was more efficient for lower utilization of the window and becomes more pessimistic

with growing link utilization.

Secondly, we show the validity of our thesis with hierarchical compositions of servers, based on

the work reported in Chapters 5 and 6. This work achieved objective i), namely

i) application-oriented semantics with a hierarchy, i.e., a complex application could be di-

vided into sub-applications and reservations can be associated with applications with a

single high-level interface but supporting internal nested reservations as requested by the

applications;

This work showed that a multi-level hierarchical server-based scheduling framework could be ef-

ficiently deployed using FTT-SE, with either the polling server policy (Chapter 5) or the sporadic

server policy (Chapter 6). In particular, we presented the concept of an ISH (Independent Server

Hierarchy) that arranges multiple servers in a hierarchy enabling bandwidth partitioning in mul-

tiple levels and the assignments of different bandwidth shares to different logical sub-parts of the

application. Server-based scheduling policies then enforce temporal isolation between various ap-

plications or application sub-parts. We verified this property among message streams handled by

different servers in case of overload and changes in the hierarchical architecture. The property of

temporal isolation was tested in both cases, i.e., with polling or sporadic servers. Furthermore,

sporadic servers reported shorter application response times, as expected, since these servers keep

their capacity even when there are no pending requests, and thus can immediately serve the corre-

sponding applications upon request. We further verified the property of temporal isolation among

different applications by inducing congestion in different parts of randomly generated hierarchies

and messages. Our results showed that the messages that behaved according to their periodic

activation pattern remained unaffected by the induced burst. Random simulations verifying the

temporal isolation property were carried out for the case of polling servers.

On the other hand, the claim on efficiency is supported on the work in Chapter 7, where we pre-

sented an approach for server design in an HSF. We considered the polling server policy and the

non-preemptive nature of packet scheduling. The given method, essentially, creates server inter-

faces such that respective messages are scheduled very close to their deadlines. This approach is

interesting for the bandwidth efficiency, as we saw that it required approximately half the com-

bined utilization of all the hierarchies in the system when compared to another approach which

we called the naive approach and which designs server interfaces focusing just on the message

schedulability without any considerations for the bandwidth efficiency. The naive approach cre-

ates significantly larger reservations. We empirically tested the tightness of the server interfaces

produced by our approach. We found that a decrease in server capacities as small as 1% satu-

rated the system leading to strong deadline misses, thus pointing to a near-optimal HSF design

that requests the least system resources for guaranteed schedulability. Considering that, whenever

resources are available, the servers capacities can be relaxed to produce shorter response times,

we claim that this work also meets objective ii), namely

146 Conclusion and Future Work

ii) flexible reservations, which provide a minimum guarantee and then offer more whenever

there are available resources;

Moreover, the framework could empirically test several use cases where we allocated more re-

sources when the requested bandwidth was higher, tracking evolving requirements, or conversely,

allocated different shares to different branches in the same hierarchy, thus, inherently supporting

many different workload scenarios. With this level of flexibility we claim that our HSF on Ethernet

with FTT-SE also meets objectives iii) and iv), namely:

iii) a scalable solution so that it can work on networks with many flows associated with many

and heterogeneous applications. For example, from industrial equipment to vehicles;

iv) a load-aware solution, allocating less additional resources on more loaded links, meeting

end-to-end constraints, acting on deadlines, on priorities or even on the period/capacity of

the reservations, according to what the underlying protocol allows;

Altogether, the works presented in Chapters 4, 5, 6, and 7 showed that FTT-SE can indeed provide

different types of network reservations with bounded latency and mutual isolation in a dynamically

reconfigurable setting, as required by complex CPS that run multiple concurrent applications.

Finally, Chapter 8 focused on the run-time mechanisms to support the hierarchical reservations,

and on how these shall be used by a system designer, exposing the effectiveness of the implemen-

tation over FTT-SE.

9.2 Future Work

In the course of our investigation, we found several issues that would be worth studying in more

detail but which could not be explored in this work. We report here some of those potential lines

for future research:

• Hierarchical resource reservations for multi-switch networks

The FTT-SE protocol was originally designed for a single switch case thereby limiting the

size of the network. We carried out a work that focused on increasing the network size

with multiple switches with a single FTT-SE master node that provided the transmission

schedules for the entire network [43, 44]. In this architecture, we adapted the FTT-SE master

scheduler to account for the various types of delays and path interferences arising due to the

multi-switch case. This version of FTT-SE, however, lacked the support for hierarchical

reservations. Adding such support in the multi-switch case is interesting since it expands

the protocol applicability. But, there will be different aspects to consider. The ISH that we

used in this work managed communication from one source to one destination. When the

communication endpoints are on the same switch, it would be the same for the multi-switch

case. However, when, source and destination are connected to different switches, then, there

are one or more links between the switches where unrelated traffic would interfere. We can

extend the concept of ISH such that one ISH will manage all applications that send data

9.2 Future Work 147

and share the source, destination and hence the path. This would naturally increase the

implementation complexity among other factors.

• Analysis of sporadic servers As we found in Chapter 4 for flat sporadic servers, there were

some system configurations where analytic estimates were pessimistic. In general, though

there were significant matches, it would be interesting to investigate further those corner

cases where analysis was very pessimistic and refine the analysis. On the other hand, as

noted in [37], the analysis of hierarchical sporadic servers was not addressed. Completing

that analysis would be an interesting exercise.

• On server design approaches Server design approach that we presented comes with as-

sumptions regarding strict periodicity of the root servers and works only for polling servers.

We could investigate how to adapt the design approach when there might be jitter in the

activations of different servers along the same path. Another extension of this work would

be to investigate the adaptations needed for designing sporadic servers.

• Connection to SDN Software Defined Networks [144, 145] is an emerging paradigm ac-

cording to which the network control is separated from the network data and centralised in

so-called SDN controllers. We believe this paradigm bears many resemblances with FTT-SE

but at a higher layer in the protocol stack. It would be interesting to study whether FTT-SE

could be used to provide support to SDN, enforcing its controls locally.

148 Conclusion and Future Work

Bibliography

[1] P. Marwedel, Embedded System Design: Embedded Systems Foundations of Cyber-Physical

Systems. Springer Science & Business Media, 2011.

[2] G. C. Buttazzo, “Emerging Real-Time Methodologies,” in Embedded Computing Systems:

Applications, Optimization, and Advanced Design, pp. 140–159, IGI Global, Jan. 2013.

[3] E. A. Lee, “Cyber-Physical Systems - Are Computing Foundations Adequate,” in Position

Paper for NSF Workshop On Cyber-Physical Systems: Research Motivation, Techniques

and Roadmap, vol. 2, Oct. 2006.

[4] R. Baheti and H. Gill, “Cyber-physical Systems,” The impact of control technology, vol. 12,

pp. 161–166, 2011.

[5] P. Asare, D. Broman, E. A. Lee, G. Prinsloo, M. Torngren, and S. S. Sunder, “Cyber-

Physical Systems.” ❤tt♣✿✴✴❝②❜❡r♣❤②s✐❝❛❧s②st❡♠s✳♦r❣✴. Accessed: 2015-10-05.

[6] H. Kopetz, Real-Time Systems: Design Principles for Distributed Embedded Applications.

Springer, 2011.

[7] C. R. Guareis de Farias, Architectural Design of Groupware Systems: a Component-Based

Approach. Twente University Press, 2002.

[8] I. Crnkovic, “Component-based approach for embedded systems,” in 9th International

Workshop on Component-Oriented Programming (WCOP’2004), Jun 2004.

[9] M. Maggio, H. Hoffmann, M. D. Santambrogio, A. Agarwal, and A. Leva, “Power Opti-

mization in Embedded Systems via Feedback Control of Resource Allocation,” IEEE Trans-

actions on Control Systems Technology, vol. 21, pp. 239–246, Jan. 2013.

[10] S. Shenker, D. D. Clark, and L. Zhang, “A Scheduling Service Model and a

Scheduling Architecture for an Integrated Services Packet Network,” preprint,

1993. ❤tt♣s✿✴✴✇✇✇✳r❡s❡❛r❝❤❣❛t❡✳♥❡t✴♣r♦✜❧❡✴▲✐①✐❛❴❩❤❛♥❣✴♣✉❜❧✐❝❛t✐♦♥✴✷✽✶✵✻✷✶❴

❆❴❙❝❤❡❞✉❧✐♥❣❴❙❡r✈✐❝❡❴▼♦❞❡❧❴❛♥❞❴❛❴❙❝❤❡❞✉❧✐♥❣❴❆r❝❤✐t❡❝t✉r❡❴❢♦r❴❛♥❴

■♥t❡❣r❛t❡❞❴❙❡r✈✐❝❡s❴P❛❝❦❡t❴◆❡t✇♦r❦✴❧✐♥❦s✴✺✹❡❜✸❡✶❛✵❝❢✷✼❛✻❞❡✶✶✼✻❝❜✵✳♣❞❢.

[11] B. Braden, D. Clark, and S. Shenker, “Integrated Services in the Internet Architecture: an

Overview,” RFC 1633, RFC Editor, June 1994.

149

http://cyberphysicalsystems.org/
https://www.researchgate.net/profile/Lixia_Zhang/publication/2810621_A_Scheduling_Service_Model_and_a_Scheduling_Architecture_for_an_Integrated_Services_Packet_Network/links/54eb3e1a0cf27a6de1176cb0.pdf
https://www.researchgate.net/profile/Lixia_Zhang/publication/2810621_A_Scheduling_Service_Model_and_a_Scheduling_Architecture_for_an_Integrated_Services_Packet_Network/links/54eb3e1a0cf27a6de1176cb0.pdf
https://www.researchgate.net/profile/Lixia_Zhang/publication/2810621_A_Scheduling_Service_Model_and_a_Scheduling_Architecture_for_an_Integrated_Services_Packet_Network/links/54eb3e1a0cf27a6de1176cb0.pdf

150 BIBLIOGRAPHY

[12] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss, “An Architecture for

Differentiated Services,” RFC 2475, RFC Editor, Dec 1998.

[13] E. Rosen, A. Viswanathan, and R. Callon, “Multiprotocol Label Switching Architecture,”

RFC 3031, RFC Editor, Jan 2001.

[14] N. INSTRUMENTS, “Controller Area Network (CAN) Overview.” ❤tt♣✿✴✴✇✇✇✳♥✐✳❝♦♠✴

✇❤✐t❡✲♣❛♣❡r✴✷✼✸✷✴❡♥✴. Accessed: 2018-05-17.

[15] CiA, “History of CAN technology.” ❤tt♣s✿✴✴✇✇✇✳❝❛♥✲❝✐❛✳♦r❣✴❝❛♥✲❦♥♦✇❧❡❞❣❡✴❝❛♥✴

❝❛♥✲❤✐st♦r②✴. Accessed: 2018-05-19.

[16] “Road vehicles – Controller area network (CAN) – Part 1: Data link layer and physical

signalling,” ISO 11898-1:2015, International Organization for Standardization, Dec 2015.

[17] N. INSTRUMENTS, “Introduction to the Local Interconnect Network (LIN) Bus.” ❤tt♣✿

✴✴✇✇✇✳♥✐✳❝♦♠✴✇❤✐t❡✲♣❛♣❡r✴✾✼✸✸✴❡♥✴. Accessed: 2018-05-17.

[18] “Road vehicles — Local Interconnect Network (LIN) — Part 1: General information and

use case definition,” ISO ISO 17987-1:2016, International Organization for Standardiza-

tion, Aug 2016.

[19] N. INSTRUMENTS, “FlexRay Automotive Communication Bus Overview.” ❤tt♣✿✴✴✇✇✇✳

♥✐✳❝♦♠✴✇❤✐t❡✲♣❛♣❡r✴✸✸✺✷✴❡♥✴. Accessed: 2018-05-16.

[20] “Road vehicles – FlexRay communications system – Part 1: General information and use

case definition,” ISO 17458-1:2013, International Organization for Standardization, Feb

2013.

[21] L. L. Bello, “The case for Ethernet in Automotive Communications,” ACM SIGBED Re-

view, vol. 8, no. 4, pp. 7–15, 2011.

[22] “IEEE Standard for Local and metropolitan area networks–Audio Video Bridging (AVB)

Systems,” IEEE Std 802.1BA-2011, pp. 1–45, Sept. 2011.

[23] A. Specification, “7: Avionics Full Duplex Switched Ethernet (AFDX) Network,” ARINC

Specification 664p7, vol. 1, no. 2, p. 7, 2005.

[24] “Profinet Ethernet Standard.” ❤tt♣✿✴✴✇✇✇✳♣r♦✜❜✉s✳❝♦♠. Accessed: 2017-11-21.

[25] TTTech, “Time-Triggered Ethernet.” ❤tt♣s✿✴✴✇✇✇✳ttt❡❝❤✳❝♦♠✴t❡❝❤♥♦❧♦❣✐❡s✴

❞❡t❡r♠✐♥✐st✐❝✲❡t❤❡r♥❡t✴t✐♠❡✲tr✐❣❣❡r❡❞✲❡t❤❡r♥❡t✴, November 2017. Accessed: 2017-11-

17.

[26] J. Strosnider, J. Lehoczky, and L. Sha, “The Deferrable Server Algorithm for Enhanced

Aperiodic Responsiveness in Hard Real-Time Environments,” IEEE Transactions on Com-

puters, vol. 44, pp. 73–91, Jan. 1995.

http://www.ni.com/white-paper/2732/en/
http://www.ni.com/white-paper/2732/en/
https://www.can-cia.org/can-knowledge/can/can-history/
https://www.can-cia.org/can-knowledge/can/can-history/
http://www.ni.com/white-paper/9733/en/
http://www.ni.com/white-paper/9733/en/
http://www.ni.com/white-paper/3352/en/
http://www.ni.com/white-paper/3352/en/
http://www.profibus.com
https://www.tttech.com/technologies/deterministic-ethernet/time-triggered-ethernet/
https://www.tttech.com/technologies/deterministic-ethernet/time-triggered-ethernet/

BIBLIOGRAPHY 151

[27] B. Sprunt, L. Sha, and J. Lehoczky, “Aperiodic Task Scheduling for Hard-Real-Time Sys-

tems,” Real-Time Systems, vol. 1, pp. 27–60, Jun 1989.

[28] M. Spuri and G. Buttazzo, “Scheduling Aperiodic Tasks in Dynamic Priority Systems,”

Real-Time Systems, vol. 10, no. 2, pp. 179–210, 1996.

[29] L. Abeni and G. Buttazzo, “Integrating multimedia applications in hard real-time systems,”

in 19th IEEE International Real-Time Systems Symposium (RTSS 1998), pp. 4–13, Dec.

1998.

[30] L. Abeni and G. Buttazzo, “Resource Reservation in Dynamic Real-Time Systems,” Real-

Time Systems, vol. 27, pp. 123–167, July 2004.

[31] R. Marau, L. Almeida, and P. Pedreiras, “Enhancing Real-Time Communication over COTS

Ethernet switches,” in 6th IEEE International Workshop on Factory Communication Sys-

tems (WFCS 2006), pp. 295–302, June 2006.

[32] H.-T. Lim, B. Krebs, L. Völker, and P. Zahrer, “Performance Evaluation of the Inter-Domain

Communication in a Switched Ethernet Based In-Car Network,” in 36th IEEE Conference

on Local Computer Networks (LCN 2011), pp. 101–108, Oct. 2011.

[33] F. Simonot-Lion, “In car embedded electronic architectures: how to ensure their safety,” in

5th IFAC International Conference on Fieldbus Systems and their Applications (FeT 2003),

pp. 1–8, July 2003.

[34] L. Almeida, S. Fischmeister, M. Anand, and I. Lee, “A Dynamic Scheduling Approach

to Designing Flexible Safety-critical Systems,” in Proceedings of the 7th ACM & IEEE

International Conference on Embedded Software (EMSOFT ’07), (New York, NY, USA),

pp. 67–74, ACM, 2007.

[35] “Flexible Time-Triggered Communications.” ✇✇✇✳❢❡✳✉♣✳♣t✴❢tt. [Online; accessed 19-

June-2013].

[36] Z. Iqbal, L. Almeida, and M. Ashjaei, “Analyzing the Efficiency of Sporadic Reservations

on Ethernet with FTT-SE,” in 22nd IEEE International Conference on Emerging Technolo-

gies and Factory Automation (ETFA 2017), pp. 1–8, Sept 2017.

[37] Z. Iqbal and L. Almeida, “Towards an analysis for hierarchies of sporadic servers on Ether-

net,” in 11th IEEE Symposium on Industrial Embedded Systems (SIES 2016), pp. 1–6, May

2016.

[38] Z. Iqbal, L. Almeida, and M. Behnam, “Efficiency study for sporadic servers on Ethernet

with FTT-SE,” in 9th International Workshop on Compositional Theory and Technology for

Real-Time Embedded Systems (CRTS 2016) in conjunction with the 37th IEEE International

Real-Time Systems Symposium (RTSS 2016), pp. 25–26, November 2016.

www.fe.up.pt/ftt

152 BIBLIOGRAPHY

[39] Z. Iqbal, L. Almeida, M. Ashjaei, and M. Behnam, “On the efficiency of sporadic servers

on Ethernet with FTT-SE,” SIGBED Rev., vol. 14, pp. 32–34, Nov. 2017.

[40] Z. Iqbal, L. Almeida, R. Marau, M. Behnam, and T. Nolte, “Implementing Hierarchical

Scheduling on COTS Ethernet Switches Using a Master/Slave Approach,” in 7th IEEE

International Symposium on Industrial Embedded Systems (SIES 2012), pp. 76–84, June

2012.

[41] Z. Iqbal, L. Almeida, and M. Behnam, “Implementing Virtual Channels in Ethernet us-

ing Hierarchical Sporadic Servers,” in The 12th International Workshop on Real-Time Net-

works (RTN 2013) in conjunction with the 25th Euromicro Conference on Real-Time Sys-

tems (ECRTS 2013), July 2013.

[42] Z. Iqbal, L. Almeida, and M. Behnam, “Designing Network Servers within a Hierarchical

Scheduling Framework,” in 30th Annual ACM Symposium on Applied Computing (SAC

2015), pp. 653–658, Apr. 2015.

[43] M. Behnam, Z. Iqbal, P. Silva, R. Marau, L. Almeida, and P. Portugal, “Engineering and

Analyzing Multi-Switch Networks with Single Point of Control,” in 1st International Work-

shop on Worst-Case Traversal Time (WCTT’11) in conjunction with the 32nd IEEE Inter-

national Real-Time Systems Symposium (RTSS’11), pp. 11–18, Nov. 2011.

[44] R. Marau, M. Behnam, Z. Iqbal, P. Silva, L. Almeida, and P. Portugal, “Controlling Multi-

Switch Networks for Prompt Reconfiguration,” in 9th IEEE International Workshop on

Factory Communication Systems (WFCS 2012), pp. 233–242, May 2012.

[45] A. Y. Chong and C. S. Chua, Driving Asia: As Automotive Electronic Transforms a Region.

Infineon Technologies Asia Pacific Pte Limited, 2011.

[46] Statista, “Automotive electronics cost as a percentage of total car cost world-

wide from 1950 to 2030.” ❤tt♣s✿✴✴✇✇✇✳st❛t✐st❛✳❝♦♠✴st❛t✐st✐❝s✴✷✼✼✾✸✶✴

❛✉t♦♠♦t✐✈❡✲❡❧❡❝tr♦♥✐❝s✲❝♦st✲❛s✲❛✲s❤❛r❡✲♦❢✲t♦t❛❧✲❝❛r✲❝♦st✲✇♦r❧❞✇✐❞❡✴. Accessed:

2018-03-04.

[47] C. Mathas, “The price tag of automotive electronics: What’s really at play?.”

❤tt♣s✿✴✴✇✇✇✳❡❞♥✳❝♦♠✴❡❧❡❝tr♦♥✐❝s✲❜❧♦❣s✴❡♥❣✐♥❡❡r✐♥❣✲♦♥✲✇❤❡❡❧s✴✹✹✺✽✽✽✶✴

❚❤❡✲♣r✐❝❡✲t❛❣✲♦❢✲❛✉t♦♠♦t✐✈❡✲❡❧❡❝tr♦♥✐❝s✲✲❲❤❛t✲s✲r❡❛❧❧②✲❛t✲♣❧❛②✲. Accessed: 2018-

03-04.

[48] E. Christmann, “Data Communication in the Automobile - Part 1.” ❤tt♣s✿

✴✴❡❧❡❛r♥✐♥❣✳✈❡❝t♦r✳❝♦♠✴♣♦rt❛❧✴♠❡❞✐❡♥✴❝♠❝✴♣r❡ss✴P❚❘✴❙❡r✐❛❧❇✉s❙②st❡♠s❴P❛rt✶❴

❊❧❡❦tr♦♥✐❦❆✉t♦♠♦t✐✈❡❴✷✵✵✻✶✶❴Pr❡ss❆rt✐❝❧❡❴❊◆✳♣❞❢. Accessed: 2015-09-20.

[49] E. Christmann, “Data Communication in the Automobile - Part 2.” ❤tt♣s✿

✴✴❡❧❡❛r♥✐♥❣✳✈❡❝t♦r✳❝♦♠✴♣♦rt❛❧✴♠❡❞✐❡♥✴❝♠❝✴♣r❡ss✴P❚❘✴❙❡r✐❛❧❇✉s❙②st❡♠s❴P❛rt✷❴

❊❧❡❦tr♦♥✐❦❆✉t♦♠♦t✐✈❡❴✷✵✵✻✶✷❴Pr❡ss❆rt✐❝❧❡❴❊◆✳♣❞❢. Accessed 2015-09-30.

https://www.statista.com/statistics/277931/automotive-electronics-cost-as-a-share-of-total-car-cost-worldwide/
https://www.statista.com/statistics/277931/automotive-electronics-cost-as-a-share-of-total-car-cost-worldwide/
https://www.edn.com/electronics-blogs/engineering-on-wheels/4458881/The-price-tag-of-automotive-electronics--What-s-really-at-play-
https://www.edn.com/electronics-blogs/engineering-on-wheels/4458881/The-price-tag-of-automotive-electronics--What-s-really-at-play-
https://elearning.vector.com/portal/medien/cmc/press/PTR/SerialBusSystems_Part1_ElektronikAutomotive_200611_PressArticle_EN.pdf
https://elearning.vector.com/portal/medien/cmc/press/PTR/SerialBusSystems_Part1_ElektronikAutomotive_200611_PressArticle_EN.pdf
https://elearning.vector.com/portal/medien/cmc/press/PTR/SerialBusSystems_Part1_ElektronikAutomotive_200611_PressArticle_EN.pdf
https://elearning.vector.com/portal/medien/cmc/press/PTR/SerialBusSystems_Part2_ElektronikAutomotive_200612_PressArticle_EN.pdf
https://elearning.vector.com/portal/medien/cmc/press/PTR/SerialBusSystems_Part2_ElektronikAutomotive_200612_PressArticle_EN.pdf
https://elearning.vector.com/portal/medien/cmc/press/PTR/SerialBusSystems_Part2_ElektronikAutomotive_200612_PressArticle_EN.pdf

BIBLIOGRAPHY 153

[50] A. Sangiovanni-Vincentelli and M. D. Natale, “Embedded System Design for Automotive

Applications,” Computer, vol. 40, pp. 42–51, Oct. 2007.

[51] O. Scheickl, C. Ainhauser, and M. Rudorfer, “Distributed Development of Automotive

Real-time Systems based on Function-triggered Timing Constraints,” in Embedded Real-

time Software and Systems (ERTS2 2010), May 2010.

[52] R. Obermaisser, B. Frömel, C. El Salloum, and B. Huber, “Integrating Safety and Mul-

timedia Subsystems on a Time-Triggered System-on-a-Chip,” in 6th IEEE International

Conference on Industrial Informatics (INDIN 2008), pp. 270–275, July 2008.

[53] T. Nolte, H. Hansson, and L. L. Bello, “Automotive Communications-Past, Current and

Future,” in 10th IEEE International Conference on Emerging Technologies and Factory

Automation (ETFA 2005), pp. 985–992, Sept. 2005.

[54] T. Steinbach, F. Korf, and T. C. Schmidt, “Real-time Ethernet for Automotive Applica-

tions: A Solution for Future In-Car Networks,” in 1st IEEE International Conference on

Consumer Electronics-Berlin (ICCE-Berlin 2011), pp. 216–220, Sept. 2011.

[55] T. Steinbach, H.-T. Lim, F. Korf, T. C. Schmidt, D. Herrscher, and A. Wolisz, “Beware of

the Hidden! How Cross-traffic Affects Quality Assurances of Competing Real-time Eth-

ernet Standards for In-Car Communication,” in 40th IEEE Conference on Local Computer

Networks (LCN 2015), pp. 1–9, Oct. 2015.

[56] A. Varga and R. Hornig, “An overview of the OMNeT++ simulation environment,” in 1st

international conference on simulation tools and techniques for communications, networks

and systems & workshops (Simutools08), p. 60, ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), Mar. 2008.

[57] M. Behnam, R. Marau, and P. Pedreiras, “Analysis and Optimization of the MTU in Real-

Time Communications over Switched Ethernet,” in 16th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA 2011), pp. 1–7, Sept. 2011.

[58] “IEEE Standard for Local and Metropolitan Area Networks – Bridges and Bridged Net-

works - Amendment 25: Enhancements for Scheduled Traffic,” IEEE Std 802.1Qbv-2015

(Amendment to IEEE Std 802.1Q-2014 as amended by IEEE Std 802.1Qca-2015, IEEE Std

802.1Qcd-2015, and IEEE Std 802.1Q-2014/Cor 1-2015), pp. 1–57, Mar. 2016.

[59] T. Steinbach, H.-T. Lim, F. Korf, T. C. Schmidt, D. Herrscher, and A. Wolisz, “Tomor-

row’s In-Car Interconnect? A Competitive Evaluation of IEEE 802.1 AVB and Time-

Triggered Ethernet (AS6802),” in 76th IEEE Vehicular Technology Conference (VTC Fall

2012), pp. 1–5, Sept. 2012.

[60] R. M. Metcalfe and D. R. Boggs, “Ethernet: Distributed Packet Switching for Local Com-

puter Networks,” Communications of the ACM, vol. 19, pp. 395–404, July 1976.

154 BIBLIOGRAPHY

[61] J. Jasperneite and P. Neumann, “Switched Ethernet for factory communication,” in 8th IEEE

International Conference on Emerging Technologies and Factory Automation (ETFA 2001),

pp. 205–212, Oct. 2001.

[62] AEE Committee et al., “Aircraft Data Network Part 7, Avionics Full Duplex Switched Eth-

ernet (AFDX) Network, ARINC Specification 664,” Annapolis, Maryland: Aeronautical

Radio, 2002.

[63] M. LLC, “AFDX/ARINC 664 Protocol Tutorial.” ❤tt♣✿✴✴✇❡❜✳❛r❝❤✐✈❡✳♦r❣✴✇❡❜✴

✷✵✵✽✵✷✵✼✵✶✵✵✷✹✴❤tt♣✿✴✴✇✇✇✳✽✵✽♠✉❧t✐♠❡❞✐❛✳❝♦♠✴✇✐♥♥t✴❦❡r♥❡❧✳❤t♠, 1999. Ac-

cessed: 2017-10-5.

[64] “IEEE Draft Standard for Local and Metropolitan Area Networks - Timing and Synchro-

nization for Time-Sensitive Applications in Bridged Local Area Networks,” IEEE Std

P802.1AS/D7.7, pp. 1–296, Nov. 2010.

[65] “IEEE Standard for Local and Metropolitan Area Networks—Virtual Bridged Local Area

Networks Amendment 14: Stream Reservation Protocol (SRP),” IEEE Std 802.1Qat-2010

(Revision of IEEE Std 802.1Q-2005), pp. 1–119, Sept. 2010.

[66] “IEEE Standard for Local and Metropolitan Area Networks - Virtual Bridged Local Area

Networks Amendment 12: Forwarding and Queuing Enhancements for Time-Sensitive

Streams,” IEEE Std 802.1Qav-2009 (Amendment to IEEE Std 802.1Q-2005), pp. C1–72,

Jan. 2009.

[67] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed System,” Commu-

nications of the ACM, vol. 21, pp. 558–565, July 1978.

[68] K. Merkel, “Hybrid Broadcast Broadband TV, The New Way to a Comprehensive TV Ex-

perience,” in 14th ITG Conference on Electronic Media Technology (CEMT 2011), pp. 1–4,

Mar. 2011.

[69] “Example of Automotive Multimedia Test: Multiple Display Synchronization.” ❤tt♣✿✴✴

✇✇✇✳♥✐✳❝♦♠✴✇❤✐t❡✲♣❛♣❡r✴✶✹✸✻✾✴❡♥✴. Accessed: 2017-10-29.

[70] ITU-R, “Relative timing of sound and vision for broadcasting,” Recommendation BT.1359-

1, International Telecommunication Union, Nov. 1998.

[71] M. O. van Deventer, H. Stokking, M. Hammond, J. Le Feuvre, and P. Cesar, “Standards for

multi-stream and multi-device media synchronization,” IEEE Communications Magazine,

vol. 54, pp. 16–21, Mar. 2016.

[72] “IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measure-

ment and Control Systems,” IEEE Std 1588-2008 (Revision of IEEE Std 1588-2002), pp. 1–

300, July 2008.

http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://web.archive.org/web/20080207010024/http://www.808multimedia.com/winnt/kernel.htm
http://www.ni.com/white-paper/14369/en/
http://www.ni.com/white-paper/14369/en/

BIBLIOGRAPHY 155

[73] W. Steiner, N. Finn, and M. Posch, “IEEE 802.1 Audio/Video Bridging and Time-Sensitive

Networking,” in Industrial Communication Technology Handbook, Second Edition, ch. 20,

Oxford: CRC Press, 2017.

[74] B. SYSTEMS, “AVB RESOURCE GUIDE.” ❤tt♣✿✴✴❝✸✺✸✻✶✻✳r✶✻✳❝❢✶✳r❛❝❦❝❞♥✳❝♦♠✴

❇✐❛♠♣❴❆❱❇❴❘❡❢❡r❡♥❝❡❴●✉✐❞❡❴❆♣r✶✹✳♣❞❢. Accessed: 2018-01-20.

[75] M. Glaß, S. Graf, F. Reimann, and J. Teich, “Design and Evaluation of Future Ethernet

AVB-Based ECU Networks,” in Embedded Systems Development, vol. 20, ch. 12, pp. 205–

220, Springer, Jul 2014.

[76] J. Cao, P. J. L. Cuijpers, R. J. Bril, and J. J. Lukkien, “Tight Worst-Case Response-Time

Analysis for Ethernet AVB using Eligible Intervals,” in 12th IEEE World Conference on

Factory Communication Systems (WFCS 2016), pp. 1–8, May 2016.

[77] J. Cao, P. J. Cuijpers, R. J. Bril, and J. J. Lukkien, “Independent yet Tight WCRT Analysis

for Individual Priority Classes in Ethernet AVB,” in 24th International Conference on Real-

Time Networks and Systems (RTNS 2016), pp. 55–64, Oct. 2016.

[78] U. D. Bordoloi, A. Aminifar, P. Eles, and Z. Peng, “Schedulability Analysis of Ethernet

AVB Switches,” in 20th IEEE International Conference on Embedded and Real-Time Com-

puting Systems and Applications (RTCSA 2014), pp. 1–10, Aug. 2014.

[79] M. D. J. Teener, A. N. Fredette, C. Boiger, P. Klein, C. Gunther, D. Olsen, and K. Stanton,

“Heterogeneous Networks for Audio and Video: Using IEEE 802.1 Audio Video Bridging,”

Proceedings of the IEEE, vol. 101, pp. 2339–2354, Nov. 2013.

[80] avnu.org, “Types of Traffic in AVB.” ❤tt♣✿✴✴❛✈♥✉✳♦r❣✴✇♣✲❝♦♥t❡♥t✴✉♣❧♦❛❞s✴✷✵✶✹✴✵✺✴

❆❱♥✉✲❆❆❆✷❈❴❚②♣❡s✲♦❢✲❚r❛✣❝✲✐♥✲❆❱❇✲✷❴▼✐❝❤❛❡❧✲❏♦❤❛s✲❚❡❡♥❡r✲▼❛r❦✉s✲❏♦❝❤✐♠✳

♣❞❢. Accessed: 2018-01-30.

[81] D. Tămaş-Selicean, P. Pop, and W. Steiner, “Design Optimization of TTEthernet-based

Distributed Real-Time Systems,” Real-Time Systems, vol. 51, no. 1, pp. 1–35, 2015.

[82] W. Steiner and B. Dutertre, “Automated Formal Verification of the TTEthernet Synchro-

nization Quality,” in 3rd International Conference on NASA Formal Methods (NFM’11),

pp. 375–390, Apr. 2011.

[83] D. Tamas-Selicean, P. Pop, and W. Steiner, “Synthesis of Communication Schedules for

TTEthernet-Based Mixed-Criticality Systems,” in 8th IEEE/ACM/IFIP International Con-

ference on Hardware/Software Codesign and System Synthesis (CODES+ISSS ’12), (New

York, NY, USA), pp. 473–482, Oct. 2012.

[84] M. Boyer, H. Daigmorte, N. Navet, and J. Migge, “Performance impact of the interactions

between time-triggered and rate-constrained transmissions in TTEthernet,” in 8th European

Congress on Embedded Real Time Software and Systems (ERTS2 2016), Jan. 2016.

http://c353616.r16.cf1.rackcdn.com/Biamp_AVB_Reference_Guide_Apr14.pdf
http://c353616.r16.cf1.rackcdn.com/Biamp_AVB_Reference_Guide_Apr14.pdf
http://avnu.org/wp-content/uploads/2014/05/AVnu-AAA2C_Types-of-Traffic-in-AVB-2_Michael-Johas-Teener-Markus-Jochim.pdf
http://avnu.org/wp-content/uploads/2014/05/AVnu-AAA2C_Types-of-Traffic-in-AVB-2_Michael-Johas-Teener-Markus-Jochim.pdf
http://avnu.org/wp-content/uploads/2014/05/AVnu-AAA2C_Types-of-Traffic-in-AVB-2_Michael-Johas-Teener-Markus-Jochim.pdf

156 BIBLIOGRAPHY

[85] R. Marau, P. Pedreiras, and L. Almeida, “Asynchronous Traffic Signaling over Master-

Slave Switched Ethernet protocols,” in 6th International Workshop on Real Time Networks

(RTN 2007), July 2007.

[86] R. Marau, L. Almeida, K. Lakshmanan, and R. Rajkumar, “Utilization-based Schedulability

Analysis for Switched Ethernet aiming Dynamic QoS Management,” in 15th IEEE Interna-

tional Conference on Emerging Technologies and Factory Automation (ETFA 2010), Sept.

2010.

[87] H. Bauer, J.-L. Scharbarg, and C. Fraboul, “Applying Trajectory approach with static pri-

ority queuing for improving the use of available AFDX resources,” Real-Time Systems,

vol. 48, pp. 101–133, Jan 2012.

[88] T. Hamza, J.-L. Scharbarg, and C. Fraboul, “QoS-aware AFDX: benefits of an efficient

priority assignment for avionics flows,” in 34th IEEE International Real-Time Systems

Symposium: Work-in-progress session (RTSS 2013), pp. 13–14, Dec. 2013. Available

at ❤tt♣✿✴✴✷✵✶✸✳✐❡❡❡✲rtss✳♦r❣✴✇♣✲❝♦♥t❡♥t✴✉♣❧♦❛❞s✴✷✵✶✸✴✶✶✴❲✐P✲♣r♦❝❡❡❞✐♥❣s✳♣❞❢, Ac-

cessed: 2018-01-04.

[89] L. L. Bello, “Novel Trends in Automotive Networks: A Perspective on Ethernet and the

IEEE Audio Video Bridging,” in 19th IEEE International Conference on Emerging Tech-

nology and Factory Automation (ETFA 2014), pp. 1–8, Sept. 2014.

[90] W. Steiner, G. Bauer, B. Hall, M. Paulitsch, and S. Varadarajan, “TTEthernet Dataflow

Concept,” in 8th IEEE International Symposium on Network Computing and Applications

(NCA 2009), pp. 319–322, July 2009.

[91] D. TamasSelicean, P. Pop, and W. Steiner, “Timing Analysis of Rate Constrained Traffic

for the TTEthernet Communication Protocol,” in 18th IEEE International Symposium on

Real-Time Distributed Computing (ISORC 2015), pp. 119–126, April 2015.

[92] S. S. Craciunas, R. S. Oliver, M. Chmelík, and W. Steiner, “Scheduling Real-Time Com-

munication in IEEE 802.1qbv Time Sensitive Networks,” in 24th International Conference

on Real-Time Networks and Systems (RTNS 2016), RTNS ’16, (New York, NY, USA),

pp. 183–192, ACM, Oct. 2016.

[93] S. AS6802, “Sae standards,” Nov. 2011.

[94] S. Kehrer, O. Kleineberg, and D. Heffernan, “A comparison of Fault-Tolerance Concepts

for IEEE 802.1 Time Sensitive Networks (tsn),” in 19th IEEE International Conference on

Emerging Technologies and Factory Automation (ETFA 2014), pp. 1–8, Sept. 2014.

[95] D. Gessner, Adding Fault Tolerance to a Flexible Real-Time Ethernet Network for Embed-

ded Systems. PhD thesis, Universitat de les Illes Balears, 2017.

http://2013.ieee-rtss.org/wp-content/uploads/2013/11/WiP-proceedings.pdf

BIBLIOGRAPHY 157

[96] J. P. Arenas, “FT4FTT — FT4FTT-Ethernet: Fault Tolerance mechanisms for adaptive dis-

tributed embedded systems based on FTT-Ethernet.” ❤tt♣✿✴✴sr✈✳✉✐❜✳❡s✴❢t✹❢tt✴. Accessed:

2018-01-20.

[97] J. P. Arenas, “DFT4FTT - Dynamic Fault Tolerance for increasing the adaptivity of highly-

reliable distributed embedded systems based on Flexible Time-Triggered Ethernet.” ❤tt♣✿

✴✴sr✈✳✉✐❜✳❡s✴❞❢t✹❢tt✴. Accessed: 2018-03-04.

[98] P. Pedreiras, “HaRTES - Hard Real-Time Ethernet Switching.” ❤tt♣✿✴✴❤❛rt❡s✳❛✈✳✐t✳♣t✴

♣r♦❥❡❝t✳❤t♠❧, 2009. Accessed: 2017-11-21.

[99] R. Santos, A. Vieria, R. Marau, P. Pedreiras, A. Oliveira, L. Almeida, and T. Nolte, “Im-

plementing Server-Based Communication within Ethernet Switches,” in 2nd Workshop on

Compositional Theory and Technology for Real-Time Embedded Systems (CRTS’09) in con-

junction with the 30th IEEE International Real-Time Systems Symposium (RTSS’09), Dec

2009.

[100] L. Pearson, “Stream Reservation Protocol - Revision 1.0.” ❤tt♣✿✴✴❛✈♥✉✳♦r❣✴✇♣✲❝♦♥t❡♥t✴

✉♣❧♦❛❞s✴✷✵✶✹✴✵✺✴❆❱♥✉❴❙tr❡❛♠✲❘❡s❡r✈❛t✐♦♥✲Pr♦t♦❝♦❧✲✈✶✳♣❞❢. Accessed: 2018-01-

20.

[101] “Deterministic Ethernet and Unified Networking.” ❤tt♣✿✴✴❞❡t❡r♠✐♥✐st✐❝✲❡t❤❡r♥❡t✳

❜❧♦❣s♣♦t✳♣t✴✷✵✶✶✴✵✻✴✇❤②✲❞❡t❡r♠✐♥✐st✐❝✲✇❤②✲❡t❤❡r♥❡t✳❤t♠❧. Accessed: 2017-12-20.

[102] I. Álvarez, L. Almeida, and J. Proenza, “A First Qualitative Comparison of the Admission

Control in FTT-SE, HaRTES and AVB,” in 12th IEEE International Workshop on Factory

Communication Systems (WFCS 2016), pp. 1–4, 2016.

[103] C. L. Liu and J. W. Layland, “Scheduling Algorithms for Multiprogramming in a Hard-

Real-Time Environment,” Journal of the ACM (JACM), vol. 20, pp. 46–61, Jan. 1973.

[104] G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable Scheduling Algorithms

and Applications. Springer, 3rd ed., 2011.

[105] M. Stanovich, T. P. Baker, A.-I. Wang, and M. G. Harbour, “Defects of the POSIX Sporadic

Server and How to Correct Them,” in 16th IEEE Real-Time and Embedded Technology and

Applications Symposium (RTAS 2010), pp. 35–45, Apr. 2010.

[106] N. C. Audsley, A. Burns, M. F. Richardson, and A. J. Wellings, “HARD REAL-TIME

SCHEDULING: THE DEADLINE-MONOTONIC APPROACH,” IFAC Proceedings Vol-

umes, vol. 24, no. 2, pp. 127–132, 1991.

[107] D. L. Sun, Z. Deng, and L. J. S. JW-s, “Dynamic Scheduling of Hard Real-Time Ap-

plications in Open System Environment,” in 17th IEEE Real-Time Systems Symposium

(RTSS’96), Dec. 1996.

http://srv.uib.es/ft4ftt/
http://srv.uib.es/dft4ftt/
http://srv.uib.es/dft4ftt/
http://hartes.av.it.pt/project.html
http://hartes.av.it.pt/project.html
http://avnu.org/wp-content/uploads/2014/05/AVnu_Stream-Reservation-Protocol-v1.pdf
http://avnu.org/wp-content/uploads/2014/05/AVnu_Stream-Reservation-Protocol-v1.pdf
http://deterministic-ethernet.blogspot.pt/2011/06/why-deterministic-why-ethernet.html
http://deterministic-ethernet.blogspot.pt/2011/06/why-deterministic-why-ethernet.html

158 BIBLIOGRAPHY

[108] Z. Deng and J. W.-S. Liu, “Scheduling Real-Time Applications in an Open Environment,”

in 18th IEEE Real-Time Systems Symposium (RTSS’97), pp. 308–319, Dec. 1997.

[109] J. Löser and H. Härtig, “Low-latency Hard Real-Time Communication over Switched Eth-

ernet,” in 16th EUROMICRO Conference on Real-Time Systems (ECRTS 2004), pp. 13–22,

July 2004.

[110] L. Almeida and P. Pedreiras, “Scheduling within Temporal Partitions: Response-time Anal-

ysis and Server Design,” in 4th ACM International Conference on Embedded Software (EM-

SOFT 2004), pp. 95–103, Sept. 2004.

[111] G. Lipari and E. Bini, “Resource Partitioning among Real-Time Applications,” in 15th

Euromicro Conference on Real-Time Systems (ECRTS 2003), pp. 151–158, Jul 2003.

[112] I. Shin and I. Lee, “Periodic Resource Model for Compositional Real-Time Guarantees,” in

24th IEEE International Real-Time Systems Symposium (RTSS’03), pp. 2–13, Dec. 2003.

[113] R. Davis and A. Burns, “An Investigation into Server Parameter Selection for Hierarchical

Fixed Priority Pre-emptive Systems,” in 16th International Conference on Real-Time and

Network Systems (RTNS 2008), pp. 19–28, Oct. 2008.

[114] M. Behnam, I. Shin, T. Nolte, and M. Nolin, “SIRAP: A Synchronization Protocol for Hier-

archical Resource Sharing in Real-Time Open Systems,” in 7th ACM & IEEE International

Conference on Embedded Software (EMSOFT 2007), pp. 279–288, Oct. 2007.

[115] M. Ashjaei, N. Khalilzad, S. Mubeen, M. Behnam, I. Sander, L. Almeida, and T. Nolte,

“Designing end-to-end resource reservations in predictable distributed embedded systems,”

Real-Time Systems, vol. 53, pp. 916–956, Nov 2017.

[116] A. Easwaran, I. Shin, O. Sokolsky, and I. Lee, “Incremental Schedulability Analysis of

Hierarchical Real-Time Components,” in 6th ACM & IEEE International Conference on

Embedded Software (EMSOFT 2006), pp. 272–281, Oct. 2006.

[117] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek, “A Resource Allocation Model

for QoS Management,” in 18th IEEE International Real-Time Systems Symposium (RTSS

1997), pp. 298–307, Dec. 1997.

[118] S. Ghosh, J. Hansen, R. Rajkumar, and J. Lehoczky, “Integrated Resource Management

and Scheduling with Multi-Resource Constraints,” in 25th IEEE International Real-Time

Systems Symposium (RTSS 2004), pp. 12–22, Dec. 2004.

[119] I. Foster, C. Kesselman, C. Lee, B. Lindell, K. Nahrstedt, and A. Roy, “A Distributed Re-

source Management Architecture that Supports Advance Reservations and Co-allocation,”

in 7th IEEE International Workshop on Quality of Service (IWQoS’99 - 1999), pp. 27–36,

31 May–4 June 1999.

BIBLIOGRAPHY 159

[120] L. Zhang, S. Deering, D. Estrin, S. Shenker, and D. Zappala, “RSVP: A New Resource

ReSerVation Protocol,” IEEE Network: The Magazine of Global Internetworking, vol. 7,

pp. 8–18, Sept. 1993.

[121] H. Kopetz, A. Ademaj, P. Grillinger, and K. Steinhammer, “The Time-Triggered Ether-

net (TTE) Design,” in 8th IEEE International Symposium on Object-Oriented Real-Time

Distributed Computing (ISORC 2005), pp. 22–33, May 2005.

[122] W. Steiner, G. Bauer, B. Hall, and M. Paulitsch, “Ttethernet: Time-triggered ethernet,”

2011.

[123] M. A. Brown, “Linux Traffic Control.” ❤tt♣✿✴✴t❧❞♣✳♦r❣✴❍❖❲❚❖✴

❚r❛✣❝✲❈♦♥tr♦❧✲❍❖❲❚❖✴✐♥❞❡①✳❤t♠❧.

[124] S. Varadarajan and T. Chiueh, “EtheReal: a host-transparent real-time Fast Ethernet

switch,” in 6th International Conference on Network Protocols, pp. 12–21, Oct. 1998.

[125] H. Hoang, M. Jonsson, A. Kallerdahl, and U. Hagström, “Switched Real-Time Ethernet

with Earliest Deadline First Scheduling—Protocols, Traffic Handling and Simulation Anal-

ysis,” Parallel and Distributed Computing Practices, vol. 5, pp. 105–115, Mar. 2002.

[126] M. Zhang, J. Shi, T. Zhang, and Y. Hu, “Hard Real-time Communication over Multi-hop

Switched Ethernet,” in 3rd IEEE International Conference on Networking, Architecture,

and Storage (NAS 2008), pp. 121–128, June 2008.

[127] G. Carvajal, M. Figueroa, R. Trausmuth, and S. Fischmeister, “Atacama: An Open FPGA-

based Platform for Mixed-Criticality Communication in Multi-Segmented Ethernet Net-

works,” in 21st IEEE International Symposium on Field-Programmable Custom Computing

Machines (FCCM 2013), pp. 121–128, Apr. 2013.

[128] R. Marau, N. Figueiredo, R. Santos, P. Pedreiras, L. Almeida, and T. Nolte, “Server-based

Real-Time Communications on Switched Ethernet,” in 1st Workshop on Compositional

Theory and Technology for Real-Time Embedded Systems (CRTS’08) in conjunction with

the 29th IEEE International Real-Time Systems Symposium (RTSS’08), Nov 2008.

[129] R. Santos, M. Behnam, T. Nolte, P. Pedreiras, and L. Almeida, “Multi-level Hierarchical

Scheduling in Ethernet Switches,” in 11th ACM & IEEE International Conference on Em-

bedded Software (EMSOFT’11), pp. 185–194, Oct. 2011.

[130] “Serv-CPS: Server-based Real-Time Ethernet Communication Architecture for Cyber-

Physical Systems.” ❤tt♣✿✴✴s❡r✈✲❝♣s✳❛✈✳✐t✳♣t✴, 2012. Accessed: 2017-04-18.

[131] F. Yekeh, M. Pordel, L. Almeida, M. Behnam, and P. Portugal, “Exploring Alternatives

to Scale FTT-SE to Large Networks,” in 6th IEEE International Symposium on Industrial

Embedded Systems (SIES 2011), pp. 107–110, June 2011.

http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
http://tldp.org/HOWTO/Traffic-Control-HOWTO/index.html
http://serv-cps.av.it.pt/

160 BIBLIOGRAPHY

[132] P. Pedreiras and L. Almeida, “Message Routing in Multi-Segment FTT Networks: The

Isochronous Approach,” in 18th IEEE International Parallel and Distributed Processing

Symposium (IPDPS 2004), pp. 122–129, Apr. 2004.

[133] M. Ashjaei, M. Liu, M. Behnam, A. Mifdaoui, L. Almeida, and T. Nolte, “Worst-Case De-

lay Analysis of Master-Slave Switched Ethernet Networks,” in 2nd International Workshop

on Worst-Case Traversal Time (WCTT’12) in conjunction with the 33rd IEEE International

Real-Time Systems Symposium (RTSS’12), Dec. 2012.

[134] M. Ashjaei, P. Pedreiras, M. Behnam, R. J. Bril, L. Almeida, and T. Nolte, “Response Time

Analysis of Multi-Hop HaRTES Ethernet Switch Networks,” in 10th IEEE Workshop on

Factory Communication Systems (WFCS 2014), pp. 1–10, May 2014.

[135] M. Ashjaei, M. Behnam, P. Pedreiras, R. J. Bril, L. Almeida, and T. Nolte, “Reduced

Buffering Solution for Multi-Hop HaRTES Switched Ethernet Networks,” in 20th IEEE

International Conference on Embedded and Real-Time Computing Systems and Applica-

tions (RTCSA 2014), pp. 1–10, Aug. 2014.

[136] N. H. Weiderman and N. I. Kamenoff, “Hartstone Uniprocessor Benchmark: Definitions

and Experiments for Real-Time Systems,” Real-Time Systems, vol. 4, no. 4, pp. 353–382,

1992.

[137] R. R. D. Marau, Real-time communications over switched Ethernet supporting dynamic

QoS management. Doutoramento em engenharia informática, Universidade de Aveiro,

2009.

[138] L. Almeida and J. A. Fonseca, “Analysis of a Simple Model for Non-Preemptive Blocking-

Free Scheduling,” in 13th Euromicro Conference on Real-Time Systems (ECRTS 2001),

June 2001.

[139] E. Bini and G. C. Buttazzo, “Measuring the Performance of Schedulability Tests,” Real-

Time Systems, vol. 30, pp. 129–154, May 2005.

[140] D. Seto, J. P. Lehoczky, and L. Sha, “Task Period Selection and Schedulability in Real-

Time Systems,” in 19th IEEE International Real-Time Systems Symposium (RTSS 1998),

pp. 188–198, IEEE, Dec. 1998.

[141] T. Chantem, X. Wang, M. D. Lemmon, and X. S. Hu, “Period and Deadline Selection

for Schedulability in Real-Time Systems,” in 20th Euromicro Conference on Real-Time

Systems (ECRTS 2008), pp. 168–177, IEEE, July 2008.

[142] A. Easwaran, M. Anand, and I. Lee, “Compositional Analysis Framework using EDP Re-

source Models,” in 28th IEEE International Real-Time Systems Symposium (RTSS 2007),

pp. 129–138, Dec 2007.

BIBLIOGRAPHY 161

[143] A. Easwaran, I. Lee, I. Shin, and O. Sokolsky, “Compositional Schedulability Analysis of

Hierarchical Real-Time Systems,” in 10th IEEE International Symposium on Object and

Component-Oriented Real-Time Distributed Computing (ISORC’07), pp. 274–281, May

2007.

[144] “OPEN NETWORKING FOUNDATION.” ❤tt♣s✿✴✴✇✇✇✳♦♣❡♥♥❡t✇♦r❦✐♥❣✳♦r❣✴✐♥❞❡①✳

♣❤♣. Accessed: 2015-10-18.

[145] O. M. E. Committee et al., “Software-Defined Networking: The New Norm for Networks,”

ONF White Paper, Apr 2012.

https://www.opennetworking.org/index.php
https://www.opennetworking.org/index.php

	Front Page
	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Acronyms and Abbreviations
	1 Introduction
	1.1 System Characteristics
	1.1.1 The real-time nature of the underlying system
	1.1.2 Heterogeneity in applications and requirements
	1.1.3 Complexity challenge: rationale for using component based design
	1.1.4 The need to optimise the resource usage

	1.2 Motivation
	1.2.1 Real-time service at the network layer
	1.2.2 Real-time networks
	1.2.3 Bandwidth reservation

	1.3 Defining the Problem
	1.3.1 Hierarchical scheduling and its vision
	1.3.2 Proposed solution

	1.4 Objectives
	1.5 Thesis Outline
	1.6 List of Publications

	2 Ethernet in Embedded Systems: the Automotive Case
	2.1 Challenges of System Integration within an Automobile
	2.2 Ethernet-based in-Car Communications
	2.3 Ethernet
	2.3.1 Probabilistic nature of Ethernet transmissions
	2.3.2 Rationale for minimum Ethernet frame length

	2.4 Switched Ethernet
	2.5 AFDX - Avionics Full Duplex Switched Ethernet
	2.6 AVB - Audio Video Bridging Standard
	2.6.1 An AVB system
	2.6.2 Importance of synchronization
	2.6.3 Stream reservation protocol (SRP)
	2.6.4 Traffic scheduling in AVB
	2.6.5 Schedulability analysis for AVB

	2.7 Time Sensitive Networking (TSN)
	2.8 Time-Triggered Ethernet (TTEthernet)
	2.8.1 Architecture model
	2.8.2 Traffic scheduling

	2.9 FTT-SE: a Brief Overview
	2.9.1 Handling synchronous & asynchronous traffic
	2.9.2 Building traffic schedules

	2.10 A Qualitative Comparison of Different Technologies
	2.11 Summary

	3 Traffic Scheduling Concepts
	3.1 Server-based Scheduling
	3.1.1 Polling server
	3.1.2 Deferrable server
	3.1.3 Sporadic server

	3.2 Hierarchical Scheduling
	3.3 Guaranteeing Quality of Service
	3.3.1 QoS at network layer
	3.3.2 Scheduling and QoS in Ethernet
	3.3.3 Scheduling in FTT-SE

	3.4 Summary

	4 Analyzing the Efficiency of Sporadic Reservations on Ethernet with FTT-SE
	4.1 Flat Servers within FTT-SE
	4.2 System Model
	4.2.1 Network model
	4.2.2 Traffic model
	4.2.3 Response time analysis

	4.3 Evaluation
	4.3.1 System setup
	4.3.2 Experiments

	4.4 Lessons Learnt
	4.5 Summary

	5 Supporting Hierarchical Reservations within FTT-SE using Polling Servers
	5.1 Hierarchical Scheduling Framework in FTT-SE
	5.1.1 Servers integration within FTT-SE
	5.1.2 Servers and streams model
	5.1.3 Scheduling model and execution

	5.2 Schedulability Analysis
	5.3 Evaluation
	5.3.1 Experimental setup
	5.3.2 Analysis results vs. observation
	5.3.3 Checking temporal isolation
	5.3.4 Verifying temporal isolation with random simulations

	5.4 Summary

	6 Supporting Hierarchical Reservations within FTT-SE using Sporadic Servers
	6.1 Implementing Hierarchical Sporadic Servers
	6.1.1 Scheduling algorithm
	6.1.2 Replenishment management
	6.1.3 Processing message arrivals
	6.1.4 Handling message packets

	6.2 Evaluation
	6.2.1 Experimental setup
	6.2.2 Experiments

	6.3 Summary

	7 Design of Reservations
	7.1 Server Design for Hierarchical Polling Servers
	7.1.1 Modified system model
	7.1.2 Generating server interfaces

	7.2 Evaluation
	7.2.1 The worst-case behavior
	7.2.2 The average case behavior
	7.2.3 Root server utilization

	7.3 Summary

	8 Experimenting with Hierarchical Reservations on FTT-SE
	8.1 Components of the Experimental Framework
	8.1.1 Structure of hierarchies
	8.1.2 Generating application message set
	8.1.3 Filling in server parameters
	8.1.4 Repository of servers
	8.1.5 Message activations

	8.2 Application Design and Execution Flow
	8.3 Summary

	9 Conclusion and Future Work
	9.1 Thesis validation
	9.2 Future Work

