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Abstract 
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency 
requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments 
that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such 
as in traffic flows. This paper presents a solution to provide these networks with the ability to self-adapt to 
different bandwidth and latency requirements, imposed by traffic flows, by changing the cluster's duty-cycle and 
scheduling. Importantly, our approach enables a network to change its cluster scheduling without requiring long 
inaccessibility times or the re-association of the nodes. Importantly, we show how to apply our methodology to the 
case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze 
and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation 
using commercially available technology on a Structural Health Monitoring application scenario. 
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Abstract—While  Cluster-Tree  network  topologies  look 

promising for WSN applications with timeliness and energy-

efficiency  requirements,  we  have  witnessed  a  lack  of 

commercial  and  academic  solutions  based  on  this  kind  of 

topology. One of the most important arguments that hinder the 

use  of  these  topologies  concerns  the  lack  of  flexibility  in 

adapting to changes in the network, such as in traffic flows. 

This  paper  presents  a  solution  to  provide  these  kind  of 

networks  with  the  ability  to  adapt  in  real-time  to  different 

bandwidth  and  end-to-end  delay  requirements  imposed  by 

incoming traffic streams, by changing the cluster's duty-cycle 

and scheduling. Importantly, our approach enables a network 

to  change  its  cluster  scheduling  without  requiring  long 

inaccessibility  times  or  the  re-association  of  the  nodes.  We 

show  how  to  apply  our  methodology  to  the  case  of  IEEE 

802.15.4/ZigBee cluster-tree  WSNs.  Finally,  we  analyze  and 

demonstrate  the  validity  of  our  methodology  through  a 

comprehensive  simulation  and  experimental  study  using 

commercially available technology on a real-world Structural 

Health Monitoring application scenario.
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I.  INTRODUCTION

The increasing tendency for the integration of computations 
with  physical  processes  at  large  scale  has  been  pushing 
research  on  new  paradigms  for  networked  embedded 
systems design [1]. In this line, Wireless Sensor Networks 
(WSNs) have naturally emerged as enabling infrastructures 
for these cyber-physical applications due to their potential to 
closely interact with external stimulus. Applications such as 
homeland  security,  physical  infrastructures  monitoring, 
health  care,  building or  factory  automation are  just  a  few 
elucidative  examples  of  how these  emerging  technologies 
will impact our daily life and society at large. 
Given the large number of these WSN applications each with 
an  individual  set  of  requirements  [2],  it  is  important  that 
some of  these  WSN resources  (e.g.  bandwidth  and buffer 
size),  are  predicted  in  advance,  in  order  to  support  the 
prospective  applications  with  a  pre-defined  Quality-of-
Service (QoS).
For instance, an environmental monitoring application that 
simply  gathers  temperature  readings  has  less  stringent 
requirements than a real-time tracking or a structural health 
monitoring application.

To achieve this, it is mandatory to rely on structured logical 
topologies  such  as  cluster-trees  (e.g.  [3],  [4],  [5]),  which 
provide deterministic behavior in terms of routing and the 
ability  to  perform end-to-end resource  reservation,  against 
flat  mesh-like  topologies,  where   probabilistic  routing 
protocols are commonly used. 

Although these  network  topologies  look promising  for 
these  WSN  applications  we  have  witnessed  a  lack  of 
commercial  and  academic  solutions based  on this  kind of 
topology. Perhaps one of the most important arguments that 
hinder  the  use  of  these  topologies,  so adequate  given  the 
degree of predictability that can be achieved, is their lack of 
flexibility in adapting to changes in the traffic or bandwidth 
requirements in real-time, for instance, how to allocate more 
bandwidth to a set of nodes sensing a particular phenomena, 
or how to reduce the latency of a data stream, without having 
to restart the network again. In fact, although there is already 
some literature on how to compute these network resources 
[6], [7], it is not clear how they could be re-allocated without 
greatly  interfering  with  the  network  functionality,  and 
specially without imposing high inaccessibility times. 

This paper presents a solution to this problem, enabling 
networks  to  adapt  in  real-time to different  bandwidth and 
end-to-end delay requirements imposed by incoming traffic 
streams,  by  changing  the  cluster's  scheduling.  Computing 
this would normally result in a complex linear programming 
problem which would be unfeasible to be computed by WSN 
nodes which typically have scarce computing power. Our re-
scheduling algorithm relies in a heuristic that can be easily 
computed in these platforms.

In this paper, we show how to apply our methodology to 
the  particular  case  of  IEEE  802.15.4/ZigBee cluster-tree 
WSNs. Finally, we analyze and demonstrate the validity of 
our methodology through a comprehensive  simulation and 
experimental  study  using  a  real-world  Structural  Health 
Monitoring application scenario,  showing that our proposal 
can reduce the end-to-end latency in 93% and the overall 
data transmit duration in 49 %.

II. RELATED WORK

Synchronized  Cluster-Tree  topologies  tend  to  suffer  from 
two technical issues that tend to inhibit their use: (1) how to 
schedule the transmissions of different neighboring clusters, 
(2)  how  to  predict  the  performance  limits  to  correctly 



allocate  resources,  and  (3)  how  to  change  the  resource 
allocation of the CT on the fly.
This  is  specially  true  for  the particular  case  of  the IEEE 
802.15.4/ZigBee  set  of  protocols,  in  which  although  the 
Cluster-Tree  network  topology  is  supported,  no  clear 
description on how to implement it is given, namely in what 
concerns the beacon collision problem.
In  [8],  the  Task  Group  15.4b  proposed  some  basic 
approaches to solve this: the beacon-only period approach 
and the time division approach, only to be removed in the 
2006 revision. In this line, in [9], the TDCS algorithm was 
proposed  and  implemented  in  the  Open-ZB  stack  [10] 
enabling  for  the  first  time  the  use  of  this  topology  over 
IEEE  802.15.4/ZigBee  based  networks  guaranteeing  no 
beacon  collisions.  This  technique  used  the  time-division 
approach and worked by assigning a different time offset to 
each cluster.  Other proposals followed a similar approach 
like  [11] for  mesh networks,  or  [12].  In  [13]  the authors 
choose to use different radio channels instead to tackle the 
problem, assuming they are available.
Recently, research was done [6], to addresses the problem 
of predicting resource needs by modeling the performance 
limits  of  a  ZigBee  CT  network.  In  another  work,  [7] 
extended  the  previous  work  by  computing  the  optimal 
TDCS  schedule  for  several  GTS  data  flows.  Here,  the 
assignment of the resulting parent-child offsets followed the 
same strategy as in [9], where the offset assignment is done 
at network setup time and remains fixed.
Although, some literature is already available on solving the 
first  two  problems,  none  of  the  proposals  so  far,  in  the 
general  case  of  synchronized  Cluster-Trees,  addresses  the 
third. This greatly limits the flexibility of the network which 
must  keep  the  same  cluster  schedule  and  bandwidth 
reservation, independently of the flow of data in the network 
and of its particular requirements, which depending on the 
application may certainly change. 
In this paper,  we address  this issue, and propose a set  of 
techniques,  in  which  the  base  schedule  is  temporary 
changed to encompass transient networking necessities such 
as end-to-end delay and bandwidth allocation.

III. DYNAMIC CLUSTER SCHEDULING

A. System Model

1) Cluster-Tree topology

Consider a synchronized cluster-tree WSNs featuring a tree-
based  logical  topology  where  nodes  are  organized in 
different groups, called clusters. Each node is connected to a 
maximum of  one node  at  the  lower  depth,  called  parent 
node, and can be connected to multiple nodes at the upper 
depth, called child nodes (by convention, trees grow down). 
Each  node  only interacts  with  its  pre-defined  parent  and 
child nodes.
A cluster-tree topology contains two main types of nodes: 
routers  and end-nodes (refer  to Figure 1).  The nodes that 
can  associate  to  previously  associated  nodes and  can 

participate in multi-hop routing are referred to as  routers. 
The leaf nodes that do not allow association of other nodes 
and do  not  participate  in  routing  are  referred  to  as  end-
nodes. 

The router that has no parent is called root and it might hold 
special  functions  such  as  identification,  formation  and 
control of the entire network. Note that the root is at depth 
zero.  Both  routers  and  end-nodes  can  have  sensing 
capabilities,  therefore  they  are generally  referred  to  as 
sensor nodes. Each router forms its cluster and is referred to 
as cluster-head of this cluster (e.g. router C11 is the cluster-
head of cluster 11 ). Each cluster-head is also responsible 
for  synchronization  in  its  cluster  and  periodically  sends 
synchronization frames.
All child nodes (i.e. end-nodes and routers) of a cluster-head 
are associated to its cluster, and the cluster-head handles all 
their data transmissions. It results that each router (except 
the root) belongs to two clusters, once as a child and once as 
a parent (i.e. a cluster-head).

2) Time-Division Cluster Scheduling

In  general,  the  radio  channel  is  a  shared  communication 
medium where more than one node can transmit at the same 
time. In cluster-tree WSNs, messages are forwarded  from 
cluster to cluster until reaching the sink. The time window 
of each cluster is periodically divided into an active portion 
(AP),  during  which  the cluster-head  enables  data 
transmissions inside its  cluster,  and a subsequent  inactive 
portion, during which all cluster nodes may enter low-power 
mode to save energy resources. Note that each router must 
be awake during its active portion and the active portion of 
its parent router. To avoid collisions between clusters, it is 
mandatory  to  schedule  the  clusters’  active  portions in  an 
ordered  sequence,  that we  call  Time  Division  Cluster 

Figure 1 



Schedule (TDCS). In other words, the TDCS is equivalent 
to a permutation of active portions of all clusters in a WSN 
such that no inter-cluster collision occurs. In case of single 
collision domain, the TDCS must be non-overlapping, i.e. 
only  one  cluster  can  be  active  at  any  time.  Hence,  the 
duration of  the  TDCS’s cycle  is  given by the number  of 
clusters  and  the  length  of their  active  portions.  On  the 
contrary, in a network with multiple collision domains, the 
clusters  from different  non-overlapping  collision  domains 
may be active at the same time. However, finding a TDCS 
that avoids clusters’ collisions in a large-scale WSN with 
multiple  collision  domains  is  a  quite  complex  problem, 
hence in this paper, for simplification, we always assume a 
single collision domain. For more information concerning 
TDCS please refer to [9].

B.         Dynamic Cluster Scheduling

With TDCS [9] it is possible to find the best schedule for 
the routers active periods in order to avoid interference, and 
to  support  most  of  the  network  bandwidth  requirements. 
However,  the schedule is done at network setup time and 
assumes a static network that will remain unchanged. 
The choice of the TDCS schedule has a strong impact in the 
end-to-end delays,  in  fact,  it  is  easy  to  observe  that  in  a 
single  collision  domain,  where  there  are  no  overlapping 
clusters,  a  TDCS  schedule  optimized  for  downstream 
communication, will  result  in the worst-case for upstream 
communication,  and  consequently  in  higher  end-to-end 
delays.  Moreover,  the  routers  are  assigned  with  a  fixed 
bandwidth they might not always need, while other clusters 
might need that bandwidth. We aim at reacting to different 
data  flow  changes  in  real-time,  while  simultaneously 
minimizing the network inaccessibility time. Our proposal 
achieves this via two techniques: (1) re-ordering the clusters' 
active periods to favor one set of streams, reducing the end-
to-end  delays,  which  we  call  DCR  (DCS  Cluster  Re-
ordering); and (2) tuning the size of the clusters' duration, 
increasing the bandwidth of the clusters serving a specific 
stream,  while  decreasing  others  bandwidth,  which  we 
named DBR (DCS Bandwidth Re-allocation). 
The first technique, consists of a rescheduling of the clusters 
order in the TDCS cycle, aiming at minimizing end-to-end 
delays, while the second technique consists of rearranging 
the  bandwidth  allocation  for  the  clusters  involved  in  a 
stream, to increase its bandwidths and decrease the overall 
time  for  data  transmission.  Both  techniques  can  be  used 
together, or separately.

1) DCR Cluster Reordering Technique

Consider  the  cluster-tree  presented  in  Figure  1,  with  10 
clusters  and  a  TDCS  schedule  as  presented  in  Figure  2 
Schedule  A,  where  all  Chs  have  the  same  allocated 
bandwidth. 

Notice  that  this  schedule  is  set  to  minimize  downstream 
traffic latency, (parents' appear earlier in the schedule than 
the child  nodes)  which  is  common in  applications which 
require  fast  actuation  actions.  This  way,  to  actuate  on 
Cluster C21 for instance, one could do it in only one TDCS 
cycle, since those Cluster's are active immediately one after 
each other.  If  a reasonable amount of data resulting from 
these actuation actions is to be sent to the Root, where the 
Sink is located, a large delay is to be expected in receiving 
it,  since  the  selected  TDCS schedule  is  not  the  best  for 
transmitting data upstream. In fact,  assuming that  all data 
could be transmitted from one CH to the next in one cycle, it 
would take two cycles.  One from C21 to C11,  and another 
from C11 to C01. This is depicted in Figure 2. (a) represents 
the data coming from the sensing node and being received 
by  C21.  Next, (b) represents the transmission from  C21 to 
C11,  and  finally,  (c)  from  C11 to  C01.  The  stream  is  also 
represented in Figure 1. 
This delay will become higher as the network size and the 
clusters' duration increases and as the Depth of the tree of 
the source increases.  In this scenario, the best schedule to 
minimize  upstream  latency,  considering  a  stream  from 
Cluster  C21 to  the  Sink  (S1 in  Figure  1),  should  be  as 
depicted in Figure 2 Schedule A', where the next cluster to 
receive  the  packet  appears  next,  reducing  the  amount  of 
time a packet needs to be left in the queue and consequently 
the application end-to-end delays.
Ideally,  the  schedule  should  carry  out  an  on-line  re-
scheduling of the network to favor a known set of upstream 
streams, minimizing the inaccessibility times.
This  kind  of  rescheduling  involves  a  re-ordering  of  the 
Clusters according to the streams the network must serve. 
This can easily grow into a complex problem if one wishes 
to achieve an optimum solution, due to the precedences in 
the  tree,  usually  solved  in  the  literature  using  linear 
programming [7]. However, in order to react to the network 
specific needs in a reasonable amount of time, one needs to 
guarantee that the algorithm to compute this new schedule is 
light  and  fast  enough  to  be  run  in  WSN platforms  with 
scarce  processing power.  In  this line,  linear  programming 
models might just not be the best choice for this, where we 
just need a better and not necessarily the optimum solution. 
Our approach to the problem is explained as follows.
Each stream is noted as a  tuple  Sk = <Rk  ,  Pk  ,  Tk  ,  Dk>, 
where,  Rk represents the ordered set of clusters which the 
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stream  k must  cross  to  reach  the  sink,  Pk represents  the 
priority for that stream which is an integer from 0 to 5,  Tk 

represents the number of TDCS cycles for which stream k 

will remain active and Dk the depth of the stream's source.
Given the set of streams S, and the set N which contains all 
the  cluster-heads  in  the  tree,  we  must  compute  A which 
denotes  the  set  of  cluster-heads  that  need  rescheduling, 
where  A = N  ∩ S.  Then,  Cr, which denotes the priority of 
the  rth cluster-head  in N can  be  computed  through  the 
following algorithm.

In other words, being  Mr the set of streams from m to  Nm 

which contain CH  r in  R, and  Pm the stream's priority, we 
can compute Cr as:

Cr=∑
m=0

Nm

Pm+h( Ar)

Function  h(Ar) computes the height of Cluster-Head  Ar in 
the  tree,  according  to  the  position  each  Cluster  holds  in 
array  Rk being the first CH in the array position 0.  Thus,

h( Ar)=Dk−pos (Rk) . This value will sum with the 
already computed cluster's priority to enable precedence in 
the schedule.
The resulting schedule will be achieved by ordering the set 
of all cluster-heads N according to the computed Cr for each 
cluster-head  Ar,  starting  from  the  lower  priorities  to  the 
highest.  As  a  result,  the  highest  priority  will  always  be 
assigned to the sink, since all the streams are directed to that 
cluster-head. Cluster-heads which are not part of the set A 
keep their schedule not to interfere with the initial schedule 
of those and are place after the sink. 
As an example, consider the network presented in Figure 1
and assume the following set of streams:
S1 = < {C21, C11, C01}, 3, 3, 2 >
S2 = < {C12, C01}, 1, 4, 1 >
The first stream, originates at cluster C21 and has priority 3, 
while the second, originates at cluster C12 and has priority 1. 
If  no  reschedule  was  done,  and  assuming  ideal 
communication without  errors  and delays imposed by the 
MAC layers, we would expect that one packet of S1 would 
take  approximately  18  times  the   duration  of  one  active 
portion of a CH to reach the sink (Figure 2 Schedule A), and 
from S2 three active portions. Lets now, run the presented 
algorithm and analyze the result.
A={ C01, C11, C12, C24}

C01 = P1 + P2 + h(A01) = 3 + 1 + 2 = 6
C11 = P2 + h(A11) = 3 + 1 = 4
C12 = P1 + h(A12) = 1 + 1 = 2

C21 = P1 + h(A21) = 3 + 0 = 3
Ordering from the lowest to the highest priority, the CHs in 
A should  be  ordered  as  C11,  C24,  C12 and  finally  C01. 
Considering  the  remaining  nodes,  which  maintain  their 
initial  order  in the schedule and lowest  priority,  the final 
schedule would be as follows:

It  is  now possible a full  data transaction  from the origin 
cluster  to  the  sink  in  one  TDCS cycle.  This  reduces  the 
transmission  delay  of  each  packet,  greatly  benefiting 
applications which demand low latencies. A packet from S1 

should now take approximately three CH active portions to 
reach  the  Sink  while  S2 maintains  the  same three.  If  we 
wanted to decrease the latency for  S2 we could increase the 
priority of the stream to the same of S1 or higher. This would 
result in C12 = P1 + h(A12) =  3 + 1 = 4, and now, C12 would 
have a higher priority than C21 thus appearing later in the 
schedule and decreasing the latency.
Now, comparing this schedule with the original in Figure 2 
Schedule A, we observe that all the other CH also changed 
place in the schedule.  Changing the position of  all  nodes 
must be done because there is no free room that will let us 
only change the streaming CHs' position and accommodate 
their  initial  positions unoccupied.  However,  this  does  not 
necessarily  mean that  all  of the CHs change the offset  to 
their parents. 
For instance, in this particular case C41 does not change the 
offset. This is obvious, since the distance between C41 and 
its parent C31 did not change. However, C31 offset changed 
in relation to its parent C21 since C21 was re-scheduled. As a 
rule of thumb, a new offset will have to be computed for 
every  children  one depth  bellow a  re-scheduled  CH.  For 
their grand-children, this does not happen since the distance 
remains the same as in the original schedule. This principle 
will be used later in STEP 4 (Section B. 3). ), to compute 
the network's inaccessibility time.
Finally  the  remaining  part  of  the  technique  consists  in 
computing all the new offsets. This is a matter of measuring 
the distances between parent and child in the new schedule. 
One way of implementing this is by creating an array of size 
equal to the number of Clusters in the network, where each 
position holds  a Cluster  number and its  respective  parent 
(easily set at network setup time), ordered according to the 
schedule. Then it is a matter of using simple counters on the 
array.
Although this approach solves the latency problem, it does 
not reduce the overall time it will take for a stream to be 
transmitted  since  there  is  no  change  to  the  available 
bandwidth  per  cycle.  Hence  our  second  proposal,  DBR, 
which consists in increasing the bandwidth for the clusters 
involved in the stream.

 
2) DBR Bandwidth Re-Allocation Technique

for all cluster head r in A do

  for all stream k in S do

    if A
r 
∈ R

k

      C
r
← C

r
 + P

k

  end for

  C
r
← C

r
 + h(A

r
)

end for

Figure 3



For the second technique, bandwidth must be reallocated, by 
increasing  the  bandwidth  for  the  clusters  involved  in  the 
stream.  The  first  step  is  to  look  for  free  space  in  the 
schedule  that  has  not  been  reserved  by  a  cluster's  active 
portion. If there is such free space, we can distribute in an 
equal fashion the available space by the Clusters involved in 
the stream. For the particular case of Figure 2 Schedule A 
there  is  no  space  available.  This  means,  we  must  try  to 
reduce the amount bandwidth the clusters not related to the 
stream are using. Here, it is important to previously define 
the  minimum  bandwidth  a  Cluster  can support.  This  is 
implementation dependent in many cases, since it is highly 
dependent of the limitations of the hardware platforms. If 
the SO is reduced beyond a threshold, there can be timing 
issues. This has been reported previously and is discussed in 
[14]  concerning  the  TelosB  and  MicaZ  platforms.  The 
minimum  bandwidth  that  will  be  available  to  the  other 
clusters after the use of this technique is thus set at network 
setup time. 
If we consider stream S3 (Figure 1) originating a C41, where 
R41={C41, C31, C21, C11, C01}, the one we wish to increase the 
bandwidth of every cluster, and a system which is capable 
of handling a reduction of the available bandwidth by half, 
this technique will  cut  all  the remaining 5 CH's duration, 
and redistribute this duration by the other CH's in R41. This 
results in an increased bandwidth for that stream (Figure 4), 
thus reducing the transmission time. The size of the TDCS 
cycle is kept nonetheless, since the bandwidth was simply 
redistributed.

As  depicted  in  Figure  4,  all  of  the  relative  offsets  have 
changed. Nevertheless, a great plus of this technique is that 
the network inaccessibility time is minimum if compared to 
the previous technique, since in only one cycle, it is possible 
to reschedule all  the network with the new offsets,  if  the 
original  schedule  was  setup  to  facilitate  downstream 
communications.  This  technique  is  however,  greatly 
dependent of the protocol in use, since, some protocols only 
allow  discrete  steps  in  the  duration  of  the  CH's  active 
portion,  like  the  IEEE802.15.4/ZigBee  set  of  protocols. 
Because of this, a more detailed explanation about this will 
be  given  in  Section  IV  concerning  IEEE802.15.4/ZigBee 
protocols.

3) The DCS Communication Protocol

Our proposed on-line re-scheduling technique comprise six 
steps (Figure 5),  which can easily be adapted to different 

network protocols. The protocol is depicted in Figure 5 in a 
time diagram and is described as follows.

STEP  1 -  At  network  setup  time,  all  Cluster-Heads  are 
assigned with a TDCS time offset in relation to their parents 
according to the approach proposed in [9]. 
Different  priorities  are  also  assigned  to  different  sensing 
actions  by  the  nodes.  Synchronization  frames  are  sent 
periodically and several actuation actions on the leaf nodes 
can be carried out.

STEP 2 – DCS Request; If a leaf node wishes to transmit a 
stream  of  data  to  the  Sink,  its  Cluster-Head  must  be 

informed. The CH will decide, according to the application 
which originates the request, if the most adequate strategy is 
a  rescheduling  to  minimize  end-to-end  delays  or  an 
arrangement of the bandwidth, or both. The option of which 
technique  to  use  must  be  defined  at  network  setup  time, 
since  different  applications  impose  different  requirements 
(reduced latency or transmission time).
This request is then forwarded to the parent until it reaches 
the Root. On the way, each CH will add its own address to 
the message, to inform the Root of the clusters involved in 
the stream. This way, we avoid using heavy lookup tables 
that would have to be loaded into the Root at network setup 
time describing all parent child relationships.
The DCS Request is formated as follows:

Figure 4
Figure 5

Figure 6



The  first  field  (Figure  6)  transports  the  DCS  Request 
message code identifier. Next, the estimated amount of data 
to be transmitted in the stream, and the application which is 
requesting  the  DCS.  The  next  fields  identify  the  stream 
priority, for computing the new schedule, number of clusters 
which belong to the set, and their identification. These two 
last  fields are updated as the DCS Request  is  transmitted 
upstream.
Upon reception, the Root will wait for a finite period of time 
for more requests. It will then evaluate the Stream Requests 
and compute a new TDCS schedule. 

STEP  3  –  Evaluation  and  Rescheduling;  The  evaluation 
process consists in checking weather or not it is worth it to 
reschedule the network, considering the amount of data to 
be transmitted and the inaccessibility time resulting from the 
reschedule. 
Although  different  techniques  could  be  used  to  compute 
this, we are interested in speed and low complexity, due to 
the scarce  processing  power  of  common WSN platforms. 
The  objective  is  to  roughly  compute  the  benefit  from 
scheduling, and to do it fast enough not to delay the process 
too much.
The result  of  this computation depends on the techniques 
chosen for the DCS (DCR or DBR).
Let us consider Stream S3 from Figure 1, depicting a stream 
originating  at  C41 for  C01.  Assume  that  objective  is  to 
minimize end-to-end delay.
To compute this, we start by defining a base unit to simplify 
the computation. The base unit represents the duration of the 
active portion of the CH where a stream originates. Hence, 
if we say that a stream has size n=1, this represents a stream 
which  duration  is  equal  to  the  duration  of  its  CH active 
portion. All the others CH durations can be represented as 
multiples of this base unit, because streams move upstream, 
thus the Bandwidth of  the parent  CHs,  must  be  equal  or 
higher  than  their  child's.  This  is  imposed  by  the  TDCS 
algorithm [9] .
We also introduce the concept of  µcycle  and  Macrocycle. 
Here, the µcycle represents the amount of n units it takes for 
a stream of size  n=1 to reach its destination.  Macrocycle, 
represents  the  size  of  the  network  TDCS  schedule  in 
multiples of n.
The  amount  of  time  to  transmit  an  amount  of  data 
represented in multiples of  n  can be computed using the 
following expression, where  Ti represents the overhead of 
the rescheduling which we show how to compute in Step  5.

t=μ cycle+(n−1)Macrocycle+Ti
For the particular case of the network depicted in Figure 1, 
with schedule A, and considering a stream originating at C41 

(S3), we can compute it's µcycle as the number of base units 
between the different CHs in the path. The result is shown 
in Table 1.  

A B

C41→C32 10 2

C32→C24 9 1

C24→C12 7 1

C12→C01 6 1

µcycle 32 5

If we use for instance a re-ordering technique (DCR), this 
will result in the schedule B depicted bellow, favorable to 
stream  S3,  showing  a  full  transaction  from  source  to 
destination in one TDCS cycle.

Its  Macrocycle is the size of the schedule, which is of 10 
base units.  Tnit is computed according to the methodology 
presented in Step 5 and is equal to 3.  Hence,  for  n = 1,  

considering Schedule A, tA = 32 + 0 + 0= 32.
For schedule B, with a DCR, tB = 5 + 0 + 3 = 8.
The Macrocycle is equal to 10 for both cases.
This expression assumes a collision-free environment, with 
no contention. This is obviously a simplification, which will 
always output the shortest time it takes for a flow of data to 
reach  the  destination.  This  method,  however,  suffices  to 
compute if a re-scheduling is better or not. 
The root node will then compute all the offsets that result 
from  the new cluster schedule that will serve that stream 
and reply to the request.

STEP 4 – Reschedule Response; After the computation of 
the new offsets (time offset  between the beginning of the 
active portions of the parent and child CHs), according to 
the new schedule, a response is sent in the payload of the 
periodic  synchronization  frame.  By  using  the 
synchronization frame to deliver this information we make 
sure  that  all  CHs  receive  the  information  in  a  bounded 
amount of time, since they are not susceptible to contention 
and minimize the possibility of collisions.
The first part specifies the message type and the response, 
(request accepted or request denied). The next portion of the 
frame contains the expiration for that schedule, which is the 
amount  of  cycles  the  schedule  will  remain  active  before 
returning to the original network schedule. The next portion, 
contains  a  list  with  the  new offsets  and  the  cluster-head 
addresses to which these are to be applied.
Only the CHs which received a new offset are part of the 
content of the response frame. If the node which requested 
the rescheduling does not find it's address among the ones in 
the response,  or if  no response is received for more than 
DCS_maxWait cycles,  it should hold the data and retry later 
up to a maximum of  DCS_maxRescheduleRetry  times.  The 

Figure 7



size of DCS_CH_Address is implementation specific as well 
as  the  DCS_Offset,  since  these  variables  depend  of  the 
protocol used. The frame is formated as follows:

A DCS Messsage ID field to identify the message type, a 
Decision Field with the response to the DCS Request,  an 
Expiration field with the maximum number of TDCS cycles 
the  schedule  is  to  remain  active  before  returning  to  the 
original, and an Offset List, which contains the new offset 
expressed in a relative offset  concerning the original  one, 
and the correspondent Router address.

STEP 5 – Propagation; Each cluster-head, upon reception 
of  the  Reschedule  Response  payload,  retrieves  its  newly 
assigned offset to their parent and propagates the remaining 
offset information along the network by placing it in their 
own  synchronization  frames,  thus  propagating  the 
information  downstream.  The  use  of  the  synchronization 
frames for propagating this information guarantees that all 
CH  receive  the  necessary  information  within  a  bounded 
amount of time.
The  new  offset  information  is  then  used  by  the  CHs  to 
compute the time for the next synchronization frame. At the 
next  depth,  the  router  joined  with  that  cluster-head  must 
wait  for  the  next  synchronization  frame  (with  the  new 
offset) from the parent, and synchronize to it.
This propagation procedure however can introduce a period 
over  which  the  network  is  not  fully  accessible,  with  the 
exception of the branches that remained independent of the 
CHs which were rescheduled. This holds true for the Cluster 
Re-ordering technique only (DCR).
This is because each CH must wait for the synchronization 
frame of their parent so that they can align with it and also 
synchronize their cluster, propagate information and become 
active, since the offsets are always relative to the parents.
However, this delay is fixed and can be easily computed as 
a number of schedule cycles as described in the equation 
bellow.

T i

DCR=(d Ar−1)∗macrocycle
The inaccessibility time is equal to the Depth of the deepest 
rescheduled CH (dAr) in the tree in the schedule minus one, 
multiplied by the respective  duration of  one  MacroCycle. 
This is  the amount of time the scheduled branches of the 
network  should  be  inaccessible.  This  is  because  the 
scheduled  CHs  at  depth  1,  transmits  with  a  new  offset 
immediately in the next cycle, while the scheduled nodes at 
depth 2 transmit after their parents'  hence the delay is an 
extra cycle, since these schedules always favor an upstream 
sequence (check Figure 9). If instead of a DCR technique 
we  use  a  Bandwidth  Redistribution  technique,  this 
inaccessibility time is zero. Since the hierarchical order of 
the  schedule  is  kept,  the  routers  will  always  receive  the 

synchronization frame of their parents immediately before 
(assuming  an  initial  schedule  favoring  downstream 
transmission), and within the same Macrocycle.

STEP 6 – Returning to original schedule; 
The schedule's  change is not permanent,  and the network 
must roll back to it's initial schedule after a defined period 
of  time  which  we  define  as  the  Schedule's  Expiration 
Period.
Because of the inaccessibility period in the DCR technique, 
each depth will be assigned with a different Expiration so 
that all depths can change the schedule back to the original 
in the same cycle. For this reason, Expiration in Step 5 is 
computed as  Expiration = ED + Ti + 1,  where  ED is the 
schedule's  expiration  deadline  that  is  application  defined 
(DCS_Exp_Deadline)  and  can  be  computed  from  the 
amount of data to be received,  Ti the inaccessibility time. 
Each  CH  will  later  compute  its  own  Expiration  by 
subtracting their own Depth in the tree.
For  the example  lets  consider  S3 used  before,  applying a 
DCR technique, we can consider ED equal to Tk  = 4.

Ti = d(C31) – 1 = 3 – 1 = 2 cycles

Expiration = 4 + 2 + 1 = 7 cycles

Accordingly,  each CH will  compute their own Expiration 
time, by subtracting their own depth. 

ExpirationC11 = 7 – 1 = 6 cycles

ExpirationC21 = 7 – 2 = 5 cycles

ExpirationC31 = 7 – 3 = 4 cycles

By following this rule, every CH can easily compute when 
the  current  schedule  expires,  in  order  to  return  to  the 
original  schedule  at  the  same  time,  just  by  counting  the 
number  of  TDCS cycles  since  their  first  synchronization 
frame after the reschedule.
For the case of a DBR technique, expiration will be always 
equal to the ED, since the inaccessibility time remains equal 
to zero. 
The  CHs  should  activate  a  counter  at  the  first 
synchronization  frame  sent  with  the  new schedule.  From 
this point on, each CH keeps track of the current number of 
synchronization  frames  sent  by  it.  When  this  number  is 
equal  to  the  computer  CH  Expiration  value  the  CH 
automatically sets its offset to the original and waits for a 
synchronization  frame  from  its  parent  to  return  to  the 
original  schedule.  Since  the  CHs at  different  Depths  will 
start their counters at a different times, the correct deadline 
must be computed per depth at each CH.
Figure 9 describes  how this process  should work for  this 
example of S3, after a successful reschedule response. The 
delay of  three  cycles  due to inaccessibility is  depicted  as 
well as the schedule expiration. 
The first TDCS cycle transmits the new offsets within the 
DCS Response.  Each  router  will  now reset  their  internal 
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clock references and wait for a synchronization frame from 
their parent. C12 and C11 are the first to receive this and 
they  transmit  their  synchronization  frames  with  the  new 
schedule, followed by their child, (C22, C23, C24, C21).

Next, the CHs at depth three do the same until the last CH at 
depth four (C41) is also rescheduled. The schedule is kept 
for three more TDCS cycles and it expires. All the offsets 
return to the original schedule in only one TDCS cycle. As 
observed, the network inaccessibility time is bounded and 
return  to  the  original  schedule  is  done  without  much 
complexity,  as  the  routers  are  resynchronized  in  an 
hierarchical fashion.

IV. INSTANTIATING ETDCS IN IEEE 802.15.4/ZIGBEE

A. IEEE 8021.5.4/ZigBee Overview

IEEE  802.15.4  and  ZigBee  [15],  particularly  the 
synchronized  cluster-tree  network  model,  emerge  as 
potential solutions for industrial WSNs, since they enable to 
fulfill  QoS  requirements  such  as  energy-efficiency 
(dynamically  adjustable duty-cycle  in  a  per-cluster  basis) 
and timeliness (best effort/guaranteed traffic differentiation 
and deterministic tree-routing).
The IEEE 802.15.4 MAC protocol supports two operational
modes  that  may  be  selected  by  the  ZigBee  Coordinator 
(ZC), which identifies and manages the whole WSN: i) the 
non beacon-enabled  mode,  in  which  the  MAC is  simply 
ruled  by nonslotted  carrier  sense  multiple  access  with 
collision avoidance (CSMA/CA); and ii) the beacon-enabled 
mode, in which beacons are periodically sent by the ZC for 
synchronization and network management purposes. 
In the beacon-enabled mode, the ZC defines a superframe 
structure,  which  is  constructed  based  on  the  Beacon 
Interval,  which defines  the time between two consecutive 
beacon  frames,  and  on  the  Superframe  Duration  (SD), 
which defines the active portion in the BI, and is divided 
into  16 equally-sized  time  slots,  during  which  frame 

transmissions are allowed. Optionally, an inactive period is 
defined if BI > SD.
During the inactive period (if it exists), all nodes may enter 
in asleep mode (to save energy).
BI and SD are determined by two parameters, the Beacon 
Order (BO) and the Superframe Order (SO), respectively, as 
follows:

where aBaseSuperframeDuration  =  15.36  ms,  (assuming 
250  kb/s  in  the  2.4  GHz  frequency  band)  denotes  the 
minimum superframe duration, corresponding to SO = 0.
During  the SD,  nodes  compete  for  medium access  using 
slotted  CSMA/CA  in  the  CAP.  For  time-sensitive 
applications, IEEE  802.15.4  enables  the  definition  of  a 
contention-free  period  (CFP)  within  the SD,  by  the 
allocation of guaranteed time slots (GTSs). Low duty-cycles 
are achieved by setting small values of the superframe order 
(SO)  as  compared to  the  beacon  order (BO),  leading  to 
longer sleeping (inactive) periods.
ZigBee defines  network and application layer  services  on 
top of the IEEE 802.15.4 protocol. In the cluster-tree model, 
all nodes  are  organized  in  a  parent-child  relationship, 
network synchronization is achieved through a distributed 
beacon  transmission  mechanism  and  a  deterministic  tree 
routing mechanism is used.
A ZigBee network is composed of three device types: (i) the
ZigBee Coordinator (ZC), which identifies the network and 
provides synchronization services through the transmission 
of beacon frames containing the identification of the PAN 
and other relevant information; ii) the ZigBee Router (ZR), 
which has  the  same  functionalities  as  the  ZC  with  the 
exception that it does not create its own PAN—a ZR must 
be associated to the ZC or to another ZR, providing local 
synchronization to its cluster (child) nodes via beacon frame 
transmissions;  and  (iii)  the  ZigBee  End-Device  (ZED), 
which neither  has  coordination nor routing functionalities 
and is associated to the ZC or to a ZR.

B. Integrating Elastic Management in a ZigBee Network

The PAN-Coordinator is responsible for receiving the new 
schedule  request  from  the  other  cluster-heads  and 
computing the new schedule as described before.
A  new  module  was  devised  to  be  integrated  above  the 
network  layer  of  ZigBee  (Figure  10),  at  the  Application 
Support Layer.  This new module, DCS, is responsible for 
managing  the  DCS mechanism,  in  regards  to  the  beacon 
payload  creation  (for  propagating  offset  information), 
computing and changing the offset information for the lower 
layers,  and  computing  the  schedules  and  corresponding 
expiration.
At network setup time, the TDCS algorithm is applied to the 
the tree, setting up the base schedule. This schedule depends 
on the application, but generally favors downstream traffic, 
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for faster actuation upon the leaf nodes and setting up other 
application  related  parameters.  In  this  way,  the  resulting 
schedule  should  be  one  which  establishes  precedence 
between parent-child, in a way that in one BI all clusters can 
be reached. This is a necessary condition for the DCS to be 
successful.

As the nodes gather data, they can direct streaming requests 
at  the  PAN  Coordinator.  The  PAN-Coordinator  will 
evaluate  these  requests  according  to what  is  described  in 
Step 2 of Section III B 3.  If the result is  positive,  it  will 
compute  the  new  schedule  and  setup  the  Rescheduling 
Response  to  be  placed  in  the   IEEE  802.15.4  Beacon 
Payload. The next Beacon frame will carry this information.
As Beacons are transmitted between the several clusters, the 
Rescheduling information is propagated among the tree. As 
the Zigbee Routers receive the Rescheduling Response and 
the new offsets to their parent,  all the nodes will know a 
DCS Rescheduling in occurring just by parsing the received 
Beacon. This is important since in the next BI, many nodes 
will fail to receive a Beacon from their parent, due to the 
inaccessibility  time  described  in  Step  4.  This  will  be 
specially  visible  in  the  deepest  nodes  of  the  rescheduled 
branch.  If  no  information  concerning  the  status  of  the 
process was propagated, the nodes could assume they had 
lost  their  parent,  receiving  a  SYNC-LOSS.indication from 
the  respective  MAC layer,  and  would  try  an  Association 
procedure to another  potential  parent.  By knowing this in 
advance,  they  can  disable  this  process  for  (Depth-1)*BI 

amount  of  time,  which  is  the  maximum  time  the 
rescheduling should take per Depth, after which, the Device 
will re-enable the re-association procedure after the SYNC-

LOSS.
Upon  reception  of  their  parent's  Beacon,  the  ZigBee 
Cluster-Heads,  will  search  for  their  address  among  the 
Rescheduling information  at  the Beacon Payload to  learn 

the  new  offset.  Then,  they  will  trigger  the  DCS Module 
generating  a  DCS-NEW-SCHEDULE.indication,  and  set 
their own Beacon Payload with the remaining information 
of the Rescheduling Response to propagate the information 
to the children down the tree.  Having done this, the DCS 
Module, will issue a SYNC.request to the Network Layer to 
resynchronize  with  the  corresponding  parent,  and  after  a 
synchronization an MLME-START.request.

The  MLME-START.request  primitive,  depends  of  the 
rescheduling  technique  to  be  used.  If  a  Re-ordering 
technique  is  to  be  used,  then  the  CH will  used  a DCS-

RESTART-ROUTER.request,  with  the  new  offset 
information.  This  new  interface  is  similar  the  standard 
NLME-RESTART-ROUTER.request,  except  no  change  is 
done to the other parameters of the stack. The objective is to 
simply turn the routing functionality on.
If a Bandwidth reallocation is to be done, then the request 
will  also  change  the  Superframe  Order  parameter  of  the 
stack to reflect the bandwidth change. The system timers at 
the  MAC  layer,  upon  reception  of  this  request  are 
automatically  updated  with  the  new  Superframe  Order. 
Upon the reception of a Beacon from the parent, the ZigBee 
Router  will  automatically  resynchronize  and  resume  its 
work.
When  the  DCS  Module  is  triggered,  the  Schedule 
Expiration is also computed according to what is described 
in  Step  6  of  Section  III  B  3,  and  a  counter 
(DCS_Expiration_timer) is triggered with that value. When 
this counter expires, the DCS Module automatically repeats 
the  DCS-RESTART process  with  the  old  offset  values, 
returning to the initial values. These are stored in a database, 
DCS_Init_db,  which  contains  the  initial  offset  and 
Superframe Order values.
As described,  the implementation of the DCS mechanism 
does not involve major changes to the protocol. In fact, only 
a couple of new primitives are to be added to the ZigBee 
NWK stack to enable the DCS functionalities.

V. PERFORMANCE EVALUATION

The DCS mechanism was evaluated through simulation and 
experimentally  using  a  real  world  Structural  Health 
Monitoring  application  as  a  testbed.  This  application, 
previously  designed  in  [16]  and  [17],  was  chosen 
considering its requirements of tight node synchronization 
and control, and the large amount of sensing data that must 
be handled by the network.
Its  system  architecture  was  designed  to  sample  in  a 
synchronized  fashion  multiple  accelerometers  placed  at 
different locations in a physical structure and forward this 
data  to  a  central  station  (PAN-Coordinator)  for  later 
processing  using  a  IEEE  802.15.4/ZigBee  Cluster-Tree 
network  topology.  Each  Sensing  Node is  composed  by a 
TelosB node [18] with a signal acquisition board, with a 24 
bits DAC, attached to a MEMS 3-axis acceleration sensor 
(Figure 11). 
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The Coordinator  Node supervises  the network and nodes' 
activities  (e.g.  node  configuration,  data  acquisition  rate, 
start/stop sampling) and guarantees a tight synchronization 
between all nodes which is of the utmost importance for this 
kind  of  applications;  it  also  forwards  the  configuration 
parameters  and  dispatches  the  acquired  data  to  the 
Command & Configuration Application (C&C App) which 
provides the system user  with a human-machine interface 
(HMI)  to  configure  the  system  and  also  an  application 
programming interface (API) to integrate the WSN system 
with  the  data  processing/analysis  applications.  The  latter 
enable to infer about the reaction of the monitored structure 
to natural  vibration or impacts.  For more detail  about the 
SHM system please refer to [16].

1) System setup

The  network  is  setup  according  to  Figure  1 network 
topology and the Sensing Nodes are  spread  into different 
clusters.  In  Figure  1,  the  addresses  next  to  the  nodes 
represent the Cluster-Heads' ZigBee NWK addresses. 
In  this  example  application,  the  initial  schedule  favors 
downstream  communications  and  is  setup  as  Figure  12 
Schedule 1. This is made so that the PAN-Coordinator, after 
setting up all the nodes in the network, is able to start and 
stop the data acquisition on all  the nodes simultaneously. 
This is mandatory for the application so that the results are 
coherent. 
Notice  the  free  spaces  in  comparison  with  the  schedules 
previously presented. This has to do with the discrete steps 

which are allowed for the BO and SO settings in the IEEE 
802.15.4 protocol. Because BO = 8 and SO = 4 was chosen 
for all ten routers, there is space in the TDCS cycle which 
remains  free.  Again,  the  blue  lines  around  the  schedule 
mark one complete TDCS cycle.  They gray  filled  spaces 
mark the routers involved in the stream transmission.

When the data acquisition finishes, the Sensing Nodes are 
pooled in  turn  for  the  sensing data.  Each  reading  for  the 
accelerometer has a size of 3 axis times 24 bits resulting in 
72 bits. Depending on the sampling rate, a large volume of 
data is going to be generated and transmitted to the PAN-
Coordinator, which will forward it to a PC for processing. 
Although there is no real-time requirement in this part of the 
operation, meaning receiving data in a bounded amount of 
time,  since  no  real-time  analysis  is  performed,  engineers 
which to receive all the data in the minimum possible time 
since they need several runs to be carried out. If the initial 
schedule is kept, this operation will take a large amount of 
time  to  complete,  and  the  assessment  can  last  several 
minutes  and  even  hours,  depending  on  the  origin  of  the 
stream. We wish to change the schedule to accelerate the 
data transfer from the Sensing Nodes at that Cluster to the 
PAN-Coordinator  using  the  DCS  mechanism  using  the 
Bandwidth Reallocation technique, resulting in a schedule 
depicted  in  Figure  12  Schedule  3.  However,  the  DCR 
technique  (Figure  12  Schedule  2  and  4)  was  also 
implemented and analyzed.

2) Simulation Results

The DCS mechanism was implemented over the Open-ZB 
Zigbee Model [15], and simulated with the OPNET Modeler 
simulation software. A network topology like the one shown 
in  Figure  1  with  nwkMaxChildren  (Cm)  =  3, 
nwkMaxDepth (Dm) = 5, and nwkMaxRouters (Rm) = 2, 
was setup and the application layer of the node was set to 
generate traffic at a rate correspondent to a sampling rate of 
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100Hz  which  is  recommended  for  fine-grained  structural 
health  monitoring  [16].  For  maintaining  uniformity  along 
this  paper,  in  the analysis  we always  consider  stream S3, 
which originates at router C41 in Figure 1. Figure 13 shows 
one of the simulation scenarios.

Several  analysis  to  evaluate  the  performance  of  the  two 
techniques were carried out, with a special attention to two 
metrics:  end-to-end  delays  and  overall  stream  transmit 
duration.

End-to-end Delay Analysis

To  understand  the  impact  of  the  first  technique  we  did 
several runs of the network with different BO settings (from 
BO = 8 up to BO = 12), simulating a larger network, with 
the initial scheduling and using the re-ordering technique.

The  end-to-end  delays  were  measured  for  packets 
transmitted from Sensing Node with address 0x0007 (Figure 
1), which was associated to Router 0x0004, at Depth 4, to 
the PAN-Coordinator, with no extra traffic on the network. 

Frame  size  was  set  to  800  bits,  and  Packet  Inter-arrival 
Time  was  set  to  0,06  seconds  to  emulate  the  arrival  of 
Sensing  Data  at  the  Sensing  Node's  serial  port  (this  was 
verified experimentally).
Figure  14,  shows  the  end-to-end  delay  results  for  the 
different BO. Superframe order is fixed to SO = 4. Notice 
the  decrease on the delay achieved by simply re-ordering 
the schedule. We can achieve a reduction in the end-to-end 
delays  in  the  order  of  13  seconds  for  BO = 8  and  even 
several  minutes  as  the  BO increases  with the size  of  the 
network,  reaching 4 minutes for  the case of  BO = 12, to 
approximately one second. 
The end-to-end delays with DCR remain  constant  despite 
the different  BO settings. This is  expected since although 
the  network  increases,  the  transmission  of  a  packet  is 
completed in only one BO cycle.  Since the Bandwidth of 
the routers  is  also the  same,  the end-to-end delay should 
remain constant and thus independent of the network size. 
To  understand  the  impact  of  the  second  DCS technique, 
Bandwidth Reallocation, on the end-to-end delay, the initial 
schedule's  order  was  maintained  and  the  available 
bandwidth  of  the  Superframe  was  distributed  among  the 
Routers  involved  on  the  stream.  Different  BO/SO 
configurations were tried (SO = 4 up to SO = 9) and as more 
space became available with the increasing BO, the DBR 
technique  was  used  to  distribute  it  through  the  routers. 
Figure 15 presents the results for the different SO settings 
using BO = 10 and both DCS techniques. Results are similar 
to all other BO settings. 

There is a slight but not significant decrease of the end-to-
end  delay  as  the  SO  are  increased.  Since  the  Routers 
increase their SO, the unused part  of the Superframe was 
reduced  and thus there  is  a  better  use of  the Superframe 
bandwidth. This reduces the time the packet must remain in 
the queue at each router, waiting for the next Superframe to 
be  transmitted  to  the  parent,  thus  slightly  reducing  the 
overall end-to-end delay. This is visible in Figure 16 (top 
blue  squares),  showing  how  the  average  queuing  delay 
decreases as the SO increases.
In comparison, the DCR technique presents a much higher 
impact on the end-to-end delay as expected, decreasing for 
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the case  of  BO/SO =  10/5,  the delay from 60,95 to 1,97 
seconds, a decrease of 96,7%. In fact, for its worst case of 
BO/SO  =  10/7,  it  still  represents  a  decrease  of  82,14% 
concerning the DBR technique, as show in Figure 15.

There is however, a slight increase in the delay when using 
the DRT technique as the SO increases. Although, there is a 
re-ordering  of  the  schedule  according  favoring  upstream 
traffic,  and  a redistribution  of  the  unused  bandwidth,  the 
increase in SO implies a larger time a packet must wait in 
queue at each router, waiting to be transmitted to the parent, 
in comparison to the cases with lower SO.
Using the DBR technique is thus not recommended when 
one wishes to significantly reduce the end-to-end delay in 
the application.

Stream Overall Transmission Time

Like  previously  mentioned,  minimizing  the  overall 
transmission  time  is  quite  important,  in  our  SHM 
application,  where  large  amounts  of  data  must  be 
transmitted in the less amount of time possible. To analyze 
the second metric, the overall stream transmission time, we 
generated different amounts of data at the application layer 
to  simulate  the  different  sampling  durations  of  the  SHM 
application. We generated scenarios with different volumes 
of sensing data, corresponding to short 10 and 30 seconds 
runs and runs with 1,  5, 10 and 30 minutes, in the SHM 
system. Data frame size remained fixed to 100 KB.
We measured how much time it took for the data transfer to 
complete. During this time, there was no more traffic in the 
network, so that collisions were not possible, not to interfere 
with the experiment.
Figure 17 shows the results for sampling durations of 10, 30 
and 60 seconds. As shown, the DBR technique presents the 
best  result  in  decreasing  the  overall  transmission  time, 
representing a decrease close to 50%, as expected when the 
available bandwidth is doubled on the Routers, to SO = 5.
For the case of 1 minute of sampling time, using the DBR 
technique alone reduced the overall transmission time from 
nine minutes to 4 and a half minutes, a decrease of 49%. 

Interestingly, the DCR technique also decreases the overall 
transmission time, but not in a significant way. It decreases 
it about 14 seconds for this particular case of BO=8, and it 
is  constant  for  every  SO  setting,  independently  of  the 
amount  of  data  to  be  transmitted.  This  small  difference, 
however should not be neglected. For larger BO, the impact 
of this increases as shown in Figure 18, reaching 8 minutes 
for  BO=13. This  happens  because  of  the  impact  of  the 
reduced  end-to-end  delay  at  the  beginning  of  the 
transmission. With a re-ordering of the clusters'  schedule, 
the first packets are delivered in a shorter amount of time, in 
only one TDCS cycle, contrary to what happens when this 
technique is not used, taking several cycles to complete the 
transmission  of  the  first  packets.  Because  of  this,  the 
transmission  will  end  sooner.  As  the  BO  increases,  the 
impact  of  this  is  higher  since  the  duration  of  the  TDCS 
cycle also increases. 

Figure 19, shows the overall stream transmission times for 
both  techniques  and  different  sampling  durations,  using 
BO=9. 
For a sampling duration of 30 minutes, we achieve a 75% 
reduction in the overall transmission time. This means, that 
instead of waiting for almost 9 minutes to receive the SHM 
application  sensing  data,  we  just  need  approximately  2 
minutes. 

Figure 16
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Notice, this is to receive from one node only. This must be 
multiplied by the number of sensing nodes on that cluster, 
since they are pooled in turn in the SHM application. If we 
were to have 6 sensing nodes on the cluster, this would take 
12 minutes to complete against  54 minutes with the base 
schedule, a reduction close to 78% on the waiting period for 
the sensing data from cluster C41 (0x0004). 
 

3) Experimental Evaluation

The  DCS  module  was  implemented  in  TinyOS  over  the 
Open-ZB  IEEE  802.15.4/ZigBee  stack  [10].  A  ZigBee 
network  with  12  TelosB  [18]  motes  was  setup  in  a 
configuration replicating the one depicted in Figure 1, using 
BO=8 and SO=4, with one PAN-Coordinator connected to a 
PC  through  a  USB  connection,  and  nine  Routers  each 
forming  their  own  cluster.  Two  Sensing  Nodes  (End 
Devices) were associated to the Router at Depth 4 (address 
0x0004)  to  generate  sensing  data  for  later  retrieval.  To 
reduce  costs,  the  Sensing  Nodes  were  used  without  the 
accelerometer  modules.  Instead,  timers  at  the  application 
layer  were  used  to  generate  traffic  at  different  sampling 
rates.  The control  of  the  application,  concerning  the  data 
acquisition period and rate, was done using the Command & 
Configuration Application (C&C App), running in the PC, 
attached  to the  PAN-Coordinator.  Figure  xxxx shows the 
setup. 
Both  DCS  techniques  were  implemented  and  tested  to 
validate our work, although the most important technique 
for  this  specific  SHM application  is  the  DBR,  which  as 
shown  before  can  greatly  reduce  the  overall  stream 
transmission time.  A base scenario,  without  any schedule 
improvement, was also setup to measure the improvement.
A Daintree Networks 2400E Sensor Network Analyzer [19] 
was  used  to  log  all  the  communications  during  the 
experimental evaluation. 

Starting with the DBR technique, the most important parts 
of  the  log  are  highlighted  in  Figure  20  and  commented 
bellow. 

A few packets were omitted for space reasons to simplify 
the reading.
This figure shows the use of the DBR technique to reduce 
the  overall  stream  transmission  time.  Beacons  from  the 
PAN Coordinator are signaled with a red arrow. 
At  network  setup  time,  the  nodes  associate  (1)  and  the 
TDCS algorithm assigns each cluster an offset (2), assuming 
a the initial schedule favoring downstream communication, 
thus improving the control over the application during the 
sampling period. This information is sent in a Data Message 
(blue Data Message inside rectangle 2). The application is 
configured  and  started  (3),  and  the  base  schedule  can  be 
seen.  Upon  completion  of  the  data  acquisition  task,  the 
application  pools  the  nodes  for  data,  using  the  protocol 
described  in  [16].  The  first  Sensing  Node  to  be  pooled, 
wishes to initiate upstream data communication and triggers 
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the DCS mechanism (4) with a DCS Request. This request 
is forward by the routers until it is delivered to the PAN-
Coordinator. Two Data Messages with DCS Request can be 
seen being forwarded.  The relationship between addresses 
and the logical topology is shown in Figure 1. 
Upon  arrival,  the  PAN  Coordinator  computes  the  new 
schedule  and  sends  to  the  network  a  DCS  Reschedule 
Message which is disseminated within the payload of  the 
beacon  frame  throughout  all  the  network  (5).  The  new 
schedule  is  immediately  adopted  as  shown in  (6),  and  a 
change  on  the  SO  is  noticeable  on  the  Beacon  frame 
description and on the sniffer timestamps. 

The DCR technique was also evaluated on this experimental 
setup  and  Figure  21,  shows  the  output  from  the  Packet 
Analyzer. Part of the output related to the network setup and 
DCS communication was omitted since is is already shown 
on the previous figure and there are no significant changes 
for  this  technique.  Again,  the  beacons  from  the  PAN 
Coordinator are signaled with a red arrow. 
When all the Routers receive their new offset information in 
the DCS Reschedule Response message, they immediately 
stop sending beacons and wait for their parent's beacon to 
synchronize  to  it.  The first  beacon  comes  from the  PAN 
Coordinator  which  maintains  its  period.  Next,  Routers  at 
Depth one are the firsts to synchronize to it using the new 
offsets. Notice the Packet Analyzer time stamp, showing the 
new  relative  offsets.  Now  that  the  Depth  one  Routers 
transmitted their beacons, the next level ones (Depth two) 
can also synchronize. The process continues until the all the 
Routers are synchronized. At this point, the Sensing Nodes 

(0x0007 in the example) start transmitting data which will 
forward until it reaches the sink.
Next figure shows the comparison between simulation and 
experimental results. As observed, the behavior previously 
observed  in  simulation  is  replicated  in  the  experimental 
evaluation with minor differences.

A reduction  of  93% on the  end-to-end delay  is  achieved 
with  the  DCR technique  for  BO =  8  in  our  application. 
Again, the DBR technique, with an increase of Bandwidths 
to  SO =  5,  does  not  present  a  significant  change  to  this 
metric. Results are quite close to simulation on the end-to-
end delay result with DCR, however for the base schedule, 
experimental  delay  was  slightly  different.  This  has  to  do 
with  the  different  duration  of  the  Beacon  Order  on  the 
experimental platforms, due to timing constraints, which is 
of 3,75 seconds instead of the theoretical 3,932 seconds.
Concerning the DBR technique, results show a reduction on 
the  overall  transmission  time in  the  order  of  49%,  again 
quite close to simulation results. 

Concerning the network inaccessibility time, as predicted, it 
was bounded to three  TDCS cycles,  which is  the time it 
takes for the whole network to resynchronize with the new 
schedule.  This  can  be  observed  in  the  Packet  Analyzer 
output files. 
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VI. CONCLUSIONS

Although  Synchronized  Cluster-Tree  network  topologies 
look promising to enable WSN applications with stringent 
QoS requirements,  due  to  the  predictability  which  can  be 
achieved,  we  have  witnessed  a  lack  of  commercial  and 
academic solutions based on this kind of topology, in part 
due to the technical challenges their engineering imposes.

Among  these  challenges,  changing  the  resource 
allocation  of  the  CT  on  the  fly,  without  imposing  long 
inaccessibility  times  still  remained  open  to  research.  This 
possibility  would  dramatically  improve  these  networks' 
flexibility in adapting to changes in the traffic or bandwidth 
requirements in real-time. 

In  this  paper  we presented  a  solution to  this  problem, 
enabling  networks  to  adapt  in  real-time  to  different 
bandwidth and  end-to-end delay requirements  imposed  by 
incoming  traffic  streams,  by  changing  the  clusters' 
scheduling.  We presented  two DCS techniques which can 
reduce the end-to-end latency of a stream up to 93%, and the 
overall data transmit duration from a leaf node to the sink up 
50%  although  more  can  be  achieved  with  other  network 
settings.

Importantly,  our  methodology  was  applied  to  a  real-
world  WSN-based  Structural  Health  Monitoring  system, 
showing  that  it  can  be  easily  implemented  under  the 
IEEE802.15.4/ZigBee set  of protocols with minor add-ons 
and can run in general purpose WSN platforms such as the 
TelosB motes.
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