

Dynamic(Cluster(Scheduling(for(Cluster6tree(
WSNs(

(

Technical Report

CISTER-TR-130205

Version:

Date: 2/15/2013

Ricardo Severino

Nuno Pereira

Eduardo Tovar

Technical Report CISTER-TR-130205 Dynamic Cluster Scheduling for Cluster-tree WSNs

© CISTER Research Unit
www.cister.isep.ipp.pt

1(
!

Dynamic Cluster Scheduling for Cluster-tree WSNs
Ricardo Severino, Nuno Pereira, Eduardo Tovar

CISTER Research Unit

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: rars@isep.ipp.pt, nap@isep.ipp.pt, emt@dei.isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract
While Cluster-Tree network topologies look promising for WSN applications with timeliness and energy-efficiency
requirements, we are yet to witness its adoption in commercial and academic solutions. One of the arguments
that hinder the use of these topologies concerns the lack of flexibility in adapting to changes in the network, such
as in traffic flows. This paper presents a solution to provide these networks with the ability to self-adapt to
different bandwidth and latency requirements, imposed by traffic flows, by changing the cluster's duty-cycle and
scheduling. Importantly, our approach enables a network to change its cluster scheduling without requiring long
inaccessibility times or the re-association of the nodes. Importantly, we show how to apply our methodology to the
case of IEEE 802.15.4/ZigBee cluster-tree WSNs without significant changes to the protocol. Finally, we analyze
and demonstrate the validity of our methodology through a comprehensive simulation and experimental validation
using commercially available technology on a Structural Health Monitoring application scenario.

Dynamic Cluster Scheduling for Cluster-tree based WSNs

Ricardo Severino, Nuno Pereira, Eduardo Tovar
CISTER/INESC-TEC, ISEP

Polytechnic Institute of Porto
Porto, Portugal

{rar,nap,emt}@isep.ipp.pt

Abstract—While Cluster-Tree network topologies look

promising for WSN applications with timeliness and energy-

efficiency requirements, we have witnessed a lack of

commercial and academic solutions based on this kind of

topology. One of the most important arguments that hinder the

use of these topologies concerns the lack of flexibility in

adapting to changes in the network, such as in traffic flows.

This paper presents a solution to provide these kind of

networks with the ability to adapt in real-time to different

bandwidth and end-to-end delay requirements imposed by

incoming traffic streams, by changing the cluster's duty-cycle

and scheduling. Importantly, our approach enables a network

to change its cluster scheduling without requiring long

inaccessibility times or the re-association of the nodes. We

show how to apply our methodology to the case of IEEE

802.15.4/ZigBee cluster-tree WSNs. Finally, we analyze and

demonstrate the validity of our methodology through a

comprehensive simulation and experimental study using

commercially available technology on a real-world Structural

Health Monitoring application scenario.

Keywords-Cluster-Tree; ZigBee; Scheduling;

I. INTRODUCTION

The increasing tendency for the integration of computations
with physical processes at large scale has been pushing
research on new paradigms for networked embedded
systems design [1]. In this line, Wireless Sensor Networks
(WSNs) have naturally emerged as enabling infrastructures
for these cyber-physical applications due to their potential to
closely interact with external stimulus. Applications such as
homeland security, physical infrastructures monitoring,
health care, building or factory automation are just a few
elucidative examples of how these emerging technologies
will impact our daily life and society at large.
Given the large number of these WSN applications each with
an individual set of requirements [2], it is important that
some of these WSN resources (e.g. bandwidth and buffer
size), are predicted in advance, in order to support the
prospective applications with a pre-defined Quality-of-
Service (QoS).
For instance, an environmental monitoring application that
simply gathers temperature readings has less stringent
requirements than a real-time tracking or a structural health
monitoring application.

To achieve this, it is mandatory to rely on structured logical
topologies such as cluster-trees (e.g. [3], [4], [5]), which
provide deterministic behavior in terms of routing and the
ability to perform end-to-end resource reservation, against
flat mesh-like topologies, where probabilistic routing
protocols are commonly used.

Although these network topologies look promising for
these WSN applications we have witnessed a lack of
commercial and academic solutions based on this kind of
topology. Perhaps one of the most important arguments that
hinder the use of these topologies, so adequate given the
degree of predictability that can be achieved, is their lack of
flexibility in adapting to changes in the traffic or bandwidth
requirements in real-time, for instance, how to allocate more
bandwidth to a set of nodes sensing a particular phenomena,
or how to reduce the latency of a data stream, without having
to restart the network again. In fact, although there is already
some literature on how to compute these network resources
[6], [7], it is not clear how they could be re-allocated without
greatly interfering with the network functionality, and
specially without imposing high inaccessibility times.

This paper presents a solution to this problem, enabling
networks to adapt in real-time to different bandwidth and
end-to-end delay requirements imposed by incoming traffic
streams, by changing the cluster's scheduling. Computing
this would normally result in a complex linear programming
problem which would be unfeasible to be computed by WSN
nodes which typically have scarce computing power. Our re-
scheduling algorithm relies in a heuristic that can be easily
computed in these platforms.

In this paper, we show how to apply our methodology to
the particular case of IEEE 802.15.4/ZigBee cluster-tree
WSNs. Finally, we analyze and demonstrate the validity of
our methodology through a comprehensive simulation and
experimental study using a real-world Structural Health
Monitoring application scenario, showing that our proposal
can reduce the end-to-end latency in 93% and the overall
data transmit duration in 49 %.

II. RELATED WORK

Synchronized Cluster-Tree topologies tend to suffer from
two technical issues that tend to inhibit their use: (1) how to
schedule the transmissions of different neighboring clusters,
(2) how to predict the performance limits to correctly

allocate resources, and (3) how to change the resource
allocation of the CT on the fly.
This is specially true for the particular case of the IEEE
802.15.4/ZigBee set of protocols, in which although the
Cluster-Tree network topology is supported, no clear
description on how to implement it is given, namely in what
concerns the beacon collision problem.
In [8], the Task Group 15.4b proposed some basic
approaches to solve this: the beacon-only period approach
and the time division approach, only to be removed in the
2006 revision. In this line, in [9], the TDCS algorithm was
proposed and implemented in the Open-ZB stack [10]
enabling for the first time the use of this topology over
IEEE 802.15.4/ZigBee based networks guaranteeing no
beacon collisions. This technique used the time-division
approach and worked by assigning a different time offset to
each cluster. Other proposals followed a similar approach
like [11] for mesh networks, or [12]. In [13] the authors
choose to use different radio channels instead to tackle the
problem, assuming they are available.
Recently, research was done [6], to addresses the problem
of predicting resource needs by modeling the performance
limits of a ZigBee CT network. In another work, [7]
extended the previous work by computing the optimal
TDCS schedule for several GTS data flows. Here, the
assignment of the resulting parent-child offsets followed the
same strategy as in [9], where the offset assignment is done
at network setup time and remains fixed.
Although, some literature is already available on solving the
first two problems, none of the proposals so far, in the
general case of synchronized Cluster-Trees, addresses the
third. This greatly limits the flexibility of the network which
must keep the same cluster schedule and bandwidth
reservation, independently of the flow of data in the network
and of its particular requirements, which depending on the
application may certainly change.
In this paper, we address this issue, and propose a set of
techniques, in which the base schedule is temporary
changed to encompass transient networking necessities such
as end-to-end delay and bandwidth allocation.

III. DYNAMIC CLUSTER SCHEDULING

A. System Model

1) Cluster-Tree topology

Consider a synchronized cluster-tree WSNs featuring a tree-
based logical topology where nodes are organized in
different groups, called clusters. Each node is connected to a
maximum of one node at the lower depth, called parent
node, and can be connected to multiple nodes at the upper
depth, called child nodes (by convention, trees grow down).
Each node only interacts with its pre-defined parent and
child nodes.
A cluster-tree topology contains two main types of nodes:
routers and end-nodes (refer to Figure 1). The nodes that
can associate to previously associated nodes and can

participate in multi-hop routing are referred to as routers.
The leaf nodes that do not allow association of other nodes
and do not participate in routing are referred to as end-
nodes.

The router that has no parent is called root and it might hold
special functions such as identification, formation and
control of the entire network. Note that the root is at depth
zero. Both routers and end-nodes can have sensing
capabilities, therefore they are generally referred to as
sensor nodes. Each router forms its cluster and is referred to
as cluster-head of this cluster (e.g. router C11 is the cluster-
head of cluster 11). Each cluster-head is also responsible
for synchronization in its cluster and periodically sends
synchronization frames.
All child nodes (i.e. end-nodes and routers) of a cluster-head
are associated to its cluster, and the cluster-head handles all
their data transmissions. It results that each router (except
the root) belongs to two clusters, once as a child and once as
a parent (i.e. a cluster-head).

2) Time-Division Cluster Scheduling

In general, the radio channel is a shared communication
medium where more than one node can transmit at the same
time. In cluster-tree WSNs, messages are forwarded from
cluster to cluster until reaching the sink. The time window
of each cluster is periodically divided into an active portion
(AP), during which the cluster-head enables data
transmissions inside its cluster, and a subsequent inactive
portion, during which all cluster nodes may enter low-power
mode to save energy resources. Note that each router must
be awake during its active portion and the active portion of
its parent router. To avoid collisions between clusters, it is
mandatory to schedule the clusters’ active portions in an
ordered sequence, that we call Time Division Cluster

Figure 1

Schedule (TDCS). In other words, the TDCS is equivalent
to a permutation of active portions of all clusters in a WSN
such that no inter-cluster collision occurs. In case of single
collision domain, the TDCS must be non-overlapping, i.e.
only one cluster can be active at any time. Hence, the
duration of the TDCS’s cycle is given by the number of
clusters and the length of their active portions. On the
contrary, in a network with multiple collision domains, the
clusters from different non-overlapping collision domains
may be active at the same time. However, finding a TDCS
that avoids clusters’ collisions in a large-scale WSN with
multiple collision domains is a quite complex problem,
hence in this paper, for simplification, we always assume a
single collision domain. For more information concerning
TDCS please refer to [9].

B. Dynamic Cluster Scheduling

With TDCS [9] it is possible to find the best schedule for
the routers active periods in order to avoid interference, and
to support most of the network bandwidth requirements.
However, the schedule is done at network setup time and
assumes a static network that will remain unchanged.
The choice of the TDCS schedule has a strong impact in the
end-to-end delays, in fact, it is easy to observe that in a
single collision domain, where there are no overlapping
clusters, a TDCS schedule optimized for downstream
communication, will result in the worst-case for upstream
communication, and consequently in higher end-to-end
delays. Moreover, the routers are assigned with a fixed
bandwidth they might not always need, while other clusters
might need that bandwidth. We aim at reacting to different
data flow changes in real-time, while simultaneously
minimizing the network inaccessibility time. Our proposal
achieves this via two techniques: (1) re-ordering the clusters'
active periods to favor one set of streams, reducing the end-
to-end delays, which we call DCR (DCS Cluster Re-
ordering); and (2) tuning the size of the clusters' duration,
increasing the bandwidth of the clusters serving a specific
stream, while decreasing others bandwidth, which we
named DBR (DCS Bandwidth Re-allocation).
The first technique, consists of a rescheduling of the clusters
order in the TDCS cycle, aiming at minimizing end-to-end
delays, while the second technique consists of rearranging
the bandwidth allocation for the clusters involved in a
stream, to increase its bandwidths and decrease the overall
time for data transmission. Both techniques can be used
together, or separately.

1) DCR Cluster Reordering Technique

Consider the cluster-tree presented in Figure 1, with 10
clusters and a TDCS schedule as presented in Figure 2
Schedule A, where all Chs have the same allocated
bandwidth.

Notice that this schedule is set to minimize downstream
traffic latency, (parents' appear earlier in the schedule than
the child nodes) which is common in applications which
require fast actuation actions. This way, to actuate on
Cluster C21 for instance, one could do it in only one TDCS
cycle, since those Cluster's are active immediately one after
each other. If a reasonable amount of data resulting from
these actuation actions is to be sent to the Root, where the
Sink is located, a large delay is to be expected in receiving
it, since the selected TDCS schedule is not the best for
transmitting data upstream. In fact, assuming that all data
could be transmitted from one CH to the next in one cycle, it
would take two cycles. One from C21 to C11, and another
from C11 to C01. This is depicted in Figure 2. (a) represents
the data coming from the sensing node and being received
by C21. Next, (b) represents the transmission from C21 to
C11, and finally, (c) from C11 to C01. The stream is also
represented in Figure 1.
This delay will become higher as the network size and the
clusters' duration increases and as the Depth of the tree of
the source increases. In this scenario, the best schedule to
minimize upstream latency, considering a stream from
Cluster C21 to the Sink (S1 in Figure 1), should be as
depicted in Figure 2 Schedule A', where the next cluster to
receive the packet appears next, reducing the amount of
time a packet needs to be left in the queue and consequently
the application end-to-end delays.
Ideally, the schedule should carry out an on-line re-
scheduling of the network to favor a known set of upstream
streams, minimizing the inaccessibility times.
This kind of rescheduling involves a re-ordering of the
Clusters according to the streams the network must serve.
This can easily grow into a complex problem if one wishes
to achieve an optimum solution, due to the precedences in
the tree, usually solved in the literature using linear
programming [7]. However, in order to react to the network
specific needs in a reasonable amount of time, one needs to
guarantee that the algorithm to compute this new schedule is
light and fast enough to be run in WSN platforms with
scarce processing power. In this line, linear programming
models might just not be the best choice for this, where we
just need a better and not necessarily the optimum solution.
Our approach to the problem is explained as follows.
Each stream is noted as a tuple Sk = <Rk , Pk , Tk , Dk>,
where, Rk represents the ordered set of clusters which the

Figure 2

stream k must cross to reach the sink, Pk represents the
priority for that stream which is an integer from 0 to 5, Tk

represents the number of TDCS cycles for which stream k

will remain active and Dk the depth of the stream's source.
Given the set of streams S, and the set N which contains all
the cluster-heads in the tree, we must compute A which
denotes the set of cluster-heads that need rescheduling,
where A = N ∩ S. Then, Cr, which denotes the priority of
the rth cluster-head in N can be computed through the
following algorithm.

In other words, being Mr the set of streams from m to Nm

which contain CH r in R, and Pm the stream's priority, we
can compute Cr as:

Cr=∑
m=0

Nm

Pm+h(Ar)

Function h(Ar) computes the height of Cluster-Head Ar in
the tree, according to the position each Cluster holds in
array Rk being the first CH in the array position 0. Thus,

h(Ar)=Dk−pos (Rk) . This value will sum with the
already computed cluster's priority to enable precedence in
the schedule.
The resulting schedule will be achieved by ordering the set
of all cluster-heads N according to the computed Cr for each
cluster-head Ar, starting from the lower priorities to the
highest. As a result, the highest priority will always be
assigned to the sink, since all the streams are directed to that
cluster-head. Cluster-heads which are not part of the set A
keep their schedule not to interfere with the initial schedule
of those and are place after the sink.
As an example, consider the network presented in Figure 1
and assume the following set of streams:
S1 = < {C21, C11, C01}, 3, 3, 2 >
S2 = < {C12, C01}, 1, 4, 1 >
The first stream, originates at cluster C21 and has priority 3,
while the second, originates at cluster C12 and has priority 1.
If no reschedule was done, and assuming ideal
communication without errors and delays imposed by the
MAC layers, we would expect that one packet of S1 would
take approximately 18 times the duration of one active
portion of a CH to reach the sink (Figure 2 Schedule A), and
from S2 three active portions. Lets now, run the presented
algorithm and analyze the result.
A={ C01, C11, C12, C24}

C01 = P1 + P2 + h(A01) = 3 + 1 + 2 = 6
C11 = P2 + h(A11) = 3 + 1 = 4
C12 = P1 + h(A12) = 1 + 1 = 2

C21 = P1 + h(A21) = 3 + 0 = 3
Ordering from the lowest to the highest priority, the CHs in
A should be ordered as C11, C24, C12 and finally C01.
Considering the remaining nodes, which maintain their
initial order in the schedule and lowest priority, the final
schedule would be as follows:

It is now possible a full data transaction from the origin
cluster to the sink in one TDCS cycle. This reduces the
transmission delay of each packet, greatly benefiting
applications which demand low latencies. A packet from S1

should now take approximately three CH active portions to
reach the Sink while S2 maintains the same three. If we
wanted to decrease the latency for S2 we could increase the
priority of the stream to the same of S1 or higher. This would
result in C12 = P1 + h(A12) = 3 + 1 = 4, and now, C12 would
have a higher priority than C21 thus appearing later in the
schedule and decreasing the latency.
Now, comparing this schedule with the original in Figure 2
Schedule A, we observe that all the other CH also changed
place in the schedule. Changing the position of all nodes
must be done because there is no free room that will let us
only change the streaming CHs' position and accommodate
their initial positions unoccupied. However, this does not
necessarily mean that all of the CHs change the offset to
their parents.
For instance, in this particular case C41 does not change the
offset. This is obvious, since the distance between C41 and
its parent C31 did not change. However, C31 offset changed
in relation to its parent C21 since C21 was re-scheduled. As a
rule of thumb, a new offset will have to be computed for
every children one depth bellow a re-scheduled CH. For
their grand-children, this does not happen since the distance
remains the same as in the original schedule. This principle
will be used later in STEP 4 (Section B. 3).), to compute
the network's inaccessibility time.
Finally the remaining part of the technique consists in
computing all the new offsets. This is a matter of measuring
the distances between parent and child in the new schedule.
One way of implementing this is by creating an array of size
equal to the number of Clusters in the network, where each
position holds a Cluster number and its respective parent
(easily set at network setup time), ordered according to the
schedule. Then it is a matter of using simple counters on the
array.
Although this approach solves the latency problem, it does
not reduce the overall time it will take for a stream to be
transmitted since there is no change to the available
bandwidth per cycle. Hence our second proposal, DBR,
which consists in increasing the bandwidth for the clusters
involved in the stream.

2) DBR Bandwidth Re-Allocation Technique

for all cluster head r in A do

 for all stream k in S do

 if A
r
∈ R

k

 C
r
← C

r
 + P

k

 end for

 C
r
← C

r
 + h(A

r
)

end for

Figure 3

For the second technique, bandwidth must be reallocated, by
increasing the bandwidth for the clusters involved in the
stream. The first step is to look for free space in the
schedule that has not been reserved by a cluster's active
portion. If there is such free space, we can distribute in an
equal fashion the available space by the Clusters involved in
the stream. For the particular case of Figure 2 Schedule A
there is no space available. This means, we must try to
reduce the amount bandwidth the clusters not related to the
stream are using. Here, it is important to previously define
the minimum bandwidth a Cluster can support. This is
implementation dependent in many cases, since it is highly
dependent of the limitations of the hardware platforms. If
the SO is reduced beyond a threshold, there can be timing
issues. This has been reported previously and is discussed in
[14] concerning the TelosB and MicaZ platforms. The
minimum bandwidth that will be available to the other
clusters after the use of this technique is thus set at network
setup time.
If we consider stream S3 (Figure 1) originating a C41, where
R41={C41, C31, C21, C11, C01}, the one we wish to increase the
bandwidth of every cluster, and a system which is capable
of handling a reduction of the available bandwidth by half,
this technique will cut all the remaining 5 CH's duration,
and redistribute this duration by the other CH's in R41. This
results in an increased bandwidth for that stream (Figure 4),
thus reducing the transmission time. The size of the TDCS
cycle is kept nonetheless, since the bandwidth was simply
redistributed.

As depicted in Figure 4, all of the relative offsets have
changed. Nevertheless, a great plus of this technique is that
the network inaccessibility time is minimum if compared to
the previous technique, since in only one cycle, it is possible
to reschedule all the network with the new offsets, if the
original schedule was setup to facilitate downstream
communications. This technique is however, greatly
dependent of the protocol in use, since, some protocols only
allow discrete steps in the duration of the CH's active
portion, like the IEEE802.15.4/ZigBee set of protocols.
Because of this, a more detailed explanation about this will
be given in Section IV concerning IEEE802.15.4/ZigBee
protocols.

3) The DCS Communication Protocol

Our proposed on-line re-scheduling technique comprise six
steps (Figure 5), which can easily be adapted to different

network protocols. The protocol is depicted in Figure 5 in a
time diagram and is described as follows.

STEP 1 - At network setup time, all Cluster-Heads are
assigned with a TDCS time offset in relation to their parents
according to the approach proposed in [9].
Different priorities are also assigned to different sensing
actions by the nodes. Synchronization frames are sent
periodically and several actuation actions on the leaf nodes
can be carried out.

STEP 2 – DCS Request; If a leaf node wishes to transmit a
stream of data to the Sink, its Cluster-Head must be

informed. The CH will decide, according to the application
which originates the request, if the most adequate strategy is
a rescheduling to minimize end-to-end delays or an
arrangement of the bandwidth, or both. The option of which
technique to use must be defined at network setup time,
since different applications impose different requirements
(reduced latency or transmission time).
This request is then forwarded to the parent until it reaches
the Root. On the way, each CH will add its own address to
the message, to inform the Root of the clusters involved in
the stream. This way, we avoid using heavy lookup tables
that would have to be loaded into the Root at network setup
time describing all parent child relationships.
The DCS Request is formated as follows:

Figure 4
Figure 5

Figure 6

The first field (Figure 6) transports the DCS Request
message code identifier. Next, the estimated amount of data
to be transmitted in the stream, and the application which is
requesting the DCS. The next fields identify the stream
priority, for computing the new schedule, number of clusters
which belong to the set, and their identification. These two
last fields are updated as the DCS Request is transmitted
upstream.
Upon reception, the Root will wait for a finite period of time
for more requests. It will then evaluate the Stream Requests
and compute a new TDCS schedule.

STEP 3 – Evaluation and Rescheduling; The evaluation
process consists in checking weather or not it is worth it to
reschedule the network, considering the amount of data to
be transmitted and the inaccessibility time resulting from the
reschedule.
Although different techniques could be used to compute
this, we are interested in speed and low complexity, due to
the scarce processing power of common WSN platforms.
The objective is to roughly compute the benefit from
scheduling, and to do it fast enough not to delay the process
too much.
The result of this computation depends on the techniques
chosen for the DCS (DCR or DBR).
Let us consider Stream S3 from Figure 1, depicting a stream
originating at C41 for C01. Assume that objective is to
minimize end-to-end delay.
To compute this, we start by defining a base unit to simplify
the computation. The base unit represents the duration of the
active portion of the CH where a stream originates. Hence,
if we say that a stream has size n=1, this represents a stream
which duration is equal to the duration of its CH active
portion. All the others CH durations can be represented as
multiples of this base unit, because streams move upstream,
thus the Bandwidth of the parent CHs, must be equal or
higher than their child's. This is imposed by the TDCS
algorithm [9] .
We also introduce the concept of µcycle and Macrocycle.
Here, the µcycle represents the amount of n units it takes for
a stream of size n=1 to reach its destination. Macrocycle,
represents the size of the network TDCS schedule in
multiples of n.
The amount of time to transmit an amount of data
represented in multiples of n can be computed using the
following expression, where Ti represents the overhead of
the rescheduling which we show how to compute in Step 5.

t=μ cycle+(n−1)Macrocycle+Ti
For the particular case of the network depicted in Figure 1,
with schedule A, and considering a stream originating at C41

(S3), we can compute it's µcycle as the number of base units
between the different CHs in the path. The result is shown
in Table 1.

A B

C41→C32 10 2

C32→C24 9 1

C24→C12 7 1

C12→C01 6 1

µcycle 32 5

If we use for instance a re-ordering technique (DCR), this
will result in the schedule B depicted bellow, favorable to
stream S3, showing a full transaction from source to
destination in one TDCS cycle.

Its Macrocycle is the size of the schedule, which is of 10
base units. Tnit is computed according to the methodology
presented in Step 5 and is equal to 3. Hence, for n = 1,

considering Schedule A, tA = 32 + 0 + 0= 32.
For schedule B, with a DCR, tB = 5 + 0 + 3 = 8.
The Macrocycle is equal to 10 for both cases.
This expression assumes a collision-free environment, with
no contention. This is obviously a simplification, which will
always output the shortest time it takes for a flow of data to
reach the destination. This method, however, suffices to
compute if a re-scheduling is better or not.
The root node will then compute all the offsets that result
from the new cluster schedule that will serve that stream
and reply to the request.

STEP 4 – Reschedule Response; After the computation of
the new offsets (time offset between the beginning of the
active portions of the parent and child CHs), according to
the new schedule, a response is sent in the payload of the
periodic synchronization frame. By using the
synchronization frame to deliver this information we make
sure that all CHs receive the information in a bounded
amount of time, since they are not susceptible to contention
and minimize the possibility of collisions.
The first part specifies the message type and the response,
(request accepted or request denied). The next portion of the
frame contains the expiration for that schedule, which is the
amount of cycles the schedule will remain active before
returning to the original network schedule. The next portion,
contains a list with the new offsets and the cluster-head
addresses to which these are to be applied.
Only the CHs which received a new offset are part of the
content of the response frame. If the node which requested
the rescheduling does not find it's address among the ones in
the response, or if no response is received for more than
DCS_maxWait cycles, it should hold the data and retry later
up to a maximum of DCS_maxRescheduleRetry times. The

Figure 7

size of DCS_CH_Address is implementation specific as well
as the DCS_Offset, since these variables depend of the
protocol used. The frame is formated as follows:

A DCS Messsage ID field to identify the message type, a
Decision Field with the response to the DCS Request, an
Expiration field with the maximum number of TDCS cycles
the schedule is to remain active before returning to the
original, and an Offset List, which contains the new offset
expressed in a relative offset concerning the original one,
and the correspondent Router address.

STEP 5 – Propagation; Each cluster-head, upon reception
of the Reschedule Response payload, retrieves its newly
assigned offset to their parent and propagates the remaining
offset information along the network by placing it in their
own synchronization frames, thus propagating the
information downstream. The use of the synchronization
frames for propagating this information guarantees that all
CH receive the necessary information within a bounded
amount of time.
The new offset information is then used by the CHs to
compute the time for the next synchronization frame. At the
next depth, the router joined with that cluster-head must
wait for the next synchronization frame (with the new
offset) from the parent, and synchronize to it.
This propagation procedure however can introduce a period
over which the network is not fully accessible, with the
exception of the branches that remained independent of the
CHs which were rescheduled. This holds true for the Cluster
Re-ordering technique only (DCR).
This is because each CH must wait for the synchronization
frame of their parent so that they can align with it and also
synchronize their cluster, propagate information and become
active, since the offsets are always relative to the parents.
However, this delay is fixed and can be easily computed as
a number of schedule cycles as described in the equation
bellow.

T i

DCR=(d Ar−1)∗macrocycle
The inaccessibility time is equal to the Depth of the deepest
rescheduled CH (dAr) in the tree in the schedule minus one,
multiplied by the respective duration of one MacroCycle.
This is the amount of time the scheduled branches of the
network should be inaccessible. This is because the
scheduled CHs at depth 1, transmits with a new offset
immediately in the next cycle, while the scheduled nodes at
depth 2 transmit after their parents' hence the delay is an
extra cycle, since these schedules always favor an upstream
sequence (check Figure 9). If instead of a DCR technique
we use a Bandwidth Redistribution technique, this
inaccessibility time is zero. Since the hierarchical order of
the schedule is kept, the routers will always receive the

synchronization frame of their parents immediately before
(assuming an initial schedule favoring downstream
transmission), and within the same Macrocycle.

STEP 6 – Returning to original schedule;
The schedule's change is not permanent, and the network
must roll back to it's initial schedule after a defined period
of time which we define as the Schedule's Expiration
Period.
Because of the inaccessibility period in the DCR technique,
each depth will be assigned with a different Expiration so
that all depths can change the schedule back to the original
in the same cycle. For this reason, Expiration in Step 5 is
computed as Expiration = ED + Ti + 1, where ED is the
schedule's expiration deadline that is application defined
(DCS_Exp_Deadline) and can be computed from the
amount of data to be received, Ti the inaccessibility time.
Each CH will later compute its own Expiration by
subtracting their own Depth in the tree.
For the example lets consider S3 used before, applying a
DCR technique, we can consider ED equal to Tk = 4.

Ti = d(C31) – 1 = 3 – 1 = 2 cycles

Expiration = 4 + 2 + 1 = 7 cycles

Accordingly, each CH will compute their own Expiration
time, by subtracting their own depth.

ExpirationC11 = 7 – 1 = 6 cycles

ExpirationC21 = 7 – 2 = 5 cycles

ExpirationC31 = 7 – 3 = 4 cycles

By following this rule, every CH can easily compute when
the current schedule expires, in order to return to the
original schedule at the same time, just by counting the
number of TDCS cycles since their first synchronization
frame after the reschedule.
For the case of a DBR technique, expiration will be always
equal to the ED, since the inaccessibility time remains equal
to zero.
The CHs should activate a counter at the first
synchronization frame sent with the new schedule. From
this point on, each CH keeps track of the current number of
synchronization frames sent by it. When this number is
equal to the computer CH Expiration value the CH
automatically sets its offset to the original and waits for a
synchronization frame from its parent to return to the
original schedule. Since the CHs at different Depths will
start their counters at a different times, the correct deadline
must be computed per depth at each CH.
Figure 9 describes how this process should work for this
example of S3, after a successful reschedule response. The
delay of three cycles due to inaccessibility is depicted as
well as the schedule expiration.
The first TDCS cycle transmits the new offsets within the
DCS Response. Each router will now reset their internal

Figure 8

clock references and wait for a synchronization frame from
their parent. C12 and C11 are the first to receive this and
they transmit their synchronization frames with the new
schedule, followed by their child, (C22, C23, C24, C21).

Next, the CHs at depth three do the same until the last CH at
depth four (C41) is also rescheduled. The schedule is kept
for three more TDCS cycles and it expires. All the offsets
return to the original schedule in only one TDCS cycle. As
observed, the network inaccessibility time is bounded and
return to the original schedule is done without much
complexity, as the routers are resynchronized in an
hierarchical fashion.

IV. INSTANTIATING ETDCS IN IEEE 802.15.4/ZIGBEE

A. IEEE 8021.5.4/ZigBee Overview

IEEE 802.15.4 and ZigBee [15], particularly the
synchronized cluster-tree network model, emerge as
potential solutions for industrial WSNs, since they enable to
fulfill QoS requirements such as energy-efficiency
(dynamically adjustable duty-cycle in a per-cluster basis)
and timeliness (best effort/guaranteed traffic differentiation
and deterministic tree-routing).
The IEEE 802.15.4 MAC protocol supports two operational
modes that may be selected by the ZigBee Coordinator
(ZC), which identifies and manages the whole WSN: i) the
non beacon-enabled mode, in which the MAC is simply
ruled by nonslotted carrier sense multiple access with
collision avoidance (CSMA/CA); and ii) the beacon-enabled
mode, in which beacons are periodically sent by the ZC for
synchronization and network management purposes.
In the beacon-enabled mode, the ZC defines a superframe
structure, which is constructed based on the Beacon
Interval, which defines the time between two consecutive
beacon frames, and on the Superframe Duration (SD),
which defines the active portion in the BI, and is divided
into 16 equally-sized time slots, during which frame

transmissions are allowed. Optionally, an inactive period is
defined if BI > SD.
During the inactive period (if it exists), all nodes may enter
in asleep mode (to save energy).
BI and SD are determined by two parameters, the Beacon
Order (BO) and the Superframe Order (SO), respectively, as
follows:

where aBaseSuperframeDuration = 15.36 ms, (assuming
250 kb/s in the 2.4 GHz frequency band) denotes the
minimum superframe duration, corresponding to SO = 0.
During the SD, nodes compete for medium access using
slotted CSMA/CA in the CAP. For time-sensitive
applications, IEEE 802.15.4 enables the definition of a
contention-free period (CFP) within the SD, by the
allocation of guaranteed time slots (GTSs). Low duty-cycles
are achieved by setting small values of the superframe order
(SO) as compared to the beacon order (BO), leading to
longer sleeping (inactive) periods.
ZigBee defines network and application layer services on
top of the IEEE 802.15.4 protocol. In the cluster-tree model,
all nodes are organized in a parent-child relationship,
network synchronization is achieved through a distributed
beacon transmission mechanism and a deterministic tree
routing mechanism is used.
A ZigBee network is composed of three device types: (i) the
ZigBee Coordinator (ZC), which identifies the network and
provides synchronization services through the transmission
of beacon frames containing the identification of the PAN
and other relevant information; ii) the ZigBee Router (ZR),
which has the same functionalities as the ZC with the
exception that it does not create its own PAN—a ZR must
be associated to the ZC or to another ZR, providing local
synchronization to its cluster (child) nodes via beacon frame
transmissions; and (iii) the ZigBee End-Device (ZED),
which neither has coordination nor routing functionalities
and is associated to the ZC or to a ZR.

B. Integrating Elastic Management in a ZigBee Network

The PAN-Coordinator is responsible for receiving the new
schedule request from the other cluster-heads and
computing the new schedule as described before.
A new module was devised to be integrated above the
network layer of ZigBee (Figure 10), at the Application
Support Layer. This new module, DCS, is responsible for
managing the DCS mechanism, in regards to the beacon
payload creation (for propagating offset information),
computing and changing the offset information for the lower
layers, and computing the schedules and corresponding
expiration.
At network setup time, the TDCS algorithm is applied to the
the tree, setting up the base schedule. This schedule depends
on the application, but generally favors downstream traffic,

Figure 9

for faster actuation upon the leaf nodes and setting up other
application related parameters. In this way, the resulting
schedule should be one which establishes precedence
between parent-child, in a way that in one BI all clusters can
be reached. This is a necessary condition for the DCS to be
successful.

As the nodes gather data, they can direct streaming requests
at the PAN Coordinator. The PAN-Coordinator will
evaluate these requests according to what is described in
Step 2 of Section III B 3. If the result is positive, it will
compute the new schedule and setup the Rescheduling
Response to be placed in the IEEE 802.15.4 Beacon
Payload. The next Beacon frame will carry this information.
As Beacons are transmitted between the several clusters, the
Rescheduling information is propagated among the tree. As
the Zigbee Routers receive the Rescheduling Response and
the new offsets to their parent, all the nodes will know a
DCS Rescheduling in occurring just by parsing the received
Beacon. This is important since in the next BI, many nodes
will fail to receive a Beacon from their parent, due to the
inaccessibility time described in Step 4. This will be
specially visible in the deepest nodes of the rescheduled
branch. If no information concerning the status of the
process was propagated, the nodes could assume they had
lost their parent, receiving a SYNC-LOSS.indication from
the respective MAC layer, and would try an Association
procedure to another potential parent. By knowing this in
advance, they can disable this process for (Depth-1)*BI

amount of time, which is the maximum time the
rescheduling should take per Depth, after which, the Device
will re-enable the re-association procedure after the SYNC-

LOSS.
Upon reception of their parent's Beacon, the ZigBee
Cluster-Heads, will search for their address among the
Rescheduling information at the Beacon Payload to learn

the new offset. Then, they will trigger the DCS Module
generating a DCS-NEW-SCHEDULE.indication, and set
their own Beacon Payload with the remaining information
of the Rescheduling Response to propagate the information
to the children down the tree. Having done this, the DCS
Module, will issue a SYNC.request to the Network Layer to
resynchronize with the corresponding parent, and after a
synchronization an MLME-START.request.

The MLME-START.request primitive, depends of the
rescheduling technique to be used. If a Re-ordering
technique is to be used, then the CH will used a DCS-

RESTART-ROUTER.request, with the new offset
information. This new interface is similar the standard
NLME-RESTART-ROUTER.request, except no change is
done to the other parameters of the stack. The objective is to
simply turn the routing functionality on.
If a Bandwidth reallocation is to be done, then the request
will also change the Superframe Order parameter of the
stack to reflect the bandwidth change. The system timers at
the MAC layer, upon reception of this request are
automatically updated with the new Superframe Order.
Upon the reception of a Beacon from the parent, the ZigBee
Router will automatically resynchronize and resume its
work.
When the DCS Module is triggered, the Schedule
Expiration is also computed according to what is described
in Step 6 of Section III B 3, and a counter
(DCS_Expiration_timer) is triggered with that value. When
this counter expires, the DCS Module automatically repeats
the DCS-RESTART process with the old offset values,
returning to the initial values. These are stored in a database,
DCS_Init_db, which contains the initial offset and
Superframe Order values.
As described, the implementation of the DCS mechanism
does not involve major changes to the protocol. In fact, only
a couple of new primitives are to be added to the ZigBee
NWK stack to enable the DCS functionalities.

V. PERFORMANCE EVALUATION

The DCS mechanism was evaluated through simulation and
experimentally using a real world Structural Health
Monitoring application as a testbed. This application,
previously designed in [16] and [17], was chosen
considering its requirements of tight node synchronization
and control, and the large amount of sensing data that must
be handled by the network.
Its system architecture was designed to sample in a
synchronized fashion multiple accelerometers placed at
different locations in a physical structure and forward this
data to a central station (PAN-Coordinator) for later
processing using a IEEE 802.15.4/ZigBee Cluster-Tree
network topology. Each Sensing Node is composed by a
TelosB node [18] with a signal acquisition board, with a 24
bits DAC, attached to a MEMS 3-axis acceleration sensor
(Figure 11).

Figure 10

The Coordinator Node supervises the network and nodes'
activities (e.g. node configuration, data acquisition rate,
start/stop sampling) and guarantees a tight synchronization
between all nodes which is of the utmost importance for this
kind of applications; it also forwards the configuration
parameters and dispatches the acquired data to the
Command & Configuration Application (C&C App) which
provides the system user with a human-machine interface
(HMI) to configure the system and also an application
programming interface (API) to integrate the WSN system
with the data processing/analysis applications. The latter
enable to infer about the reaction of the monitored structure
to natural vibration or impacts. For more detail about the
SHM system please refer to [16].

1) System setup

The network is setup according to Figure 1 network
topology and the Sensing Nodes are spread into different
clusters. In Figure 1, the addresses next to the nodes
represent the Cluster-Heads' ZigBee NWK addresses.
In this example application, the initial schedule favors
downstream communications and is setup as Figure 12
Schedule 1. This is made so that the PAN-Coordinator, after
setting up all the nodes in the network, is able to start and
stop the data acquisition on all the nodes simultaneously.
This is mandatory for the application so that the results are
coherent.
Notice the free spaces in comparison with the schedules
previously presented. This has to do with the discrete steps

which are allowed for the BO and SO settings in the IEEE
802.15.4 protocol. Because BO = 8 and SO = 4 was chosen
for all ten routers, there is space in the TDCS cycle which
remains free. Again, the blue lines around the schedule
mark one complete TDCS cycle. They gray filled spaces
mark the routers involved in the stream transmission.

When the data acquisition finishes, the Sensing Nodes are
pooled in turn for the sensing data. Each reading for the
accelerometer has a size of 3 axis times 24 bits resulting in
72 bits. Depending on the sampling rate, a large volume of
data is going to be generated and transmitted to the PAN-
Coordinator, which will forward it to a PC for processing.
Although there is no real-time requirement in this part of the
operation, meaning receiving data in a bounded amount of
time, since no real-time analysis is performed, engineers
which to receive all the data in the minimum possible time
since they need several runs to be carried out. If the initial
schedule is kept, this operation will take a large amount of
time to complete, and the assessment can last several
minutes and even hours, depending on the origin of the
stream. We wish to change the schedule to accelerate the
data transfer from the Sensing Nodes at that Cluster to the
PAN-Coordinator using the DCS mechanism using the
Bandwidth Reallocation technique, resulting in a schedule
depicted in Figure 12 Schedule 3. However, the DCR
technique (Figure 12 Schedule 2 and 4) was also
implemented and analyzed.

2) Simulation Results

The DCS mechanism was implemented over the Open-ZB
Zigbee Model [15], and simulated with the OPNET Modeler
simulation software. A network topology like the one shown
in Figure 1 with nwkMaxChildren (Cm) = 3,
nwkMaxDepth (Dm) = 5, and nwkMaxRouters (Rm) = 2,
was setup and the application layer of the node was set to
generate traffic at a rate correspondent to a sampling rate of

Figure 11

Figure 12

100Hz which is recommended for fine-grained structural
health monitoring [16]. For maintaining uniformity along
this paper, in the analysis we always consider stream S3,
which originates at router C41 in Figure 1. Figure 13 shows
one of the simulation scenarios.

Several analysis to evaluate the performance of the two
techniques were carried out, with a special attention to two
metrics: end-to-end delays and overall stream transmit
duration.

End-to-end Delay Analysis

To understand the impact of the first technique we did
several runs of the network with different BO settings (from
BO = 8 up to BO = 12), simulating a larger network, with
the initial scheduling and using the re-ordering technique.

The end-to-end delays were measured for packets
transmitted from Sensing Node with address 0x0007 (Figure
1), which was associated to Router 0x0004, at Depth 4, to
the PAN-Coordinator, with no extra traffic on the network.

Frame size was set to 800 bits, and Packet Inter-arrival
Time was set to 0,06 seconds to emulate the arrival of
Sensing Data at the Sensing Node's serial port (this was
verified experimentally).
Figure 14, shows the end-to-end delay results for the
different BO. Superframe order is fixed to SO = 4. Notice
the decrease on the delay achieved by simply re-ordering
the schedule. We can achieve a reduction in the end-to-end
delays in the order of 13 seconds for BO = 8 and even
several minutes as the BO increases with the size of the
network, reaching 4 minutes for the case of BO = 12, to
approximately one second.
The end-to-end delays with DCR remain constant despite
the different BO settings. This is expected since although
the network increases, the transmission of a packet is
completed in only one BO cycle. Since the Bandwidth of
the routers is also the same, the end-to-end delay should
remain constant and thus independent of the network size.
To understand the impact of the second DCS technique,
Bandwidth Reallocation, on the end-to-end delay, the initial
schedule's order was maintained and the available
bandwidth of the Superframe was distributed among the
Routers involved on the stream. Different BO/SO
configurations were tried (SO = 4 up to SO = 9) and as more
space became available with the increasing BO, the DBR
technique was used to distribute it through the routers.
Figure 15 presents the results for the different SO settings
using BO = 10 and both DCS techniques. Results are similar
to all other BO settings.

There is a slight but not significant decrease of the end-to-
end delay as the SO are increased. Since the Routers
increase their SO, the unused part of the Superframe was
reduced and thus there is a better use of the Superframe
bandwidth. This reduces the time the packet must remain in
the queue at each router, waiting for the next Superframe to
be transmitted to the parent, thus slightly reducing the
overall end-to-end delay. This is visible in Figure 16 (top
blue squares), showing how the average queuing delay
decreases as the SO increases.
In comparison, the DCR technique presents a much higher
impact on the end-to-end delay as expected, decreasing for

Figure 13

Figure 14

Figure 15

the case of BO/SO = 10/5, the delay from 60,95 to 1,97
seconds, a decrease of 96,7%. In fact, for its worst case of
BO/SO = 10/7, it still represents a decrease of 82,14%
concerning the DBR technique, as show in Figure 15.

There is however, a slight increase in the delay when using
the DRT technique as the SO increases. Although, there is a
re-ordering of the schedule according favoring upstream
traffic, and a redistribution of the unused bandwidth, the
increase in SO implies a larger time a packet must wait in
queue at each router, waiting to be transmitted to the parent,
in comparison to the cases with lower SO.
Using the DBR technique is thus not recommended when
one wishes to significantly reduce the end-to-end delay in
the application.

Stream Overall Transmission Time

Like previously mentioned, minimizing the overall
transmission time is quite important, in our SHM
application, where large amounts of data must be
transmitted in the less amount of time possible. To analyze
the second metric, the overall stream transmission time, we
generated different amounts of data at the application layer
to simulate the different sampling durations of the SHM
application. We generated scenarios with different volumes
of sensing data, corresponding to short 10 and 30 seconds
runs and runs with 1, 5, 10 and 30 minutes, in the SHM
system. Data frame size remained fixed to 100 KB.
We measured how much time it took for the data transfer to
complete. During this time, there was no more traffic in the
network, so that collisions were not possible, not to interfere
with the experiment.
Figure 17 shows the results for sampling durations of 10, 30
and 60 seconds. As shown, the DBR technique presents the
best result in decreasing the overall transmission time,
representing a decrease close to 50%, as expected when the
available bandwidth is doubled on the Routers, to SO = 5.
For the case of 1 minute of sampling time, using the DBR
technique alone reduced the overall transmission time from
nine minutes to 4 and a half minutes, a decrease of 49%.

Interestingly, the DCR technique also decreases the overall
transmission time, but not in a significant way. It decreases
it about 14 seconds for this particular case of BO=8, and it
is constant for every SO setting, independently of the
amount of data to be transmitted. This small difference,
however should not be neglected. For larger BO, the impact
of this increases as shown in Figure 18, reaching 8 minutes
for BO=13. This happens because of the impact of the
reduced end-to-end delay at the beginning of the
transmission. With a re-ordering of the clusters' schedule,
the first packets are delivered in a shorter amount of time, in
only one TDCS cycle, contrary to what happens when this
technique is not used, taking several cycles to complete the
transmission of the first packets. Because of this, the
transmission will end sooner. As the BO increases, the
impact of this is higher since the duration of the TDCS
cycle also increases.

Figure 19, shows the overall stream transmission times for
both techniques and different sampling durations, using
BO=9.
For a sampling duration of 30 minutes, we achieve a 75%
reduction in the overall transmission time. This means, that
instead of waiting for almost 9 minutes to receive the SHM
application sensing data, we just need approximately 2
minutes.

Figure 16

Figure 17

Figure 18

Notice, this is to receive from one node only. This must be
multiplied by the number of sensing nodes on that cluster,
since they are pooled in turn in the SHM application. If we
were to have 6 sensing nodes on the cluster, this would take
12 minutes to complete against 54 minutes with the base
schedule, a reduction close to 78% on the waiting period for
the sensing data from cluster C41 (0x0004).

3) Experimental Evaluation

The DCS module was implemented in TinyOS over the
Open-ZB IEEE 802.15.4/ZigBee stack [10]. A ZigBee
network with 12 TelosB [18] motes was setup in a
configuration replicating the one depicted in Figure 1, using
BO=8 and SO=4, with one PAN-Coordinator connected to a
PC through a USB connection, and nine Routers each
forming their own cluster. Two Sensing Nodes (End
Devices) were associated to the Router at Depth 4 (address
0x0004) to generate sensing data for later retrieval. To
reduce costs, the Sensing Nodes were used without the
accelerometer modules. Instead, timers at the application
layer were used to generate traffic at different sampling
rates. The control of the application, concerning the data
acquisition period and rate, was done using the Command &
Configuration Application (C&C App), running in the PC,
attached to the PAN-Coordinator. Figure xxxx shows the
setup.
Both DCS techniques were implemented and tested to
validate our work, although the most important technique
for this specific SHM application is the DBR, which as
shown before can greatly reduce the overall stream
transmission time. A base scenario, without any schedule
improvement, was also setup to measure the improvement.
A Daintree Networks 2400E Sensor Network Analyzer [19]
was used to log all the communications during the
experimental evaluation.

Starting with the DBR technique, the most important parts
of the log are highlighted in Figure 20 and commented
bellow.

A few packets were omitted for space reasons to simplify
the reading.
This figure shows the use of the DBR technique to reduce
the overall stream transmission time. Beacons from the
PAN Coordinator are signaled with a red arrow.
At network setup time, the nodes associate (1) and the
TDCS algorithm assigns each cluster an offset (2), assuming
a the initial schedule favoring downstream communication,
thus improving the control over the application during the
sampling period. This information is sent in a Data Message
(blue Data Message inside rectangle 2). The application is
configured and started (3), and the base schedule can be
seen. Upon completion of the data acquisition task, the
application pools the nodes for data, using the protocol
described in [16]. The first Sensing Node to be pooled,
wishes to initiate upstream data communication and triggers

Figure 19

Figure 20

the DCS mechanism (4) with a DCS Request. This request
is forward by the routers until it is delivered to the PAN-
Coordinator. Two Data Messages with DCS Request can be
seen being forwarded. The relationship between addresses
and the logical topology is shown in Figure 1.
Upon arrival, the PAN Coordinator computes the new
schedule and sends to the network a DCS Reschedule
Message which is disseminated within the payload of the
beacon frame throughout all the network (5). The new
schedule is immediately adopted as shown in (6), and a
change on the SO is noticeable on the Beacon frame
description and on the sniffer timestamps.

The DCR technique was also evaluated on this experimental
setup and Figure 21, shows the output from the Packet
Analyzer. Part of the output related to the network setup and
DCS communication was omitted since is is already shown
on the previous figure and there are no significant changes
for this technique. Again, the beacons from the PAN
Coordinator are signaled with a red arrow.
When all the Routers receive their new offset information in
the DCS Reschedule Response message, they immediately
stop sending beacons and wait for their parent's beacon to
synchronize to it. The first beacon comes from the PAN
Coordinator which maintains its period. Next, Routers at
Depth one are the firsts to synchronize to it using the new
offsets. Notice the Packet Analyzer time stamp, showing the
new relative offsets. Now that the Depth one Routers
transmitted their beacons, the next level ones (Depth two)
can also synchronize. The process continues until the all the
Routers are synchronized. At this point, the Sensing Nodes

(0x0007 in the example) start transmitting data which will
forward until it reaches the sink.
Next figure shows the comparison between simulation and
experimental results. As observed, the behavior previously
observed in simulation is replicated in the experimental
evaluation with minor differences.

A reduction of 93% on the end-to-end delay is achieved
with the DCR technique for BO = 8 in our application.
Again, the DBR technique, with an increase of Bandwidths
to SO = 5, does not present a significant change to this
metric. Results are quite close to simulation on the end-to-
end delay result with DCR, however for the base schedule,
experimental delay was slightly different. This has to do
with the different duration of the Beacon Order on the
experimental platforms, due to timing constraints, which is
of 3,75 seconds instead of the theoretical 3,932 seconds.
Concerning the DBR technique, results show a reduction on
the overall transmission time in the order of 49%, again
quite close to simulation results.

Concerning the network inaccessibility time, as predicted, it
was bounded to three TDCS cycles, which is the time it
takes for the whole network to resynchronize with the new
schedule. This can be observed in the Packet Analyzer
output files.

Figure 21

Figure 22

Figure 23

VI. CONCLUSIONS

Although Synchronized Cluster-Tree network topologies
look promising to enable WSN applications with stringent
QoS requirements, due to the predictability which can be
achieved, we have witnessed a lack of commercial and
academic solutions based on this kind of topology, in part
due to the technical challenges their engineering imposes.

Among these challenges, changing the resource
allocation of the CT on the fly, without imposing long
inaccessibility times still remained open to research. This
possibility would dramatically improve these networks'
flexibility in adapting to changes in the traffic or bandwidth
requirements in real-time.

In this paper we presented a solution to this problem,
enabling networks to adapt in real-time to different
bandwidth and end-to-end delay requirements imposed by
incoming traffic streams, by changing the clusters'
scheduling. We presented two DCS techniques which can
reduce the end-to-end latency of a stream up to 93%, and the
overall data transmit duration from a leaf node to the sink up
50% although more can be achieved with other network
settings.

Importantly, our methodology was applied to a real-
world WSN-based Structural Health Monitoring system,
showing that it can be easily implemented under the
IEEE802.15.4/ZigBee set of protocols with minor add-ons
and can run in general purpose WSN platforms such as the
TelosB motes.

REFERENCES

[1] Stankovic, J., Lee, I., Mok, A., and Rajkumar, R. 2005. Opportunities
and obligations for physical computing systems. IEEE Computer 38,
11 (Nov.), 25–33.

[2] Raman, B. and Chebrolu, K. 2008. Censor networks: a critique of
”sensor networks” from a systems perspective. ACM SIGCOMM
Computer Communication Review 38, 3 (July), 75–78.

[3] Abdelzaher, T., Prabh, S., and Kiran, R. 2004. On real-time capacity
limits of multihop wireless sensor network. In Proceedings of the
25th IEEE International Real-Time Systems Symposium (RTSS).
IEEE Computer Society Press, Washington, DC, USA, 359–370.

[4] Gibson, J., Xie, G., and Xiao, Y. 2007. Performance limits of fair-
access in sensor networks with linear and selected grid topologies. In
Proceedings of the 50th IEEE Global Communications Conf.
(GLOBECOM). IEEE Computer Society Press, Washington, DC,
USA, 688–693.

[5] Prabh, S. and Abdelzaher, T. 2007. On scheduling and real-time
capacity of hexagonal wireless sensor networks. In Proceedings of the
19th Euromicro Conf. on Real-Time Systems (ECRTS). IEEE
Computer Society Press, Washington, DC, USA, 136–145.

[6] Petr Jurcik, Anis Koubâa, Ricardo Severino, Mário Alves, and
Eduardo Tovar. 2010. Dimensioning and worst-case analysis of
cluster-tree sensor networks. ACM Trans. Sen. Netw. 7, 2, Article 14
(September 2010), 47 pages.

[7] Hanzálek, Z.; Jurcík, P.; , "Energy Efficient Scheduling for Cluster-̆
Tree Wireless Sensor Networks With Time-Bounded Data Flows:
Application to IEEE 802.15.4/ZigBee," Industrial Informatics, IEEE
Transactions on , vol.6, no.3, pp.438-450, Aug. 2010.

[8] IEEE-TG15.4. 2006. Part 15.4: wireless medium access control
(MAC) and physical layer (PHY) specifications for low-rate wireless
personal area networks (LR-WPANs). IEEE Computer Society.

[9] Koubaa, A., Cunha, A., and Alves, M. A time division beacon
scheduling mechanism for IEEE 802.15.4/ZigBee cluster-tree
wireless sensor networks. In Proceedings of the 19th Euromicro Conf.
on Real-Time Systems (ECRTS). IEEE Computer Society Press,
Washington, DC, USA, 125–135.

[10] Cunha, A., Koubaa, A., Severino, R., and Alves, M. Open-ZB: an
open source implementation of the IEEE 802.15.4/ZigBee protocol
stack on TinyOS. In Proceedings of the 4th IEEE International Conf.
on Mobile Ad-hoc and Sensor Systems (MASS).

[11] R. Burda and C. Wietfeld “A Distributed and Autonomous Beacon
Scheduling Algorithm for IEEE802.15.4/ZigBee Networks”, in Proc.
of IEEE MASS 2007, Pisa, Italy, Oct. 2007.

[12] Muthukumaran, P.; de Paz Alberola, R.; Spinar, R. & Pesch, D.
MeshMAC: Enabling Mesh Networking over IEEE 802.15.4 through
Distributed Beacon Scheduling., in Jun Zheng; Shiwen Mao; Scott F.
Midkiff & Hua Zhu, ed., 'ADHOCNETS' , Springer, , pp. 561-575 .

[13] Toscano, E.; Lo Bello, L.; , "A multichannel approach to avoid
beacon collisions in IEEE 802.15.4 cluster-tree industrial networks,"
Emerging Technologies & Factory Automation, 2009. ETFA 2009.
IEEE Conference on , vol., no., pp.1-9, 22-25 Sept. 2009

[14] Cunha, A., Severino, R., Pereira, N., Koubaa, A., and Alves, M. 2008.
ZigBee over TinyOS: implementation and experimental challenges.
In Proceedings of the 8th Portuguese Conf. On Automatic Control
(CONTROLO). UTAD, Portugal, 911–916.

[15] ZigBee. 2005. ZigBee Specification, Version 1.0. ZigBee Standards
Organization.

[16] Ricardo Severino, Ricardo Gomes, Mário Alves, Eduardo Tovar,
Rafael Aguilar, Paulo Lourenço, Paulo Gandra de Sousa. A Wireless
Sensor Network Platform for Structural Health Monitoring: enabling
accurate and synchronized measurements through COTS+custom-
based design. In workshop "Applications of Wireless Sensor
Networks", co-located with the 5th IFAC International Conference on
Management and Control of Production and Logistics, University of
Coimbra, Portugal, September 8-10, 2010.

[17] Rafael Aguilar, Luis F. Ramos, Paulo B. Lourenço, Ricardo Severino,
Ricardo Gomes, Paulo Gandra, Mario Alves, Eduardo Tovar.
Prototype WSN Platform for Performing Dynamic Monitoring of
Civil Engineering Structures . Operational Modal Monitoring of
Ancient Structures using Wireless Technology . In Sensors,
Instrumentation and Special Topics, Volume 6 , Conference
Proceedings of the Society for Experimental Mechanics Series
Volume 9, 2011, pp 81-89

[18] Crossbow. 2013. TelosB mote datasheet. [Online]. Available:
http://www.xbow.com.

[19] Daintree Networks. 2012 Sensor Network Analyzer (SNA). [Online]
Available: http://www.daintree.com.

