

Device Power Management for Real-Time
Embedded Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-120603

Version:

Date: 06-05-2012

Muhammad Ali Awan

Stefan M. Petters

Technical Report HURRAY-TR-120603 Device Power Management for Real-Time Embedded Systems

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Device Power Management for Real-Time Embedded Systems
Muhammad Ali Awan, Stefan M. Petters

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
A large part of power dissipation in a system is generated by I/O devices. Increasingly these devices provide power
saving mechanisms to inter alia enhance battery life. While I/O device scheduling has been studied in the past for
realtime systems, the use of energy resources by these scheduling algorithms may be improved. These approaches are
crafted considering a huge overhead of device transition. The technology enhancement has allowed the hardware
vendors to reduce the device transition overhead and energy consumption. We propose an intra-task device scheduling
algorithm for real time systems that allows to shut-down devices while ensuring the system schedulability. Our results
show an energy gain of up to 90% in the best case when compared to the state-of-the-art.

Device Power Management for Real-Time
Embedded Systems

Muhammad Ali Awan Stefan M. Petters
CISTER Research Unit, ISEP-IPP Porto, Portugal

maan,smp@isep.ipp.pt

Embedded devices are designed to perform a set of func-
tions. These systems interact with their environment and use
input/output (I/O) devices. Typical examples of such systems
are cars, satellites or mobile phones. Real-time (RT) embedded
systems have additional timing constraints, which are required
to be met on top of functional aspects for the overall system to
be considered correct. Beyond RT constraints many embedded
systems have limited or intermittent power supply. Therefore,
energy efficiency is an important aspect that needs to be
considered in the design process of such RT systems.

The demand of extra functionality on a single embedded
system also results in an increased number of I/O devices.
As I/O devices consume considerable amount of energy, they
often come with power saving states to minimise their energy
consumption. A device can only operate in the active mode,
and its transition into and out of sleep state incurs both
time and energy overheads. Moreover, the request instant and
access interval of the device can usually not be determined
beforehand. In order to guarantee the temporal correctness
of such RT systems, the device transition delay to bring the
device up from sleep needs to be taken into account.

Device power management was extensively studied in a
non-real-time setting. Benini et al. [1] divided these techniques
into three main categories, 1) time-out based, 2) predictive and
3) stochastic. Time-out based algorithms shutdown the devices
when they are idle for a specified threshold. The system wakes
up the device on the next request of the task. Predictive
techniques adapt themselves with the varying workload of
the system. Stochastic methods model the requests behaviour
with different probabilistic distributions. The device shut-down
times are estimated by solving the stochastic models such as
Markov chains. Most of the techniques mentioned above turn-
on the device when requested by the application/task.

A RT system does not have such leverage, as a delay in
device transition from its sleep state my cause the task to miss
its deadline. Therefore, in traditional RT device-scheduling
algorithms all devices requested by a task are turned on before
the start of its execution and kept active throughout the entire
execution time of the corresponding task. This category of
device scheduling is known as inter-task device scheduling.
However, most devices are used for very short intervals of
time thus resulting in wasted energy. Opposed to this, in intra-
task device scheduling a device is only turned on when it
is requested by the task. However, no such techniques are
developed for RT systems with strict timeliness constraints.
Major issue is the overhead of the device shut-down transitions
and secondly, the device usage instance is not known a priori.

The unused capacity in a system is called system slack.
System slack can be categorised as static and dynamic slack.
Static slack exists due to a spare capacity in the system, as it is
not loaded with what can be guaranteed by the schedulability
test. However, dynamic slack is generated online and has two
parts. 1) RT tasks usually do not execute for the their worst-
case execution time and generate execution slack. 2) Similarly,
their arrival is usually delayed beyond the minimum-inter-
arrival time and produce sporadic slack. The detailed discus-
sion about these types of slacks is given in [2].

This research effort proposes a static slack container al-
gorithm (SSC) to exploit intra-task device scheduling for RT
embedded system. SSC uses the system slack to compensate
for the delays of device transitions and guarantee the schedu-
lability of the system. The brief overview of the algorithm is
given below. For the detailed algorithms reader is directed to
the original publication [3].

Initially the algorithm computes the device budget Db

offline that comes from the static slack in the system. The
device budget Db of the system is the maximum available
spare time that can be used to compensate for the devices
transition delays without causing any task to miss its deadline
under worst-case assumptions. It is computed from the demand
bound function [3], [4].

Our algorithm uses a sporadic task model, in which a task
τi is categorised by �Ci, Ti, Zi�, where Ci, Ti and Zi are the
worst-case execution time, minimum-inter-arrival time and the
device used by τi respectively. We assume one device per task
and it is used at most once during any instance of τi execution.
Each independent task releases its instance after every Ti. The
transition delay of Zi is denoted as trz . For simplicity sake,
τi deadline is considered equal to Ti.

For the ease of presentation here, we assume all the devices
are compatible with the intra-task device scheduling and hold
this inequality Ti−Ci ≥ trz . Our SSC algorithm turns off the
device Zi when it has been used by τi and the next utilisation
time of Zi is greater or equal to its transition delay trz . A timer
is set accordingly to wake up the device. An interrupt service
routine (ISR) signals the system when the timer corresponding
to Zi expires. Whenever the timer associated to any Zi expires,
a system consults the following principles. The effective slack
mentioned in the principles corresponds to the execution slack
with a deadline less than the absolute deadline of τi using Zi.

1) Principle 1: Db ≥ trz

• Device is kept off
• Timer associated to this device is removed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

System Utilization

G
ai

n
O

ve
r E

ED
S

! = 0% to 5%
! = 25% to 30%
! = 45% to 50%
! = 70% to 75%
! = 0% to 30%
! = 0% to 50%
! = 0% to 70%

Fig. 1. Variation in Ω
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilization

G
ai

n
O

ve
r E

ED
S

|!|=5
|!|=10
|!|=15
|!|=20

Fig. 2. Variation in Γ against U
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

0.3

0.4

0.5

0.6

System Utilization

G
ai

n
O

ve
r E

ED
S

Cb=0.25
Cb=0.50
Cb=0.75
Cb=1.00

Fig. 3. Variation in Cb
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

System Utilization

G
ai

n
O

ve
r E

ED
S

!=0.0
!=0.2
!=0.4
!=0.6
!=0.8
!=1.0

Fig. 4. Variation in Υ

2) Principle 2: Db < trz&& Effective slack �= 0
• Keep the device off
• Extend the timer equal to the size of effective slack

3) Principle 3: Db < trz&& Effective slack = 0
• Turn on the device
• Remove the timer associated to this device

It has been shown in the original publication [3] that τi
requesting Zi during a sleep state will maintain its schedu-
lability with the given principles. The device budget in the
system is replenished when the system is in idle state. We have
also proposed a device budget reclamation algorithm. Db by
definition is the highest priority budget in the system. When
Zi is allocated a part of Db to compensate for its transition
delay, the analysis assumes no other task is executing and/or
waiting for its device transition during this interval. In the
case when another job is executing during the transition phase
of Zi, the device budget may be reclaimed depending on the
priority of the workload executed in this interval. Similarly, in
case of multiple tasks are waiting for their device active state,
a system should only consider a budget consumption of single
device in the overlapping period as their wake-up transition
happens in parallel. The complexity of our device scheduling
algorithm and budget reclamation algorithm is O(�), where �
is the number of tasks in the system.

We have extended the discrete event simulator SPARTS V-
2.0 (Simulator for Power Aware and Real-Time System) [5] for
the experiments to evaluate the effectiveness of our proposed
algorithm. To cover the wide variety of applications we have
used task-sets ranging from a larger number of fine grained
small tasks (20) to a small umber of coarse grained tasks
(5). We have varied actual execution time, sporadic delay and
device usage time with Cb,Υ and Ω respectively. The actual
execution time of τi and its sporadic delay is varied within a
range of [Cb ∗ Ci;Ci] and [Ti;Ti + Ti ∗Υ] respectively. The
default values of Cb = 1,Υ = 0,Ω = (0% to 5%) and task-set
size |T | = 10. Energy Efficient Device Scheduler (EEDS) [6]
is selected from state-of-the-art for the comparison.

The effect of variation in device usage time Ω (given as
a percentage of task’s actual-execution time) on the gain of
SSC over EEDS is illustrated in Figure 1. SSC performance
dominates if τi uses their corresponding Zi for the a small
percentages of Ci. Gain of SSC with a task-set size variation is
demonstrated Figure 2. Smaller task-set sizes are favourable to
SSC and the gain of SSC increases with the system utilisation.
EEDS cannot extend sleep intervals of the devices at higher
utilisation. Moreover, with an increase in the task-set size, Db

has to service extra devices and thus the gain of SSC decreases.
The effect of variation in actual execution time of each task

is shown in Figure 3. The low value of Cb corresponds to

high execution slack and vice versa. The gain of SSC reduces
with a decrease in Cb for an obvious reason that if tasks
finish their execution earlier than Ci, EEDS has a chance to
turn their corresponding devices off immediately. The variation
of sporadic slack is observed in Figure 4. Large value of Υ
corresponds to high sporadic slack. Extra sporadic slack allows
for larger gains in energy consumption. SSC makes an efficient
use of the sporadic slack because device is only woken up on
demand and kept in sleep mode if the task arrives later than
its Ti. However, EEDS has the requirement to keep the device
on during Ci; therefore, devices are woken up assuming a
worst-case scenario of task arrival after every Ti.

I. CONCLUSIONS

This paper presents the intra-task device scheduling al-
gorithm, which requests the device on demand rather than
keeping it unnecessary active throughout the execution of its
corresponding job. Our algorithm makes explicit use of static
and dynamic slack. Our extensive evaluation demonstrates its
efficiency. Furthermore, it has low complexity when compared
to the state-of-the-art and reduces the assumptions that restrict
the practical implementation of these approaches. In the future,
we intended to further relax the assumptions made in this
research effort that will enhance the applicability of this
algorithm to more versatile systems. Our goal is to allow
device sharing among jobs and add flexibility to use multiple
devices in a single job.

ACKNOWLEDGMENT
This work was partially supported by National Funds through

FCT (Portuguese Foundation for Science and Technology) and by
ERDF (European Regional Development Fund) through COMPETE
(Operational Programme ’Thematic Factors of Competitiveness’),
within REPOMUC project, ref. FCOMP–01-0124-FEDER-015050,
and by FCT and the EU ARTEMIS JU funding, within RECOMP
project, ref. ARTEMIS/0202/2009, JU grant nr. 100202.

REFERENCES

[1] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design techniques
for system-level dynamic power management,” Trans. Very Large Scale
Integration Syst., vol. 8, no. 3, pp. 299 –316, june 2000. 1

[2] M. A. Awan and S. M. Petters, “Enhanced race-to-halt: A leakage-aware
energy management approach for dynamic priority systems,” in 23rd
ECRTS, 2011, pp. 92–101. 1

[3] ——, “Online intra-task device scheduling for hard real-time systems,”
in SIES12, june 2012, pp. 1–8. 1, 2

[4] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Algorithms and complexity
concerning the preemptive scheduling of periodic, real-time tasks on one
processor,” J. Real–Time Syst., vol. 2, pp. 301–324, 1990. 1

[5] B. Nikolic, M. A. Awan, and S. M. Petters, “SPARTS: Simulator for
power aware and real-time systems,” in 8th IEEE Int. Conf. Emb. Softw.
& Syst. Changsha, China: IEEE, Nov 2011. 2

[6] H. Cheng and S. Goddard, “Online energy-aware i/o device scheduling
for hard real-time systems,” in 43rd DATE. Leuven, Belgium: European
Design and Automation Association, 2006, pp. 1055–1060. 2

