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Abstract 

This paper discusses a spatial sensor to identify and track objects in the environment. The sensor is composed of 
an RGB-D camera that provides point cloud and RGB images and an egomotion sensor able to identify its 
displacement in the environment. The proposed sensor also incorporates a data processing strategy developed by 
the authors to conferring to the sensor different skills. The adopted approach is based on four analysis steps: 
egomotive, lexical, syntax, and prediction analysis. As a result, the proposed sensor can identify objects in the 
environment, track these objects, calculate their direction, speed, and acceleration, and also predict their future 
positions. The on-line detector YOLO is used as a tool to identify objects, and its output is combined with the point 
cloud information to obtain the spatial location of each identified object. The sensor can operate with higher 
precision and a lower update rate, using YOLOv2, or with a higher update rate, and a smaller accuracy using 
YOLOv3-tiny. The object tracking, egomotion, and collision prediction skills are tested and validated using a mobile 
robot having a precise speed control. The presented results show that the proposed sensor (hardware + software) 
achieves a satisfactory accuracy and usage rate, powering its use to mobile robotic. This paper's contribution is 
developing an algorithm for identifying, tracking, and predicting the future position of objects embedded in a 
compact hardware. Thus, the contribution of this paper is to convert raw data from traditional sensors into useful 
information. 
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Abstract—This paper discusses a spatial sensor to identify
and track objects in the environment. The sensor is composed
of an RGB-D camera that provides point cloud and RGB
images and an egomotion sensor able to identify its displace-
ment in the environment. The proposed sensor also incorpo-
rates a data processing strategy developed by the authors
to conferring to the sensor different skills. The adopted
approach is based on four analysis steps: egomotive, lexical,
syntax, and prediction analysis. As a result, the proposed
sensor can identify objects in the environment, track these
objects, calculate their direction, speed, and acceleration,and
also predict their future positions. The on-line detector YOLO
is used as a tool to identify objects, and its output is combined
with the point cloud information to obtain the spatial location of each identified object. The sensor can operate with
higher precision and a lower update rate, using YOLOv2, or with a higher update rate, and a smaller accuracy using
YOLOv3-tiny. The object tracking, egomotion, and collision prediction skills are tested and validated using a mobile robot
having a precise speed control. The presented results show that the proposed sensor (hardware + software) achieves
a satisfactory accuracy and usage rate, powering its use to mobile robotic. This paper’s contribution is developing an
algorithm for identifying, tracking, and predicting the future position of objects embedded in a compact hardware. Thus,
the contribution of this paper is to convert raw data from traditional sensors into useful information.

Index Terms— Spatial sensor, egomotion, YOLO, mobile robot.

I. INTRODUCTION

A
DVANCESin sensing techniques and technologies have

allowed the development of small and useful sensors

capable of providing a large amount of data. A class of such

sensors is the RGB-D type that provides spatial information

about the environment. The distance information is linked to

pixels of the image such that each pixel can be represented by

its coordinates X, Y, Z in a Cartesian plane, relative to the cen-

ter of the sensor. This operation generates a data point cloud.
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These RGB-D sensors are used for a multitude of applica-

tions, such as facial recognition [1], [2], object measurement

and classification in industries [3] among several other applica-

tions. Specially in mobile robotics, RGB-D sensors are usually

used for navigation tasks and environment mapping [4], [5].

Moreover, they can also be used for robust tasks, such as object

tracking [6], [7], and identification of the robot’s position in the

environment [8], [9]. However, the successful accomplishment

of all these activities involves reliable data processing beyond

the mere data capture by the RGB-D sensor.

Indeed, RGB-D sensors provide only distance data asso-

ciated with an RGB image. This raw data is not enough

to support any decision made by a robot, or to identify the

person passing in front of the sensor, for example. Thus, It is

necessary to process this data to generate useful information,

such as an occupation map for mobile robots, or identify a

person’s face for a security system.

In general, computer vision techniques are applied to RGB

images to extract such useful knowledge. For example, deep

learning methods allow us to perform advanced tasks such as

identification of objects or people, identification of anomalies,

among many others [10]–[14]. One of the techniques that

stands out in objects’ recognition from RGB images is YOLO

(You only look once) [15], [16]. This technique does not

need robust hardware for online running and promotes a good

1558-1748 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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trade-off between processing power and precision of results.

Besides, the used computer vision technique must also be able

to deal with the point cloud data corresponding to the pixel

coordinates generated by the RGB-D sensors [17]–[19].

In this paper, an embedded intelligent sensor, named Intel-

ligent Spatial Sensor to Perception of Things (DeepSpatial

sensor), is developed. The proposed sensor is an arrangement

of different perception sources, which are merged to produce

concise and reliable information. An RGB-D sensor is used to

obtain a cloud of points containing the distance of the objects

around it and also giving spatial notion of the environment.

An egomotion sensor is used to identify sensor displacement

and provide its linear and angular velocity. All pre-processing

and merge-processing are carried out on an embedded CPU.

The YOLO is used as a tool to object identification, and

information matching for different perception sources, being

processed over an embedded GPU that supports deep learning

techniques.

The work [20] presents a comparison between CNN object

detection techniques being performed in embedded systems,

such as Jetson TX1, TX2, and Xavier. YoLo is the algorithm

with the highest update rate in embedded systems, according

to the authors. Thus, YoLo was chosen as an object detection

tool. In the results section (sec::Performance), a comparison is

presented between the different versions of YoLo running on

Nvidia Jetson Nano. Our main contribution lies in integrating

some well-known sensing hardware into a single perception

system able to identify objects in the environment, track them,

and predict their future positions.

Some works discuss similar approaches for sensing systems,

also presenting solutions for objects tracking in the spatial

environment using YOLO [21]–[24]. However, these works

are not concerned with the technique’s materialization into

an embedded solution, with the identification and prediction

of detected objects motion, and with the reference movement

(i.e., the sensor motion by itself). As proposed in this paper,

these techniques also use known deep learning tools for the

development of a new sensing strategy. However, different

from these cited works that only use computer vision tech-

niques to track objects in the environment, the sensor herein

proposed is capable of tracking objects using the Point Cloud

and it also provides spatial object disposition based on the

distance between objects in the environment, predicting the

future positions of such objects.

There also are some papers concerned with the prediction

of the objects’ trajectory, as [25], [26]. Especially in [25],

a time difference strategy similar to that presented in this

work is used. However, in these works, the authors are not

concerned with the acceleration and possible collision calcu-

lation between dynamic objects and the object being tracked,

as it will be done in this paper.

Finally, our recent paper [27] presents a software strategy

very similar to that developed herein. However, this recent

paper is not worrying about the sensor displacement by itself

in the environment and about the processing capacity or

hardware requirements. In summary, this work aims to develop

a perception system (in terms of hardware and software) using

deep learning techniques as a tool for object identification and

tracking, predicting their future position, and identifying the

relative sensor displacement in the environment. The result

will be a compact equipment capable of carrying out all the

proposed actions.

II. DEEPSPATIAL SENSOR

This paper aims to develop an intelligent sensor to identify

objects in the environment, track them, and predict their

future positions. The sensor is called Intelligent Spatial Sensor

to Perception of Things or simply DeepSpatial sensor. The

DeepSpatial development is presented through two steps.

First, the proposed sensor architecture and used hardware will

be presented in section II-A. Thus the software procedures

implementing the sensing intelligent approach is discussed

in section II-B.

A. DeepSpatial Hardware
The proposed sensor hardware has four components. The

first is a small computer implementing three tasks: data

processing, information exchange with the user (a mobile robot

in this paper), and Wireless network creation and management.

The chosen computer is the Intel Nuc NUC5i5RYH due

to its processing power, small size, and low battery con-

sumption. An Nvidia Jetson Nano board is the second com-

ponent. It is used to run computer vision procedures for

object identification in the environment (YoLo). This graphics

processor is ideal for performing tasks in parallels, such as

deep learning techniques and other Artificial Intelligence (AI)

applications.

The other two hardware components are sensing elements.

The Intel RealSense D435i sensor is used to perceive the

environment. This component has an RGB camera to collect

images of the environment and infrared sensors to obtain

spatial information. This information is used to identify objects

and their positions around the sensor. The Intel RealSense

Tracking Camera T265 is used to capture the DeepSpatial

displacement. This camera measures its movement allowing

to infer information such as speed and travel direction of

DeepSpatial, for example.

The communication between all components of DeepSpatial

sensor is implemented through Ethernet and USB interfaces,

as shown in Figure 1. A direct connection between the NUC

computer and the Intel RealSense D435i via a USB 3.0 is

established. The same occurs with the Intel RealSense Track-

ing Camera T265 sensor. The communication between Jetson

Nano and the NUC computer is carried out via an Ethernet

network. Finally, the NUC computer creates a wireless net-

work allowing access to information from DeepSpatial sensor

and communication with other equipment, such as the mobile

robot.

The entire proposed strategy runs entirely on the DeepSpa-

tial sensor. External equipment, such as a computer, can collect

sensor data, but it is not necessary to employ it. This work aims

to propose a novel embedded and independent equipment to

spatial perception.

Finally, the integration and management of all hardware

components is carried out through “Robot Operating System”

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on February 16,2021 at 16:28:34 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 1. Representation of communication between DeepSpatial sensor
components. For AI processing, it is using an Nvidia Jetson Nano. The
tracking sensor is an Intel RealSense Tracking Camera T265, and the
RGB/Pointcloud sensor is an Intel RealSense D435i.

Fig. 2. All hardware components of the DeepSpatial sensor. For
AI processing, it is using an Nvidia Jetson Nano. The tracking sensor
is an Intel RealSense Tracking Camera T265, and the RGB/Pointcloud
sensor is an Intel RealSense D435i.

(ROS) [28], [29] as can be seen in Figure 2. The center of

this figure shows the DeepSpatial view, including all hardware

components. It is worthwhile to note that the specific hardware

components above cited are not mandatory. They can be

replaced by any similar component with the same processing

and sensing capacities and playing the same role.

B. DeepSpatial Software
The Intelligent Spatial Sensor to Perception of Things is

able to identify objects in the environment, classify them

into static and dynamic types, and track all of them. These

tasks are accomplished through four analyzes: egomotion, lex-

ical, syntax, and prediction analysis. The developed software

strategy adopts a follow-up approach, where each analysis

provides information to the next ones. However, it is also

possible to collect all data and independently perform the

analysis, according to the desired use of the DeepSpatial

sensor. The software aspects will be presented and discussed

in the following sections.

1) Egomotion Analysis: One of the main problems in the

development of the DeepSpatial sensor is its spatial displace-

ment. As the robot moves, errors can be generated in the

calculation of the movement of the identified objects, since

movement direction is based on the spatial displacement of

the object concerning the sensor. In this way, a static object

can have a misrepresentation of movement.

The Intel RealSense Tracking Camera T265 sensor is

adopted to correct the influence of the sensor displacement.

This equipment can support visual odometry techniques, like

those presented in [30]–[32], which allow calculating the

displacement of the sensor in the environment (egomotion).

In this way, it is possible to obtain the linear speed (LVS)

and angular speed (AVS) of the DeepSpatial sensor. This

information will be used in the next Syntax analysis to

compensate errors due to DeepSpatial displacement in the

environment when the direction, speed, and acceleration of

the identified objects are calculated.

2) Lexical Analysis: The lexical analysis aims to survey

the characteristics of objects in the environment. The objects

identified by the Lexical Analysis will be stored in tokens.The

token’s attributes are related to the object characteristics. Such

attributes are object’s class (Ct ), probability (P ROt ), object’s

center in the image (Ct img), object’s height in the image

(Himg), object’s width in the image (Wimg ), 3D position of

the object in the real environment (Pt ) and the object’s life

time (Tt ).

• Object’s class and probability These information are

generated by YOLO, which can identify objects in an image.

For each object detected by YOLO, a box is created around

the object and an object name (class) is given. A degree

of probability (probability) of the detected object belongs

to the given class is also added. Both attributes (class and

probability) are directly taken from YOLO. The image is

collected by the D435i sensor, inputted to YOLO, processed

and the YOLO answer is stored.

• Center, height, and width of the object in the image These

data refer to the shape of the object identified in the image.

This shape is computed from the object’s box provided by

YOLO. The number of pixels forming the height (Ht img) and

the width (Wt img) of the object’s box are computed, as also

the position in the image of the box’s center (Ct img). These

measures correspond to the height and width of the object in

pixels and to the position of the center of the object in the

image. These data are used to extract future information and

can be employed by the sensor user to carry other specific

tasks.

• 3D position of the object The position of the object in

the real world is one of the most critical information to be

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on February 16,2021 at 16:28:34 UTC from IEEE Xplore.  Restrictions apply. 
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captured. The previous attributes (center of the object in the

image, height and width in pixels) and the information from

the Intel RealSense D435i sensor are used to identify the

object’s position in the world. D435i sensor provides a cloud

of points where each pixel of the image has an associated

spatial point, given by spatial coordinates [x, y, z] indicating

the distance among the pixel and the center of the D435i

sensor. Thus, each pixel [i, j] has a distance data x, y, z in

the point cloud (PC [i, j, x, y, z]).

• Life time that is the time values when the object is detected

by YOLO. Time is running continuously, starting at zero when

the DeepSpatial is turned on.

The object’s localization is estimated through an average

of the points belonging to the box of the identified object.

As YOLO does not perform segmentation of the object,

the average is carried out only with 20% of the box’s height

and width pixels, thus only the center of the identified object

is obtained, ensuring that the points used for the average of

its 3D position are referring to the object. Equations [1,2,3,4]

present the calculation used to obtain the 3D position of each

object identified by the sensor, where the variable PC [i, j, x,

y, z] refers to all 3D points identified by the RGB-D sensor,

being i and j their dimensions in a 2D matrix, and (x, y, z)

are the distance data. Moreover equation 5 computes the limits

over the coordinate axes that are used in the summation. In this

equation, C Hstart and C Hend correspond to the height ranges

used in the RGB-D data, and CWstart and CWend limit the

width ranges. These intervals correspond to 10% of the size

of the width and height taken from the center of the identified

object. Finally, the spatial position of the object is a 3D point

(Pt ) having the positions (x, y, z) of the identified object.

To cut only the center of the box, its size is multiplied by

0.1 (10%) (Equations 23 and 4) of its height and width from

the center. In this way, the box is converted to 20% of its total

height, and 20% of its total width.

Pt = (Pt [x], Pt [y], Pt [z]) (1)

where

Pt [x] =
1

C Hend

1

CWend

C Hend∑

i=C Hstart

C Wend∑

j=C Wstart

PC[i, j, x] (2)

Pt [y] =
1

C Hend

1

CWend

C Hend∑

i=C Hstart

C Wend∑

j=C Wstart

PC[i, j, y] (3)

Pt [z] =
1

C Hend

1

CWend

C Hend∑

i=C Hstart

C Wend∑

j=C Wstart

PC[i, j, z] (4)

and

C Hend = (Ct img + (Ht img ∗ 0.1))

C Hstart = (Ct img − (Ht img ∗ 0.1))

CWend = (Ct img + (wt img ∗ 0.1))

CWstart = (Ct img − (wt img ∗ 0.1)) (5)

3) Syntax Analysis: Syntax analysis is responsible for con-

verting the data of each token into useful information. The

information generated in this step is the speed, direction,

TABLE I
INFERRED KNOWLEDGE IN OBJECTS

and acceleration of each identified dynamic object. An object

is considered dynamic or not, according to the pre-defined

classification given in Table I. This table also indicates which

dynamic objects are alive. Thus, at the end of this analysis,

each identified object will have information such as dynamic

or static, alive or not, velocity, direction, and acceleration if

they are in motion.

• Identification of the same token The displacement of the

object in space allows the computation of speed, direction,

and acceleration. Thus, it is necessary to have the position

of the same object in two instants of time, to calculate

these variables. The strategy to identify the same object in

two moments is given by a simple comparison between all

tokens of two objects at two instants of time,present time

(Tpresent ) and past time (Tpast). In this way, the identification

of the same token in both times is made by comparing all

objects from time Tpresent with objects from time Tpass .

First, it is compared whether the two tokens are dynamic and

belong to the same class, if it is true, the Euclidean distance

between the real position of the objects, identified through the

point cloud, is compared. If the Euclidean distance is bigger

than 0.15, we assume that it is not the same object. This value

was defined empirically, after proving to be enough to not lose

the movement of an object and to prevent different grouping

tokens.

• Velocity Calculation eThe object’s speed, direction, and

acceleration are based on the same token identification in two

moments.. The speed calculation is given by the displacement

of the object in the environment (δDistance) divided by time

(δT ime). The distance is obtained by calculating the Euclid-

ean distance between (Pt [x, y, z]Tpass ) and (Pt [x, y, z]Tpresent ).

Time is obtained by the difference between TtTpresent and

TtTpass , where Tpresent refers to the time of the last set of

tokens collected, and Tpass refers to the tokens previously

received. Finally, the sensor speed, obtained by the egomotion

analysis, is subtracted from the speed of the token. In this way,

the calculation of the linear token velocity (LVt ) is given by

the equation 6.

LVt =
δDistance

δT ime
− LV S (6)

where LV S is the linear speed of the sensor.

• Direction calculation The direction is used to check

the object’s trajectory in the environment. This calculation

is done by measuring the angle between the same token in

two moments using the function atan2 [33]. The direction is

calculated in 2D, thus only (Pt [x, y]Tpass ) and (Pt [x, y]Tpresent )

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on February 16,2021 at 16:28:34 UTC from IEEE Xplore.  Restrictions apply. 



3970 IEEE SENSORS JOURNAL, VOL. 21, NO. 4, FEBRUARY 15, 2021

are used, despising the z information for each identified object.

The atan2 function returns the angle between the two points

in radian. This information is added to the angular speed of

the DeepSpatial sensor obtained in the analysis of egomotion.

The direction (Dt ) calculation is given by the equation 7.

Dt = atan2((Pt [y]Tpresent − Pt [y]Tpass ),

(Pt [x]Tpresent − Pt [x]Tpass ) − AV S (7)

where AV S is the angular speed of the sensor.

• Acceleration calculation The acceleration of an object

is due to the speed difference during two instants of time

divided by time. In this way, it is only possible to calculate

the acceleration of objects that already have speed. Therefore,

to perform the acceleration calculation (ACCt ), it is first

checked whether the token has speed at two instants of time,

if so, equation 8 is computed, which corresponds to the speed

variation (δV el) by the time variation (T ime).

ACCt =
LVtTpresent − LVtTpass

δT ime
(8)

4) Prediction Analysis: Prediction analysis uses egomotion

data, lexical, and syntax analyses, to infer the future position

of the object. The prediction of the next object, position

is computed through the speed, acceleration, and direction

of a dynamic object. These future positions can be used to

prevent potential collisions between dynamic objects and the

DeepSpatial sensor.

The future position of dynamic objects at a different time in

the future (Tp) is computed based on acceleration information.

If an object has an acceleration value, equation 9 is used to

identify the object’s displacement in space (Obd ). If the object

has no acceleration, its speed, considered as constant, is used,

multiplying Tp by LVt .

Obd = LVt ∗ Tp + ACCt ∗
T 2

p

2
(9)

After calculating the displacement of the object in the

environment, it is possible to calculate its future position after

Tp seconds. Having the object’s spatial position (Pt [x, y, z])

its displacement in the environment (Obd ) and its direction

(Dt ), it is possible to calculate its new position in the environ-

ment (Pp[x, y]) as presented in Equation 10. The displacement

of the object on the Z-axis is not considered.

Pp[x] = Pt [x] + sin(Obd + 90) ∗ Obd;

Pp[y] = Pt [y] + cos(Obd + 90) ∗ Obd ; (10)

As all collected data are related to the DeepSpatial sensor

center, the calculation of the future position of the sensor is

applied using the equation 9 considering, instead of ACCt ,

the linear speed of the sensor LV S. The points used to

represent the initial position of the sensor are [0,0,0] because

the sensor is considered the origin of the coordinate plane.

The new predicted position of the sensor in Tp time is defined

as Spp.

• Collision prediction Having the future position of all

the identified dynamic objects and the DeepSpatial sensor

position, at time Tp, it is possible to predict possible collision

Fig. 3. Sensor attached to the Pioneer P3-AT robot. Left, front view of
the robot. Right, top view of the robot, where it is possible to view the
batteries for powering the sensor.

paths. The collision predaiction is carried out by calculating

the Euclidean distance between the future position of the

DeepSpatial sensor, and all future positions of the dynamic

objects identified in the environment. If this distance is less

than a predetermined threshold, it means that the sensor and

the dynamic object will be very close to each other in the

future, signaling a possible collision.

By default, the future position of identified objects is

continually calculated with Tp taking values of 1, 3, and

5 seconds. After the next location of all objects is obtained,

the collision prediction is also carried out for each instant of

time. If possible collisions are predicted, an alert is published,

so that the DeepSpatial sensor user can take the appropriate

actions.

III. RESULTS AND DISCUSSIONS

This section aims to present the results obtained with the

developed Intelligent Spatial Sensor to Perception of Things.

A first experiment is presented in order to analyze as the

operating data are collected and processed by DeepSpatial

sensor. Then, an experiment with the DeepSpatial sensor

embedded in a mobile robot is carried out. The mobile robot

has linear and angular speed control, making it possible to

perform a comparison between the speeds obtained by the

robot and by the proposed DeepSpatial sensor.

The mobile robot Pioneer P3-AT was used (Figure 3). This

robot is compatible with ROS, and it has been connected to

the DeepSpatial sensor. From the wireless network created by

the DeepSpatial sensor, it was possible to collect data from the

DeepSpatial sensor and send commands to the robot. The robot

has linear and angular speed control, besides encoders used to

calculate these speeds logically. All the described experiments

were carried out with the DeepSpatial sensor embedded to the

robot, powered by batteries and communicating through the

wireless network created by the DeepSpatial sensor.

A. Knowledge Extraction From Collected Data
All information processed by the DeepSpatial sensor can

be visually obtained throughout a user interface. Thus it is

possible to view the identified objects, their positions around

the sensor, their predicted positions, and the possible collision

paths. This information is also available in a textual form,

through a topic from ROS. In this way, the information can be

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on February 16,2021 at 16:28:34 UTC from IEEE Xplore.  Restrictions apply. 
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Fig. 4. Graphical display provided by the DeepSpatial sensor.
(a) Representation of a dynamic object, its movement and future posi-
tions. (b) Token information.

directly read from the DeepSpatial sensor in order to support

actions and decisions, such as stopping the robot or deflect it

if a future collision is predicted, or look for a specific object

in the environment and others. This DeepSpatial sensor opens

up a wide range of options in the field of mobile robotics.

Figure 4 and Figure 5 show the information provided by

the DeepSpatial sensor. In Figure 4, the sensor is directly

connected to a monitor, where the information is displayed.

First, the image is processed by YOLO, then identified object

information such as object’s position in the world is calculated

based on data coming from the RGB-D view. The appearance

of dynamic objects changes from sphere to an arrow, point-

ing to the calculated direction for object displacement. The

information about predicted positions are also displayed as

arrows, pointing to the possible future positions of the object.

All future positions can be visible or it is possible to filter

them for 1, 3, and 5 seconds. Finally, when a possible collision

between objects is inferred, a black sphere is generated around

the possible collision locus.

B. Performance Analysis
All experiments are carried out at a frequency of 10 Hertz.

After 30 minutes from the beginning of the operation,

the DeepSpatial sensor CPU (Intel Nuc) is operating at 53.4%

and using only 10.42% of memory. The CPU is handily

running; however, the entire system is limited by YOLO’s

update rate. If YOLO operates at 2 Hertz, the whole system

will work at the same frequency. There are different versions

of YOLO, the last being YOLOv3. A smaller version, but

with less precision, is the YOLOv3-tiny, it operates at a higher

Fig. 5. Graphical display provided by the DeepSpatial sensor. The grid
is represented in meters. (a) YOLOv3-tiny. (b) 3D position of the objects
identified in the environment. (c) Information about a specific object.
(d) A vector pointing to the predicted positions in 1 (blue), 3 (green)
and 5 (red) seconds. (e) Possible collision warning.

frequency but with a lower mean Average Precision (mAP).

Figure 6 presents two bar plots, where the first one shows the

operating frequencies of the YOLO version running on the

DeepSpatial sensor, and the second shows the mAP of all ver-

sions, according to its developer [15], [16]. YOLOv3 has the

highest mAP, but its update rate is minor (1.40). YOLOv2 has

a good mAP and an acceptable refresh rate in some situations.

YOLOv3-tiny offers a reasonable update rate and an adequate

mAP. GPU usage remains 99% regardless of the chosen

version of YOLO.

C. Egomotion
The DeepSpatial sensor’s ability to capture and calculate its

displacement is evaluated in the next experiments in which the

DeepSpatial sensor is connected to the mobile robot. Visually,

Figure 7 presents a representation of the robot in motion,

and stopping in front of a person. In Figure 7.a and 7.c,

it is possible to observe that the robot calculated its future
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Fig. 6. On the left, frequency of operation in Hertz. On the right, Mean
Average Precision (mAP).

Fig. 7. DeepSpatial sensor embedded into the robot and all sensor
information are collected over the wireless network. The grid is repre-
sented in meters. (a) Robot in motion. (b) Robot stopped. (c) Information
calculated during robot motion. (d) Information calculated during robot
stop.

position, but It did not consider the person as a moving

object, this is because it compensated for its speed angular

and linear with the calculated velocities for the dynamic object.

In Figure 7.b and 7.d, future movements are not calculated for

the robot, nor for the dynamic object, as both are still stoped.

The spatial motion capture is compared with odometry

computed by the mobile robot. The robot is a standard mobile

platform that estimates its relative displacement through a

fusion of encoder odometry and inertial movement sensor. This

estimation is susceptible to errors because it is based on dead-

reckoning, with error accumulation. The results are presented

in Figure 8, where “commands” represents the speed reference

sent to the robot controller, “robot” represents the speed

calculated by the robot’s encoder and DeepSpatial sensor

represents the speed calculated by the sensor DeepSpatial

sensor.

The average error for the linear velocity calculated by the

sensor was around 0.04 m/s, and for the angular velocity, it

was around 0.06 m/s when compared to the speed obtained

by the robot’s encoder. Figure 9 presents a boxplot of the

difference between speed data from both DeepSpatial sensor

and the robot encoder. This error does not significantly affect

Fig. 8. Representation of linear and angular velocities measured
during the experiment. commands are the velocity references sent to the
robot controller. Robot is the speeds calculated by the robot’s encoder.
DeepSpatial sensor is the speeds calculated by the DeepSpatial sensor.

Fig. 9. Boxplot of the error between the speeds calculated by the
DeepSpatial sensor and by the robot.

the calculation of the future speed for identified dynamic

objects. For example, an object has been identified at 1 meter

from the robot and it moves in δt1, that is, 1 second in the

future, it will be identified at 0.96 meters, causing the robot

to detect the collision in advance.

D. Object Tracking
This experiment aims to analyze the behavior of the pro-

posed strategy and the Intel RealSense Tracking Camera

T265 tracking sensor. Specific information about its sensor

can be obtained at [34], [35].

One of the main difficulties in calculating the future posi-

tion, speed, acceleration, and direction of an object, is to iden-

tify the same object in two moments. The strategy developed

in this work uses only the Euclidean distance between the

Authorized licensed use limited to: b-on: Instituto Politecnico do Porto. Downloaded on February 16,2021 at 16:28:34 UTC from IEEE Xplore.  Restrictions apply. 



SIMÕES TEIXEIRA et al.: DEEPSPATIAL: INTELLIGENT SPATIAL SENSOR TO PERCEPTION OF THINGS 3973

Fig. 10. Top figure: Euclidean distance between the current object
position, and its predicted positions in 1, 3 and 5 seconds. Bottom figure:
velocity and acceleration calculated for the object.Left Plot of the distance
between the current position of the object, and its predicted positions in 1,
3 and 5 seconds.Right plots of velocity and acceleration calculated for
the object.

position of dynamic objects in two moments. If this distance is

less than 0.15 and more significant than 0.035, and the objects

belong to the same class, then they are considered the same

object. As the update frequency of the sensor is high, it is

allowed to use a shorter distance, since the object does not

move much between the two-time instants. The distance value

greater than 0.035 is used to avoid false calculations, resulting

from small movements of the object.

Figure 10 shows the tracking of a moving person. On the

left plot, the Euclidean distance between the person’s current

position and his predictions of future positions is shown,

on the right plot, the calculated acceleration and speed profiles

are presented. When both acceleration and speed are high,

the future status of the object is calculated at a greater distance,

as shown at position 24 of the plot. When we have a high

speed, and low acceleration, the object’s next location is

considered to be less since the object is decelerating. In some

cases, with a negative acceleration value, the object is deemed

to stop in the future, position 4 of the plot.

The validation of dynamic object tracking by the DeepSpa-

tial sensor is carried out by an experiment with the worst

possible scenario: two dynamic objects of the same class are

side by side. In this way, the proposed tracking algorithm must

differentiate the objects to carry their tracking. The strategy

used for this action was presented in the section II-B.3.

During the experiment, two people walk side by side, and the

Euclidean distance between these two positions obtained by

the DeepSpatial sensor must be monitored. Figure 12 shows

Fig. 11. Graph representing the distance between the two people during
the experiment. People walked back and forth, side by side.

Fig. 12. DeepSpatial sensor view aimed at two people side by side.
(a) People are standing still. (b) People are on the move. (c) Sensor
output, people are standing still. (d) Sensor output, people in motion,
with their future positions calculated.

the two people standing side by side, and then moving, where

it is possible to observe the calculation of the future positions

for both dynamic objects. Figure 11 presents the Euclidean

distance between the objects (people) during the experiment.

It is worth mentioning that during the entire monitoring, both

people were correctly identified and tracked, validating the

proposed tracking algorithm.

IV. APPLICATION EXAMPLE

The DeepSpatial sensor will be demonstrated in an example

task To validate the approach proposed by this article. The

equipment will be integrated into an autonomous navigation

strategy and used as safety equipment to prevent accidents.
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Fig. 13. Pioneer P3-At robot performing autonomous navigation.
(a) Robot in the test environment, being an office. (b) Map of the
environment, the trajectory to be covered in green, and the robot’s
position on the map.

The Pioneer P3-AT robot is assigned to perform autonomous

navigation from point to point. This is a traditional strategy

for autonomous cargo transport robots [36]–[38] and, thus,

validate the sensor during the execution of a conventional task

in the area of mobile robotics. The robot’s navigation circuit

will be repetitive, so the robot will always navigate the same

environment.

The DeepSpatial sensor will send environmental informa-

tion to the robot, such as the need to perform an emergency

stop. The robot will read the sensor’s information in the token

format and then decide to stop or continue according to the

information provided by the DeepSpatial sensor. Some rules

will be created for the robot’s action based on the sensor’s

statement, which is presented below.

• If the prediction analysis identifies a collision in the

present position or predicted positions in the future

(1,3 and 5 seconds), the robot must save the navigation

data for analysis.

• If the objective is in motion, but is not towards the robot,

and is at a distance greater than 0.5 meters, the robot must

continue its trajectory, and thus avoid an unnecessary

stop.

In this way, the robot will perform navigation from point

to point, repeating the points, and stopping when some of

the conditions mentioned previously are reached. The distance

between the object and robot at the time of stop will be

stored, and the speeds of the object and robot, to evaluate

the performance.

The robot sailed for 1 hour in an office, and 60 possible

collisions were identified, being a possible collision in the

present time, 17 potential collisions in one second, 26 col-

lisions predicted in 3 seconds, and 16 predicted collisions

for 5 seconds in the future, according to with the prediction

analysis developed in this paper.

Figure 13 shows the robot navigating the defined cir-

cuit,where the robot makes a map of the environment, and then

runs the SLAM. The navigation and localization technique is

not interesting for this work, being used only and exclusively

to validate DeepSpatial in a real application.

During navigation, the DeepSpatial sensor was turned on,

and when it identified a possible collision, it wrote down

the information. Table II presents an average containing the

TABLE II
COLLISION DATA DETECTED BY THE DEEPSPATIAL SENSOR DURING

THE AUTONOMOUS NAVIGATION OF THE ROBOT. A TOTAL OF

60 COLLISIONS WERE IDENTIFIED, ONE AT TIME 0, 17
AT TIME 1, 26 AT TIME 3, AND 16 AT TIME 5

Fig. 14. Image provided by DeepSpatial during its operation. The
identification, tracking, and prediction of the position of a person on the
movement is presented. (a) The person is perpendicular to the sensor.
(b, c) The person is performing a turning action. (d) The person is moving
towards the sensor.

distance between the robot and the Token at the time of the

collision is detected, both in the present time (0) and in the

future (1.3 and 5 seconds). The robot’s actual distance and the

predicted distance to the object are also shown in the table.

It is worth mentioning that the higher the object’s speed and
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the robot, the greater the distance from the predicted collision,

as the forecast will consider that the object is accelerating.

As DeepSpatial calculates the identified objects’ speed and

direction, it considers that a collision will only happen if the

object is in its direction, thus avoiding unnecessary stops and

accidents, anticipating a stop or slow down. Figure 14 presents

an identified trajectory of a person, where first, he is going in

a direction perpendicular to the robot. Then he performs a

contour action and goes towards the robot.

This section presented the software and hardware of the

DeepSpatial sensor proposed by this work, also discusses

the sensor’s advantages in a traditional application in mobile

robotics and sensing.

V. CONCLUSION

This work has developed an embedded sensor, composed of

a set of components, where the raw data of each component

is collected and gathered, generating useful information for

several applications. With the proposed sensor, it is possible

to develop an intelligent equipment capable of identifying

dynamic objects and tracking them, in addition it also provides

information such as, for example, a bottle is on a table,

which can be used by a household robot, for example. In this

way, the development of such intelligent equipment can be

concerned with treating the information from the DeepSpatial

sensor and not trying to collect them from the environment.

The sensor processing runs on Intel Nuc NUC5i5RYH,

and it is observed that after 30 minutes of uninterrupted use,

the computer remained with only 53.4 % of its processing

capacity and 10.42 % of its occupied memory. The Jetson

Nano was used to perform object detection. When using

YOLO to identify objects, Jetson Nano used 99% of its GPU.

However, this use does not represent a risk during execution,

since it has a CPU, leaving the GPU dedicated to YOLO.

In terms of hardware, the sensor proved to be satisfactory,

having no problems at run-time, always running online.

The logical approach is organized in some steps, egomo-

tion analysis, lexical analysis, syntax analysis, and prediction

analysis. In egomotion analysis, the Intel RealSense Tracking

Camera T265 is used to identify the sensor’s movement.

The ability to identify movements was verified, where its

presentedresults have attained an average error concerning the

data obtained by the robot of 0.04 at linear speed, and 0.06 for

angular speed. Then the lexical analysis is performed, where

all the information of the object is collected, using the YOLO

and the RGB-D depth sensor. In syntax analysis, the data

collected from the objects is used to calculate their displace-

ment in the environment, direction, speed, and acceleration.

In prediction analysis, a prediction of the future position of

all dynamic objects is carried out. This prediction is able to

prevent a possible collision between two dynamic objects in

the environment.

The experiment results have showed that the DeepSpatial

sensor performance was satisfactory. Its limited frequency of

operation is directly linked to YOLO. However, a new setting

can be done since we choose between using YOLOv2 for

greater accuracy, and operating at a low rate, or losing effi-

ciency using the YOLOv3-tiny and operating at a frequency

of 10 hertz. In future works, the replacement of either Jetson

Nano or YOLO will be considered to seek a reasonable

rate with a better accuracy on the identified objects. Finally,

the sensor was proposed and used in a real application. Thus,

this article proposed not only creating the sensor, in terms

of hardware and software, but also brought examples of

application.
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