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Abstract 

With the advancement in technology and the expansion of broadcasting, cross-media retrieval has gained much 
attention. It plays a significant role in big data applications and consists in searching and finding data from 
different types of media. In this paper, we provide a novel taxonomy according to the challenges faced by multi-
modal deep learning approaches in solving cross-media retrieval, namely: representation, alignment, and 
translation. These challenges are evaluated on deep learning (DL) based methods, which are categorized into four 
main groups: 1) unsupervised methods, 2) supervised methods, 3) pairwise based methods, and 4) rank based 
methods. Then, we present some well-known cross-media datasets used for retrieval, considering the importance 
of these datasets in the context in of deep learning based cross-media retrieval approaches. Moreover, we also 
present an extensive review of the state-of-the-art problems and its corresponding solutions for encouraging deep 
learning in cross-media retrieval. The fundamental objective of this work is to exploit Deep Neural Networks 
(DNNs) for bridging the "media gap", and provide researchers and developers with a better understanding of the 
underlying problems and the potential solutions of deep learning assisted cross-media retrieval. To the best of our 
knowledge, this is the first comprehensive survey to address cross-media retrieval under deep learning methods. 
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Abstract—With the advancement in technology and the ex-
pansion of broadcasting, cross-media retrieval has gained much
attention. It plays a significant role in big data applications and
consists in searching and finding data from different types of
media. In this paper, we provide a novel taxonomy according to
the challenges faced by multi-modal deep learning approaches in
solving cross-media retrieval, namely: representation, alignment,
and translation. These challenges are evaluated on deep learning
(DL) based methods, which are categorized into four main
groups: 1) unsupervised methods, 2) supervised methods, 3)
pairwise based methods, and 4) rank based methods. Then, we
present some well-known cross-media datasets used for retrieval,
considering the importance of these datasets in the context in of
deep learning based cross-media retrieval approaches. Moreover,
we also present an extensive review of the state-of-the-art
problems and its corresponding solutions for encouraging deep
learning in cross-media retrieval. The fundamental objective of
this work is to exploit Deep Neural Networks (DNNs) for bridging
the “media gap”, and provide researchers and developers with
a better understanding of the underlying problems and the
potential solutions of deep learning assisted cross-media retrieval.
To the best of our knowledge, this is the first comprehensive
survey to address cross-media retrieval under deep learning
methods.

Index Terms—Cross-media retrieval, deep learning.

I. INTRODUCTION

S
OCIAL media websites (e.g., Facebook, Youtube, Insta-

gram, Flickr, and Twitter) have tremendously increased

the volume of multimedia data over the Internet. Consequently,

considering this large volume of data and the heterogeneity of

the data sources, data retrieval becomes more and more chal-

lenging. Generally, multimodal data (i.e., data from sources,
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e.g., video, audio, text, images) are used to describe the

same events or occasions. For instance, a web page describes

similar contents of an event in different modalities (image,

audio, video, and text). Therefore, with a large amount of

multimodal data, the accurate result of a search concerning

the information of interest decreases. The evolution of different

search algorithms for indexing and searching multimodal data

contributed positively to searching for information of interest

efficiently. Nevertheless, they only work in a single-modality-

based search, comprising two main classes: content-based

retrieval and keyword-based retrieval [1].

In the last few years, many cross-media retrieval methods

have been proposed [2]–[8]. However, Canonical Correlation

Analysis (CCA) [9] and Partial Least Square (PLS) [10], [11]

are usually adopted to explicitly project different modality

data to a common space for similarity measurement. In the

Bilinear Model (BLM) [12], different modality (e.g., text and

image) data are projected to the same coordinates as it learns

a common subspace. Generalized Multiview Analysis (GMA)

[13] can be used to combine CCA, BLM, and PLS for solving

cross-media retrieval task. Gong et. al. [14] proposed a variant

CCA model by incorporating the high-level semantic informa-

tion as a third view. Ranjan et al. [15] also introduced a variant

of CCA called multilabel Canonical Correlation Analysis (ml-

CCA) for learning the weights of shared subspaces using high-

level semantics called multi label annotations. Rasiwasia et al.

[16] proposed a cluster CCA method to learn discriminant iso-

morphic representations that maximize the correlation between

two modalities while distinguishing the different categories.

Sharma et. al. [13] proposed a variant of Marginal Fisher

Analysis (MFA) called Generalized Multiview Marginal Fisher

Analysis (GMMFA).

Even though every aforementioned contribution provide

vital contribution in cross-media retrieval society, still these

methods lack satisfactory performance. The key reason is

that conventional feature learning techniques hardly tackle the

problem of image understanding, but visual features repre-

sentation between images and text is highly dependent on

cross-media retrieval. Recently, deep learning models have

made significant development in fields such as computer

vision [31], [32], engineering [33], health [34] and hydrology

[35]. Donahue et. al. [36] proposed a deep eight-layer neural

network called DeCAF, which confirmed that Convolution

Neural Network (CNN) features are helpful for various feature

extraction tasks.

In this paper, we investigate different deep learning ap-

proaches applied in the domain of cross-media search, which
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Table I: Comparison of existing survey articles on deep learning and cross-media retrieval. ✔ represents that the topic is

covered, ✘ represents the topic is not covered, and ❊ represents the topic is partially covered.

Ref. Year Topic Deep Learning Cross-media Retrieval

Supervised Unsupervised Pairwise Rank Representation Alignment Transalation

[17]
2015

Deep learning in neural networks: An
overview

✔ ✔ ✔ ✔ ✘ ✘ ✘

[18]
2015 Deep Learning ✔ ✔ ✔ ✔ ✘ ✘ ✘

[19]
2017

A survey of deep neural network ar-
chitectures and their applications.

✔ ✔ ✔ ✔ ✘ ✘ ✘

[20]
2019

Deep learning: methods and applica-
tions

✔ ✔ ✔ ✔ ✘ ✘ ✘

[21]
2014

A tutorial survey of architectures, al-
gorithms, and applications for deep
learning

✔ ✔ ✔ ✔ ✘ ✘ ✘

[22]
2018

A survey on deep learning: Algo-
rithms, techniques, and applications

✔ ✔ ✔ ✔ ✘ ✘ ✘

[23]
2017

Deep reinforcement learning: A brief
survey

✔ ✔ ✘ ✘ ✘ ✘ ✘

[24]
2017

Imitation learning: A survey of learn-
ing methods

✔ ✔ ✔ ❊ ✘ ✘ ✘

[25]
2014

Big data deep learning: challenges and
perspectives

✔ ✔ ✘ ✘ ✘ ✘ ✘

[26]
2015

Deep learning applications and chal-
lenges in big data analytics

✔ ✔ ✘ ✘ ✘ ✘ ✘

[27]
2017

A systematic literature review on fea-
tures of deep learning in big data ana-
lytics

✔ ✔ ✔ ✘ ✘ ✘ ✘

[28]
2017

An overview of cross-media
retrieval: Concepts, methodologies,
benchmarks, and challenges

✔ ✔ ✘ ❊ ✔ ✘ ✘

[29]
2016

A comprehensive survey on cross-
modal retrieval

✔ ✔ ✔ ✔ ✔ ✘ ✘

[30]
2010

Cross-media retrieval: state-of-the-art
and open issues

✔ ✔ ✘ ✘ ✔ ✘ ✘

Our

work
2020

Deep Learning Techniques: Evolving
Machine Intelligence for Future Intel-
ligent Cross-media Retrieval

✔ ✔ ✔ ✔ ✔ ✔ ✔

are indispensable for the adoption and implementation of

cross-media retrieval. DNN is designed to simulate the neu-

ronal structure of the human brain, and represents a powerful

approach to naturally deal with the correlations of multi

media. For this purpose, several researchers have explored

DNNs for using it in the search and retrieval of data from

heterogenous sources. Although, the latest research in the field

of DNN-based methods for cross-media retrieval has achieved

better performance [37], however, there are still significant

improvements needed in this area.

We explore the following three main challenges for using

deep learning techniques in cross-media retrieval.

1) Representation. It aims to learn the representation of

cross-media data in an optimal way to mitigate its redun-

dancy. This is a challenging task in cross-media retrieval

since data is heterogeneous. For instance, the text is

normally symbolic while audio and video modalities are

represented as signals. Therefore, learning the representa-

tion of individual modality in a common semantic space

is a challenging task.

2) Alignment. In this procedure, the key objective is to find

the correlation between elements from cross modalities

to mitigate the modality-to-modality mismatch issue. For

instance, we want to align each human action image into

a video showing a series of different human actions. To

achieve this, we need to measure the similarity distance

between different modalities and deal with other correla-

tion uncertainties.

3) Translation. It shows the correlation mapping of data

across different modalities, since data is heterogeneous

and the relationship between cross modalities is hard

to identify. For instance, an image can be described

in various different ways, and a single perfect trans-

lation may not exist. Therefore, it is hard to choose

an appropriate translation for a particular task, where

multiple parameters are crucial. Particularly, there is no

appropriate correct answer to a query in translation. As

there is no common concept of translation to chose which

answer is right and which is wrong.

For each of the aforementioned problems in cross-media

retrieval, we provide a taxonomy of classes and sub-classes.

A detailed taxonomy is provided in Fig. 1. We found out that

some key issues of deep learning in cross-media retrieval on

concepts, methodologies and benchmarks are still not clear

in the literature. To tackle the aforementioned challenges,

we investigate the DNN-based methods assisted cross-media

retrieval.
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Figure 1: Taxonomy of the proposed work.

A. Comparison with Related Surveys Article

Our current survey article is unique in a sense that it

comprehensively covers the area of DNNs-based cross-media

retrieval. There is no prior detailed survey article that jointly

considers DNNs and cross-media retrieval, to the best of

our knowledge. Though there is an extensive literature on

survey articles on DNNs or cross-media retrieval, but these

survey articles either focus on DNNs or cross-media retrieval,

individually.

General surveys regarding deep learning are discussed in

[18]–[20], [22]. Surveys dealing with only cross-media re-

trieval domain are presented in [30]. Our work is closely

related to [28], [29]; however, they cover the broader picture

of cross-media retrieval domain whereas, our work is more

focus on DL-based cross-media retrieval. Furthermore, we

provide a novel taxonomy according to the challenges faced by

multi-modal deep learning approaches in solving cross-media

retrieval, namely: representation, alignment, and translation.

To the best of our knowledge, this is the only work till date,

which provide a detail survey of DL-based methods in solving

cross-media retrieval challenges (representation, alignment and

translation). A summarized comparison of survey articles on

DL and cross-media retrieval are provided in Table I.

B. Our Contributions

To summarize, our main objectives in this paper are as

follows.

• Provide an up to date survey on the current advancement

in cross-modal retrieval. This provides an added value as

Figure 2: A generalized framework of cross-media retrieval

system.

compared to previous surveys, which represents substan-

tial benefits for understanding the trends in cross-media

retrieval rapidly.

• Provide a useful categorization of cross-media retrieval

under DNN approaches. The contrasts between various

types of techniques are expounded, which are helpful

for readers to better understand various deep learning

techniques used in cross-media retrieval.

• A detailed explanation of almost every cross-media

dataset is provided. Furthermore, its advantages and dis-

advantages are also discussed to facilitate the developers

and researchers choosing a better dataset for their learning

algorithms.

• Present the key challenges and opportunities in the area

of cross-media retrieval and discuss open future research

challenges.

II. AN OVERVIEW OF CROSS-MEDIA RETRIEVAL AND

DEEP LEARNING

Before probing in to the depth of this paper, we want to

initiate with the fundamental concepts of cross-media retrieval

and deep learning techniques. We divide this section into

diverse subsection such as, cross-media retrieval is discussed

in subsection A. Moreover, the deep learning techniques in

subsection B to discuss different algorithms for representa-

tions. Finally, the subsection C explain why DL is important

for cross-media retrieval?

A. Cross-media Retrieval

Cross-media retrieval represents the search for different

modalities (e.g., images, texts, videos) by giving any individual

modality as an input. The generic framework of cross-media

retrieval is shown in Fig. 2, in which data is represented in

different modalities such as text, image, and video. Different

algorithms (e.g., CNN, SIFT, LDA, TF-IDF, etc.) are applied



4

to learn the feature vectors of individual modality. Further-

more, in the case of joint semantic space for multimodal

data, cross-media correlation learning is performed for feature

extraction. Finally, the semantic representations allow the

cross-media retrieval to perform search results ranking and

summarization.

It is important to note that cross-media retrieval is dif-

ferent from other correlation matching approaches between

various media types (image and text). For example, correlation

matching approaches [38], [39] are used to generate the text

descriptions of image/video only, whereas the cross-media

retrieval approach endeavor to retrieve text from different

modalities data image/video and vice versa. Methods of image

annotation [40] are used to assign most relevant tags to images

for descriptions, whereas in cross-media retrieval, the text

also represents sentences and paragraph descriptions instead

of only tags.

Cross-media retrieval is an open research issue in real-

world applications. With the popularity of social media plat-

forms (i.e., Facebook, Twitter, Youtube, Flickr and Instagram)

different types of media (images, videos, texts) are flood-

ing over the Internet. To tackle this issue, different cross-

media retrieval approaches have been proposed [41]–[45].

However, in this paper we only consider DNNs-based cross-

media retrieval approaches for information utilization to learn

the common representations. As, DNNs-based approaches

leverage the performance of different learning algorithms in

cross-media retrieval domain. Moreover, to our knowledge

this is the only survey mutually consider DNNs and cross-

media retrieval. We categorize the DNN-based methods for

the individual challenge of cross-media retrieval into four

classes: (1) unsupervised methods, (2) supervised methods,

(3) pairwise based methods, and (4) rank based methods.

1) Unsupervised methods. Unsupervised methods leverage

co-occurrence information instead of label information to

learn common representations across data with different

modalities. Specifically, these methods treated different

modalities of data existing in a common multi-modal

document as the same semantic. For instance, a website

page contains both text and pictures for the outline of

same theme. Specifically, users get information from both

images or texts to get idea of a particular event or topic

in a webpage.

2) Supervised methods. In supervised methods, label in-

formation is used to learn common representations.

These methods increase the correlation among intra-class

samples and decrease the correlation among inter-class

samples to obtain good discriminating representations.

However, getting annotated data is costly and laborious

because of manual labelling.

3) Pairwise based methods. These methods are used to

learn common representations through similar/dissimilar

pairs, in which, a semantic metric distance is learned

between data of various modalities.

4) Rank based methods. These methods are used to learn

common representations for cross-media retrieval through

learning to rank.

Figure 3: An overview of the evolution of deep learning

from conventional Machine Intelligence and Machine Learn-

ing paradigms.

B. Deep Learning Techniques

Deep Learning (DL) is a sub-class of Machine Learning

(ML). DL networks are a kind of neural network that discovers

important object features. These algorithms attempt to learn

(multiple levels of) representation by using a hierarchy of

multiple layers. If the system is provided with a large amount

of information, it begins to understand it through feature

extraction and respond in useful ways. Most of the deep

learning algorithms are built on neural network architectures,

due to this reason they are often called as Deep Neural

Networks (DNN).

Different DL architectures (Deep Neural Network, Con-

volution Neural Network, Deep Belief Networks, Recurrent

Neural Network) are successful in solving many computer

vision problems efficiently, where the solutions are difficult to

obtain analytically. These problems include handwritten digit

recognition, optical character recognition, object classification,

face detection, Image captioning and facial expression analysis

[17], [18], [46].

Currently, DL algorithms are also tested in interdisciplinary

research domains, such as bio-informatics, drug design, med-

ical image analysis, material inspection, agriculture and hy-

drology [35], [47]–[50]. The processing and evolution of these

fields are dependent on deep learning, which is still evolving

and in need of creative ideas [51]–[53].

1) Evolution and Classification of Deep Learning Tech-

niques: Since the early excitement stirred by ML in the 1950s,

smaller subsets of machine intelligence have been impacting

a myriad of applications over the last three decades as shown

in Fig. 3. Initially, the term “deep learning” was presented

to the community of machine learning by Rina Dechter in

1986 [18], [54], and Igor Aizenberg and his colleagues to
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artificial neural networks in 2000, in boolean threshold neurons

domain [55], [56]. In 1965, Alexey Ivakhnenko and Lapa

published the primary general learning algorithm for feed-

forward, supervised, multi-layer perceptrons [57]. Moving for-

ward in 1980, Kunihiko Fukushima introduced Neocognitron

in computer vision domain [58]. Furthermore, Yann LeCun

applied standard backpropagation algorithm to deep neural

network for handwritten recognition in 1989 [59]–[62].

Although, deep learning has existed for more than three

decades however, they have recently gain interest in the

machine learning community. Before 2006, the deep learning

method was a complete failure in training large deep architec-

tures. In 2006, the revolution to successful training schemes for

deep architectures originated with the algorithms for training

Deep Belief Networks (DBNs) by Hinton et al. [63] and

autoencoders by Ranzato et al. [64] and Bengio et al. [65]

based on unsupervised pre-training followed by supervised

fine-tuning. Following the same path, different approaches

were proposed to deal with the aforementioned issues under

different circumstances.

Before 2011, CNNs did not succeed in efficiently solving

computer vision problems. However, in 2011, CNNs achieved

superhuman performance in a visual pattern recognition con-

test. In 2012, the success of deep learning algorithms in

image and object recognition were started. However, back-

propagation algorithm had been used for decades to train

CNNs, and Graphical Processing Unit (GPU) implementations

of Neural Networks (NNs) for years, comprising CNNs [66],

[67].Moreover, in the same year CNNs also won ICDAR

Chinese handwriting contest. In May 2012, CNNs won ISBI

image segmentation contest [68], which significantly attracted

researchers attention. Ciresan et al. showed how max-pooling

CNNs on GPU can affectedly enhance several computer vision

benchmark records at CVPR 2012 [69]. Following the same

path, in October 2012, Krizhevsky et al. [52] showed the

dominancy of DNNs over shallow machine learning methods

by winning the large-scale ImageNet competition over a large

margin.

Researchers believe that the victory of ImageNet in Large

Scale Visual Recognition Challenge (ILSVRC) 2012 anchored

the begin of “deep learning revolution” that has revolutionize

the Artificial Intelligence (AI) industry [70].

C. Why DL for Cross-media Retrieval?

Before going in detail, it is useful to understand the reason

of applying DNNs to cross-media retrieval. There are several

DNNs attractive characteristics that make it unique such as

(1) end-to-end learning model, (2) efficiency boost up using

back-propagation training, and (3) the performance of DNNs

increase as the size of data increase [71]–[73]. Furthermore,

the architecture of DNNs are hierarchal and trained end-to-end.

The main advantage using such architecture is when dealing

multimedia data. For example, a webpage contains textual data

(reviews [74], tweets [75]), visual data (posts, scenery images),

audio data and video data. Here modality-specific features

extraction will be complex and time consuming. Suppose, if

we have to process textual data, initially we need to perform

expensive and time consuming pre-processing (e.g., keywords

extraction, main topic selection). However, DNNs have the

ability to process all the textual information in a sequential

end-to-end manner [74]. Therefore, these advances in the

architecture of DNNs make it very suitable for multi-modal

tasks [76] and we urge for indispensable neural end-to-end

learning models.

As for as the interaction-only settings (i.e. matrix com-

pletion) are concerned, DNNs are necessary in dealing huge

number of training data and gigantic complexity. He et al. [77]

overcome the performance gain of conventional Matrix Factor-

ization (MF) method by using Multi Layer Perceptron (MLP)

to approximate the interaction function. Moreover, typical ML

models (i.e., BPR and MF) also achieve best performance

on interaction-only data when trained with momentum-based

gradient descent [78]. Nevertheless, these models also take

the benefit of current DNNs based improvements such as

Batch normalization, Adam, and optimize weight initialization

[77], [79]. It is fact that most of the Cross-media retrieval

algorithms have adopted DNNs-based structure to improve

its performance such as Deep Canonical Correlation Analysis

(DCCA) [80], Deep Canonically Correlated Auto-Encoder

(DCCAE) [81], and Discriminative Deep Canonical Correla-

tion Analysis (DisDCCA) [82]. Therefore, DL is significantly

useful tool for today’s research and industrial environment for

the advancement of cross-media retrieval methods.

We summarize some of the useful strengths of DNNs based

cross-media retrieval models, which are as follows:

1) Flexibility: The DNNs based approaches are also known

as global learning due to its vast application domain. Currently,

the flexibility of DL methods further boost up with the

invent of well-known DL frameworks i.e., Caffe, Tensorflow,

Pytorch, Keras, Theano, and MXnet. Each of the aforemen-

tioned framework has active community and support. This

make development and engineering efficient and easier. For

instance, concatenation of different neural models become

easier, and produce more powerful hybrid structures. Hence,

the implementation of hybrid cross-media retrieval models

become easier to capture better features and perform well.

2) Generalization: This property of DL methods make it

very demanding and unique. It can be used in many different

applications and with different data types. For example, in

the case of transfer learning the DL-based method have the

ability to share knowledge across different tasks. As, DL

algorithms capture both low and high level features, they may

be beneficial to perform other tasks [46]. Andreas et al. [83]

and Perera et al. [84] showed the successful performance of

DNNs-based methods in transfer learning.

3) Nonlinear Transformation: DNNs based models have

the ability to process the non-linearity in data using non-

linear activation functions i.e., sigmoid, relu and tanh. This

helps the models to capture complex patterns within the

dataset. Traditional cross-media retrieval methods such as

CCA, BLM and Linear Discriminant Analysis (LDA) are

linear models, which need DNNs-based methods to retrieve

nonlinear features. For example, in DCCA, initially DNNs are

used to extracts nonlinear features and then uses linear CCA

to calculate the canonical matrices. It is well-know that neural
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networks have the ability to approximate any continuous

function by fluctuating the activation functions [85].

4) Robust: DL based methods do not need manually feature

extraction algorithms rather feature are learned in an end-to-

end manner. Hence, the system achieve better performance

despite the variations of the input data. The authors of [86] and

[87] showed the robustness of DL against adversarial attacks

in visual recognition application.

III. CROSS-MEDIA DATASETS

Dataset plays a critical role in the evaluation of learning

algorithm. Its selection is very important for feature extraction

and training of different DL algorithms. We summarized some

of the well-known cross-media datasets below, and Table II

depicts a comparison evaluation among them.

1) Wikipedia: this dataset is largely used in cross-media

domain to evaluate the performance of different learn-

ing algorithms. The dataset consists of 2866 image-text

pairs of 10 distinct classes accumulated from Wikipedia’s

articles.

2) NUS WIDE: A popular dataset in cross-media com-

munity after Wikipedia dataset. This dataset contains

269,648 labeled images of 81 different concepts from

Flickr. Every image in the dataset is aligned with associ-

ated user tags called image-text pair. Overall, the dataset

contains 425,059 unique tags that are associated with

these images. Nevertheless, to enhance the quality of tags,

those tags were pruned that appear less than 100 times

and do not exist in WordNet [88]. Hence, 5,018 unique

tags are included in this dataset.

3) Pascal VOC: the dataset consists of 20 distinct classes

of image-tag pairs having 5011 training pairs and 4952

testing pairs. Although, some images are labeled more

than twice. However, in the literature some studies have

selected uni-labelled images, which results in 2808 and

2841 training and testing pairs, respectively [13]. The

image feature chosen were GIST and color [89], and

histogram whereas; text features were 399-dimensional

tag occurrence.

4) FB5K: The dataset contains 5,130 image-tag pairs with

associated users’ feelings, which is accumulated from

Facebook [90]. Furthermore, this dataset is categorized

into 80% and 20% for training and testing image-text

pairs.

5) Twitter100K: This dataset is made up of 100,000 image-

text pairs collected from Twitter. It exploited 50,000 and

40,000 image-text pairs for training and testing respec-

tively. Moreover, about 1/4 of the images in this dataset

contain text which are highly correlated to the paired

tweets.

6) XMedia: This is the only dataset in the cross-media do-

main with five different modalities, such as video, audio,

image, text, and 3-Dimensional (3D) model. It consists of

20 distinct classes, such as elephant, explosion, bird, dog,

etc. Each class contains an overall of 600 media instances:

250 texts, 250 images, 25 videos, 50 audio clips, and 25

3D models. In the dataset’s overall collection, different

popular websites were used to collect data, i.e., Flickr,

YouTube, Wikipedia, 3D Warehouse, and Princeton 3D

model search engine.

7) Flickr30K: the dataset is the extended version of Flickr8k

datset [91]. It consists of 31783 images collected from

Flickr. Individual image in this dataset is linked with asso-

ciated five native English speakers descriptive sentences.

8) INRIA-Websearch: this dataset contains 353 image

search queries, along with their meta-data and ground-

truth annotations. In total, this dataset consists of 71478

images.

9) IAPR TC-12: the dataset consists of 20,000 images (plus

20,000 corresponding thumbnails) taken from locations

around the world and comprising a varying cross-section

of still natural images.The time span used for the col-

lection of images falls within 2001-2005. Moreover, this

collection is spatially diverse as the images were collected

from more than 30 countries.

10) ALIPR: the dataset contains annotation results for more

than 54,700 images created by users of flickr.com are

viewable at the Website: alipr.com.

11) LabelMe: the dataset contains 30,000 images with asso-

ciated 183 number of labels. The main source of dataset

collection was crowd-sourcing through MIT CSAIL

Database of objects and scenes1.

12) Corel5K: the dataset was collected from 50 Corel Stock

Photo cds. It consists a total of 5,000 images, with 100

images on the same topic. Individual image is linked with

an associated 1-5 keywords with a total of 371 keywords.

Before modelling, all the images in the dataset are pre-

segmented using normalized cuts [92]. It consists a total

of 36 features: 18 color features, 12 texture features and

6 shape features.

13) Corel30K: the dataset is the extended version of pre-

viously published dataset called Corel5K. It contains

31,695 images and 5,587 associated words. It exploited

90% (28,525) and 10% (3,170) images for training and

testing respectively. This dataset is much improved from

Corel5K in terms of examples per label and database size,

and hence play a significant role in evaluating learning

systems.

14) AnnoSearch: the dataset contains 2.4 million photos

collected from popular websites, such as Google2 and the

University of Washington (UW)3. The images are of high

quality and consists rich associated descriptions, such

as title, category and comments from the photographers.

Although these descriptions cover to a certain degree the

concepts of the associated images.

15) Clickture: this data set was obtained from the hard work

of one-year click log of a commercial image search

website. There are 212.3 million triads in this dataset.

The triad is mathematically define as:

Clickture = (i, k, t) , (1)

1http://web.mit.edu/torralba/www/database.html
2images.google.com
3http://www.cs.washington.edu/research/imagedatabase/groundtruth/
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A triad (i, k, t) is defined as as image “i” was clicked “t”

times in the search space of query “k” in one year by

means of different users at different times. The Clickture

full dataset consists of 40 million unique image and 73.6

million unique text queries. Moreover, this dataset also

contains a lite version titled as “Clickture-Lite”, which

consists of 1 million images and 11.7 million text queries.

16) ESP: the dataset contains more than 10 million images.

The key source of dataset collection was crowd-sourcing.

The main objective of this cross-media dataset is to label

the most of images over the internet. We envisioned that

if our game get a proper gaming site platform, such as

Yahoo! Games and allows people to play with interest

like other games, it can solve the labeling of most of

the images in a time span of weeks. Furthermore, It is

predicted that if 5,000 people regularly play this game for

31 days they could assign labels to all Google images.

IV. CHALLENGES IN CROSS-MEDIA RETRIEVAL AND

PROPOSED DL BASED METHODS

In this survey paper, we provide a novel taxonomy ac-

cording to the challenges faced by multi-modal deep learning

approaches in solving cross-media retrieval. In subsection A,

we explain the data representation in cross-modal retrieval

because it always difficult task in deep learning. Subsection B

describe the alignment of multimodal. Multimodal alignment

is also a challenging task in cross-media retrieval to find the

relationship and correlations between different instances in

cross modalities. Finally, we also consider the translation in

subsection C that refers to map the data from one modality

to another. To tackle the aforementioned problems, we present

an extensive review of the state-of-the-art problems and their

corresponding solutions to leverage the use of deep learning

in cross-media retrieval applications. This new taxonomy will

enable researchers to better understand the state-of-the-art

problems and solutions, and identify future research directions.

A. Representations

Data representations in cross-modal retrieval has always

been a difficult task in deep learning. Multi-modal repre-

sentations deal with the representation of data from multiple

domains. These representations from different modalities faces

several challenges to learn a common semantic space, such

as, data concatenation from heterogeneous sources (image,

text, video), noise, and missing data handling from various

modalities. Semantic data representation tries to learn the

correlation across different modalities. Initially, to represent

multimodal data in a common semantic space, cross-media

correlation learning is performed for feature extraction. Fi-

nally, the semantic representations allow the cross-media re-

trieval to perform search results ranking and summarization.

Semantic data representation is mandatory to multi-modal

issues, and leverages the performance of any cross-media

retrieval model.

Semantic representations are non-uniform in a low-level

feature space. For example, modeling a broad theme, such as

“Asia”, is more challenging than modeling a specific theme,

such as “sky”, due to the absence of a significant, unique

visual feature that can characterize the concept of “Asia”.

Therefore, neglecting such semantic representation would be

inappropriate. Hence, good representation is indispensable for

deep learning models. Bengio et al. [46] proposed several ways

for good representations - sparsity, smoothness, spatial and

temporal coherence etc. It is important to represent data in a

meaningful way to enhance the performance of DNN based

cross-media retrieval models.

In a few years, many conventional methods shifted to

advanced DNN based methods. For instance, the bag of visual

words (BoVW) and scale invariant feature transform (SIFT)

were used to represent an image. However, presently CNN

[52] is used to represent the description of the images. Sim-

ilarly, Mel-frequency cepstral coefficients (MFCC) have been

overcome by deep neural networks in the audio domain for

speech recognition [107]. An overview of such approaches can

be visualized in Fig. 4, with representative work summarized

in Table III.

1) Unsupervised DNNs based Methods: The major advan-

tage of neural network based joint representations come from

their ability to pre-train from unlabeled data when labeled data

is not enough for supervised learning. It is also common to

fine-tune the resulting representation on a particular task at

hand as the representation constructed with unsupervised data

is generic and not necessarily optimal for a specific task [108],

[109]. Unsupervised methods used co-occurrence information

instead of label information to learn common representations

across different modality data. Srivastava et al. [110] learned

the representations of multimodal data using Deep Belief

Network (DBN). They first model individual media type using

a separate DBN model. Then concatenated both networks by

learning a mutual RBM at the top.

Chen et al. [111] proposed conditional generative adver-

sarial networks (CGAN) to achieve cross-modal retrieval of

audio-visual generation (e.g, sound and image). Unlike tradi-

tional Generative Adversarial Networks (GANs), they make

their system to handle cross-modality generation, such as

sound to image (S2I) and image to sound (I2S). Furthermore, a

fully connected layer and several deconvolution layers of deep

convolutional neural networks are used as the image encoder

and decoder respectively. Similarly is the case with sound gen-

eration. Following the same path, Zhang et al. [112] proposed

a novel adversarial model, called HashGAN. It consists of

three main modules: (1) feature learning module for multi-

modal data, which uses CNN to extract high level semantic

information, (2) generative attention module, which is used

to extract foreground and background feature representations,

and (3) discriminative hash coding module, which uphold the

similarity between cross modalities.

Multi-modal Stacked Auto-Encoders (MSAE) model [113]

is used to project features from cross-modality into a common

latent space for efficient cross-modal retrieval. This model

shows significant advantages over current state-of-the-art ap-

proaches. First, the non-linear mapping method used in this

model is more expressive. Second, since it is an unsupervised

learning method, data dependency is minimal. Third, the

memory usage is optimized and independent of the training
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Table II: A summary of datasets in cross-media retrieval. For each dataset we identify the modality used to tackle the problem

of cross-media retrieval.

Ref Dataset Year
Data

size
URL Image Text Tags Video Audio

3D

Model

[93] Wikipedia 2010 2,866 http://www.svcl.ucsd.edu/projects/crossmodal/ ✔ ✔ - - - -

[94] Nus Wide 2009 269,648
http://lms.comp.nus.edu.sg/research/NUS-
WIDE.htm

✔ ✔ - - -

[89] Pascal VOC 2015 9,963 http://host.robots.ox.ac.uk/pascal/VOC/ ✔ ✔ - - -

[95] Flickr30K 2014 31,783 http://shannon.cs.illinois.edu/DenotationGraph/ ✔ ✔ - - - -

[96]
INRIA-
Websearch

2010 71,478 http://lear.inrialpes.fr/pubs/2010/KAVJ10/ ✔ ✔ - - - -

[97] FB5K 2018 5140 http://ngn.ee.tsinghua.edu.cn/ ✔ - - ✔ - - -

[98] Twitter100K 2018 100,000
http://ngnlab.cn/wp-
content/uploads/twitter100k.tar

✔ ✔ - - - -

[3] Xmedia 2018 12,000 http://www.icst.pku.edu.cn/mipl/XMedia ✔ ✔ - ✔ ✔ ✔

[99] IAPR TC-12 2006 20,000 http://imageclef.org/photodata ✔ ✔ - - - -

[100] ALPR 2011 - http://alpr.com ✔ ✔ - - -

[101] SML 2007 - - - - - - - -

[102] Corel5K 2007 5000 https://rdrr.io/cran/mldr.datasets/man/corel5k.html ✔ ✔ - - -

[103] ESP 2004 - - ✔ - ✔ - - -

[104] LabelMe 2008 -
http://www.csail.mit.edu/brussell/research/
LabelMe/intro.html

✔ - ✔ - - -

[105] AnnoSearch 2006 - http://wsm.directtaps.net/default.aspx ✔ - ✔ - - -

[106] Clickture 2013 - http://www.clickture.info ✔ ✔ - - - -

Figure 4: An illustration of multimedia for learning shared space representations utilizing deep learning model.

dataset size. Unlike the authors of [114], they proposed an un-

supervised deep learning approach in text subspace for cross-

media retrieval. They claimed that the proposed text subspace

is more efficient and useful as compared to conventional latent

subspace.

2) Supervised DNNs based Methods: Ngiam et al. [115]

were the first to address a multimodal deep learning approach

in audio and video retrieval. They trained deep networks

for a series of multimodal learning tasks to learn a shared

representation between cross modalities and tested it on a

single modality, for example, the system was trained with

video data but tested with audio data and vice versa.

Deep Cross-modal Hashing (DCMH) [116] efficiently re-

veals the correlations among cross modalities. It is an end-to-

end learning paradigm, which integrates two parts: (1) feature

learning part, and (2) the hash-code learning part. Cao et

al. [117] proposed Deep Visual-Semantic Hashing (DVSH)

model, which utilized two different DNN models such as

CNN and Long Short Term Memory (LSTM) to learn similar

representation for visual data and natural language.

Wang et al. [118] proposed a regularized deep neural

network (RE-DNN), which utilized deep CNN features and

topic features as visual and textual semantic representation

across modalities. This model is able to capture both intra-

modal and inter-modal relationships for cross-media retrieval.

They further improve their work in [119], [120] by con-

catenating common subspace learning and coupling feature

selection into a joint feature learning framework. Unlike

previous models, this approach considers both the correlation

and feature selection problems at the same time. They learn

the projection matrices through linear regression to map cross-

modality data into a common subspace, and ℓ21−norm to
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select similar/dissimilar features from various feature spaces.

Furthermore, the inter-modality and intra-modality similarities

are preserved through a multimodal graph regularization.

3) Pairwise-based DNNs Methods: These methods are used

to learn a semantic metric distance between cross modalities

data for utilizing similar/dissimilar pairs, which is termed as

heterogeneous metric learning.

Social media networks, e.g., Flickr, Facebook, Youtube,

Wechat, Twitter, have produced immense data on the web due

to which it became the source of high attention. Thus, it plays

a significant role in multimedia related applications, including

cross-media retrieval. Social media networks are completely

different from traditional media network and exhibit unique

challenges to data analysis. 1) The data present on social media

websites are various and noisy. 2) The data are heterogeneous

and present in different modalities, e.g., image, text, video,

audio, on the same platform. To predict the link between

various instances of social media Yuan et al. [121] proposed

a brave novel idea on the latent feature learning. To achieve

this, they designed a Relational Generative Deep Belief Nets

(RGDBN). In this model, they learn the latent feature for

social media, which utilized the relationships between social

media instances in the network. By integrating the proposed

model called the Indian buffet process into the improved DBN,

they learn the optimal latent features that best embed both the

media content and its relationships. The proposed RGBDBN

is able to analyze the correlation between homogeneous and

heterogeneous data for cross-media retrieval.

Following the same path, Wang et al. [122] proposed

Modality-Specific Deep Structure (MSDS) based on modality-

specific feature learning. The MSDS model used two different

types of CNN to represent raw data in the latent space. The

semantic information among the images and texts in the latent

space used one-vs more learning scheme. Deep Cross-Modal

Hashing (DCMH) [123] extends traditional deep models for

cross-modal retrieval, but it can only capture intra-modal infor-

mation and ignores inter-modal correlations, which makes the

retrieved results suboptimal. To overcome the aforementioned

limitations, a Pairwise Relationship guided Deep Hashing

(PRDH) [124] adopted deep CNN models to learn feature

representations and hash codes for individual cross-modality

using the end-to-end architecture. Moreover, in this model,

the decorrelation constraints are integrated into a single deep

architecture to enhance the classification performance of the

individual hash bit.

4) Rank-based DNNsMethods: These methods utilize rank

lists to learn semantic representations, in which an individual

candidate is ranked based on the similarity distance between

the query and candidate. In this regard, Hu et al. [98] achieved

the highest efficiency for cross-media retrieval using Dual-

CNN’s architecture. They used dual CNN to model image

and text independently, which is further used to rank the

similarity distance between query and candidate. Frome et

al. [125] introduced a novel deep visual-semantic embedding

(DeViSE) approach to leverage useful information learned in

the text domain, and transfer it to a system trained for visual

recognition. Similarly, Weston et al. [126] employed online

learning to rank approach, called WSABIE, to train a joint

Table III: Summary of DNN based methods for the cross-

media representations task.

Reference Modalities Representation

[111], [110], [112], [113],
[114]

Audio and Images
Text and Images

Unsupervised

[115], [116], [118],
[119], [120], [117]

Audio and Video
Text and Images
Images and Audio

Supervised

[121], [122], [124]
Audio and Images
Text and Images

Pairwise

[98], [125], [129] [126],
[127], [128]

Text and Images
Label and Images
Sentences and Images

Rank-based

embedding model of labels and images. The authors of [127]

developed a Deep Boltzmann Machines (DBM) to represent

joint cross-modal probability distribution over sentences and

images. Different from RNN-based approaches, Socher et al.

[128] introduced a novel Dependency Tree Recursive Neural

Networks (DT-RNNs) model which embed one modality (e.g.,

sentences) into a vector space using dependency trees in

order to retrieve cross-modality (e.g., images). However, these

methods reason about the image only on the global level

using a single, fixed-sized representation from the top layer

of a CNN as a description for the entire image. In contrast,

the model presented in [129] clearly elaborated the challenge

faced in a complex scene. They formulated a max-margin

objective for DNN that learn to embed both image and text

into a joint semantic space. The ranking function for joint

image-text representations is:

cG (θ)
∑

k



∑
l

max (0, Skl − Skk + ∆)+
∑
l

max (0, Slk − Skk + ∆)


, (2)

where ∆ is a hyperparameter that we cross-validate. The

objective stipulates that the score for true image-sentence pairs

Skk should be higher than Skl or Slk for any l , k by at least

a margin of ∆.

B. Alignment

Multimodal alignment is a challenging task in cross-media

retrieval. It basically consists in finding the relationships and

correlations between different instances in cross modalities.

For example, aligning text and image for a particular website.

As the reader get good understanding from both modalities

present in a particular webpage rather than just one. Multi-

modal alignment is significant for cross-media retrieval, as it

allows us to retrieve the contents of different modality based

on input query (e.g., image retrieval in case of the text as

a query, and vice versa) as shown in Fig. 5. Furthermore, we

summarized different DNN based methods for the cross media

alignment task in Table IV.

1) Unsupervised DNNs based Methods: Unsupervised

methods operate without label information between instances

from cross modalities. These methods enforce some con-

straints on alignment, such as the temporal ordering of se-

quences and similarity metric existence between the modali-

ties.
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Figure 5: An example of cross-media multi-level alignment for

correlation learning, which not only explores global alignment

between original instances and local alignment between fine-

grained patches, but also captures relation alignment lying in

the context.

Table IV: Summary of DNN based methods for the cross-

media alignment task.

Reference Modalities Alignment

[2], [4], [130]–[132]
Image and Text
Speech and Text

Unsupervised

[133] [134]
Image and Text
Image and gesture

Supervised

[135]–[138] Image and Text Pairwise

To align multi-view time series Kruskal et al. [130] pro-

posed the Dynamic Time Warping (DTW) approach, which is

used to measure the similarity between two instances and find

an optimized match between them using time warping (frames

insertion). DTW can be used directly for multimodal alignment

by hand-crafting similarity metrics between modalities; for

example Rehman et al. [2] introduced a novel similarity

measurement between texts, images and users’ feelings to

align images and texts.

The canonical correlation analysis (CCA) extended the orig-

inal DTW formulation as it requires a pre-define correlation

metric between different modalities [4], [131]. George et

al. [139] proposed a novel Deep Canonical Time Warping

(DCTW) approach to automatically learn composite non-linear

representations of multiple time series which are highly corre-

lated and temporally in alignment. Yan et al. [140] proposed

a novel end-to-end approach based on the deep CCA. They

formulated the objective function as:

max
ki,k j

tr
(
kT
i

∑
i j k j

)

s.t.
[
kT
i

∑
ii ki = kT

j

∑
j j k j = I

]
,

(3)

where

T =
∑−1/2

ii

∑
i j

∑−1/2

j j
,

and the objective function can be rewritten as follwing.

corr (i, j) = tr

((
TTT

)1/2
)
. (4)

Furthermore, Yan et al. [140] also optimize the memory

consumption and speed complexity in the DCCA framework

using GPU implementation with CULA libraries, which sig-

nificantly increase the efficiency as compared to the CPU

implementation.

Chung et al. [132] proposed an unsupervised cross-modal

alignment method to learn the embedding spaces of speech and

text. Particularly, the proposed approach used the Speech2Vec

[141] and Word2Vec [142] to learned the respective speech

and text embedding spaces. Furthermore, it also attempted to

align the two spaces through adversarial training, followed by

a refinement method.

2) Supervised DNNs based methods: Normally, researchers

not only focus on the visual regions and keywords, when

aligning an image with text, but also between the rely on the

correlation between them. Correlation is very important for

cross-media learning; however, it is ignored in most of the

previous works. For this purpose, Qi et. al. [133] proposed

Cross-media Relation Attention Network (CRAN) with multi-

level alignment. The proposed model was used to efficiently

handle the relation between different multimodal domains us-

ing multi-level alignment. In another article, Amin et al. [134]

proposed a concatenated model of CNN regressor method and

a 3-dimensional deep Markov Model (3DMM) to align faces

with pose appearance. Dai et al. [143] proposed a unified

framework for cross-media alignment task. They proposed

a fused objective function, which contains both CCA-like

correlation capability and LDA-like distinguishing capabilities.

Further, Jia et al. [144] proposed an efficient CNN model,

which includes three main parts: the visual part is responsible

for visual features extraction, the tex part is responsible for text

features extraction, and finally the fusion part is responsible to

fuse the image and sentences to generate decisive alignment

score of the tweet (image and sentence pair).

3) Pairwise-based DNNs Mehtods: With the recent ad-

vances of deep learning in multimedia applications, such

as image classification [52] and object detection [145], re-

searchers adopt the deep neural network to learn common

space for cross-media retrieval, which aims to fully utilize its

considerable ability of modeling a highly nonlinear correlation.

Most of the deep learning based methods construct a multi-

pathway network, where each pathway is for the data of one

media type. Multiple pathways are linked at the joint layer to

model cross-media correlation. Ngiam et al. propose bimodal

autoencoders (Bimodal AE) to extend the restricted Boltzmann

machine (RBM) [115]. They model the correlation by mutual

reconstruction between different media types. Multimodal

deep belief network [110] adopts two kinds of DBNs to model

the distribution over data of different media types, and it

constructs a joint RBM to learn cross-media correlation. Liu

et al. propose deep canonical correlation analysis (DCCA)
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Figure 6: A generalize description of example-based multi-

modal translation. It shows that the system retrieves efficient

translation as soon as it get a query.

to combine traditional CCA with deep network [80], which

maximizes correlation on the top of two subnetworks. Feng

et al. jointly model cross-media correlation and reconstruction

information to perform correspondence autoencoder (Corr-AE)

[135]. Furthermore, Yuan et al. propose a recursive pyramid

network with joint attention (RPJA) [136]. They construct a

hierarchical network structure with stacked learning strategy,

which aims to fully exploit both inter-media and intra-media

correlation. Cross-modal correlation learning (CCL) [137] uti-

lizes fine-grained information, and adopts multi-task learning

strategy for better performance. Zheng et al. propose a dual-

path convolutional network to learn image-text embedding

[138]. They conduct efficient and effective end-to-end learn-

ing to directly learn from the data with the utilization of

supervisions. Besides, Plummer et al. provide the first large-

scale dataset of region-to-phrase correspondences for image

description based on Flickr-30K dataset [146], where image

regions depict the corresponding entities for richer image-to-

sentence modelling.

However, the above methods mainly focus on pairwise

correlation, which exists in global alignment between orig-

inal instances of different media types. Although some of

they attempt to explore local alignment between fine-grained

patches, they all ignore important relation information ly-

ing in the context of these fine-grained patches, which can

provide rich complementary hints for cross-media correlation

learning. Thus, we propose to fully exploit multi-level cross-

media alignment, which can learn the more precise correlation

between different media types.

C. Translation

Translation refers to a mapping of data from one modality to

another. For example, given a query of one modality, the task is

to retrieve different modality of similar information. This task

is a critical problem in cross-media retrieval [147], computer

vision and multimedia [148]. An overview of multi-modal

translation can be visualized in Fig. 6 and the representative

work is summarized in Table V.

In recent years, many deep learning based methods have

been proposed to elucidate multimodal translation challenges.

It is important because the retrieval task from different modal-

ities has to fully understand the visual scene and produce

grammatically correct and brief text depicting it. The multi-

modal translation is a very challenging issue in a deep learning

community for several reasons. Foremost, as most of the time,

it is hard to choose an appropriate translation for a particular

task, where multiple parameters are crucial. Particularly, there

is no appropriate correct answer to a query in translation. As

there is no common concept of translation to chose which

answer is right and which is wrong.

Another important reason is the variety of media, linguistic,

area and culture differences, which further need expertise in

the individual domain of translation with image, text and audio

channels. We categorize multimodal translation based deep

learning methods into two types - supervised and unsuper-

vised.

1) Unsupervised DNNs based Methods: These approaches

normally rely on finding the nearest sample in the dictionary

through consensus caption selection and used that as the

translated output. Devlin et al. [149] proposed a k-nearest

neighbor retrieval approach to achieve translation results.

In [150] the authors projected words and image regions

into a common space. Moreover, they used unsupervised

large text corpora to learn semantic word representations for

cross-media retrieval. Following the same path, Socher et al.

[151] proposed two different deep neural network models

for translation. First, they trained a DNN model on many

images in order to obtain rich features [152]; at the same

time, a neural language model [153] was trained to extract

embedding representation of text. They further trained a linear

mapping between the image features and the text embeddings

to decrease the semantic space and link the two modalities.

Lample et al. [154] proposed an unsupervised bilingual trans-

lation method that can model bilingual dictionary between two

different languages. The key benefit of the proposed method

is that it does not use any cross-lingual annotated data instead

it only uses two monolingual corpora as the source and target

language.

2) Supervised DNNs based Methods: These approaches

rely on label information to retrieve cross-modality instances.

Yagcioglu et al. [155] used a CNN-based image representation

to translate the given visual query into a distributional seman-

tics based form. Furthermore, selecting intermediate semantic

space for correlation measurement during retrieval is also an

alternative way to tackle the problem of translation. Socher

et al. [128] used intermediate semantic space to translate

common representation from text to image and vice versa.

Similarly, Xu et al. [156] proposed an integrated paradigm

that models video and text data simultaneously. Their proposed

model contains three fundamental parts: a semantic language

model, a video model, and a joint embedding model. The lan-

guage model was used to embed sentences into a continuous

vector space. Whereas in the visual model, DNN was used to

capture semantic correlation from videos. Finally, in the fused

embedding model, the distance of outputs of the deep video

model and language model was minimized in the common

space to leverage the semantic correlation between different

modality. Cao et al. [117] proposed a novel Deep Visual-
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Table V: Summary of DNNs based methods for the cross-

media translation task.

Reference Modalities Translation

[150], [151] Image and Text Unsupervised

[128], [155], [157], [158]
[156] [117] [159]

Image and Text
Video and Text
Image and Audio
Image and Text

Supervised

Semantic Hashing (DVSH) model for cross-media retrieval.

They generated compact hash codes of visual and text data

in a supervised manner, which was able to learn the semantic

correlation between image and text data. The proposed ar-

chitecture fuse joint multimodal embedding and cross-media

hashing based on CNN for images, RNN for text and max-

margin objective that incorporate both images and text to

enable similarity preservation and standard hash codes. Lebret

et al. [157] used CNN to generate image representation, which

allow the system to infer phrases that describe it. Moreover

to predict a set of top-ranked phrases, a trigram constrained

language model is proposed to generate syntactically correct

sentences from different subsets phrases. Wei et al. [158] tack-

led the cross-media retrieval problem through a novel approach

called deep semantic matching (deep-SM). Particularly, images

and text are mapped into a joint semantic space using two

autonomous DNN models.

The popular benchmark multimodal techniques commonly

learns a semantic space for image and text features to find

a semantic correlation between them. However, using the

same projection into the semantic space for two different

tasks such as image-to-text and text-to-image may lead to

performance degradation. Therefore, Wei et al [159] proposed

a novel method called Modality-Dependent Cross-media Re-

trieval (MDCR) to tackle the projection problem into the

semantic space efficiently. In their proposed method, they

learned two couples of projections for cross-media retrieval

despite one couple projection into the semantic space.

V. DISCUSSION

In this section, we provide a summarized overview of each

technical challenge, namely: representation, alignment, and

translation, with a discussion of future directions and research

problems faced by multi-modal deep learning approaches with

application to cross-media retrieval as shown in Fig. 7. We also

highlight the lessons and “best practices” obtained from our

review of the existing work.

A. Lessons Learned and Best Practices

Based on the reviewed papers, we derive a set of lessons

learned and “best practices” to be considered in implementing

and deploying deep learning based cross-media retrieval for

solving different challenges, such as representation, alignment,

and translation. The key criteria used for solving each chal-

lenge is described as follows.

1) Representation: This section describes four major types

of deep learning approaches to solve multimodal represen-

tation unsupervised deep learning, supervised deep learning,

pairwise deep learning, and rank based deep learning methods.

Unsupervised methods used co-occurrence information instead

of label information to learn common representations across

different modality data. These methods are commonly used

for AVSR, affect, and multimodal gesture recognition. The

remaining three representations, project individual modality

into a separate space, which often used in applications where

single modality is required for retrieval, such as zero-shot

learning. Moreover, for the representation task, networks are

mostly static. However, in the future, it may be dynamically

switching between the modalities [160], [161].

2) Translation: Cross-media translation methods are ex-

tremely challenging to evaluate. As such, tasks for instance

speech recognition have a unique suitable translation, whereas,

tasks for instance speech synthesis and image description do

not. Most of the time it is hard to choose an appropriate

translation for a particular task, where multiple answers are

acceptable. However, we can add a number of probabilistic

metrics that help in model evaluation.

Normally, we use the help of human judgment in order to

evaluate the aforementioned task. A group of experts has been

assigned the task of evaluating individual translation manually

through some scale parameter: opinion mining [162], [163], re-

alistic visual speech evaluation [164], [165], media description

[166]–[169] and correlation and grammatical correctness. On

the other hand, preference studies is also an alternate option

where various translations are brought forward to the applicant

for comparison [170], [171]. Though, human judgment is a

slow and expensive process. Moreover, they also affected with

a different culture, age and gender preferences. It is hoped that

by handling the evaluation challenge will be helpful to leverage

multimodal translation methods.

3) Alignment: Cross-media alignment has several chal-

lenges, which are summarized as follows:

1) The number of datasets with clearly annotated alignment

are scarce.

2) The development of common similarity metrics between

different modalities is hard.

3) The alignment of different elements in one modality may

not have a correspondence in other modality.

Literature showed that most of the alignment in cross-media

focused on the alignment of sequences in an unsupervised

manner using graphical models and dynamic programming

methods [172]–[174]. Most of these methods used hand-

crafted similarity measures between different modalities or

relied on unsupervised algorithms. However, supervised learn-

ing techniques become popular in the current era due to the

availability of labeled training data.

B. Challenges and Open Problems

1) Dataset Construction: The current state-of-the-art cross-

media datasets have significant gaps to fulfil. First, datasets

such as Wikipedia dataset4 [93], consists of only two different

4http://www.svcl.ucsd.edu/projects/crossmodal/
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Figure 7: Open problems and challenges for future direction

media types i.e., images and texts. In addition to this, Pas-

cal VOC 2012 dataset5 [89] have only 20 different classes.

Although, cross-media concatenate different domains such

as images, texts, audio, video and 3D models. Therefore,

handling the queries from unknown domain is challenging for

the system trained on small dataset [175]. Second, some of

the current cross-media datasets are deficient in context infor-

mation, which results in the decline of cross-media retrieval

efficiency. Third, the major limitation in the benchmark cross-

media retrieval dataset is the size of the dataset, for instance

Xmedia [3], IAPR TC-12 [99], and Wikipedia. This makes the

decision challenging for the learning systems due to scarcity

of data. Finally, some dataset lacks the proper image labelling

aligned with the training set such as, ALIPR [100], and SML

[101]. Furthermore, datasets such as ESP [103], LabelMe

[104], and AnnoSearch [105] withdraw restrictions on the

annotation vocabulary, which results in the weak linkage

among different modalities semantic gaps. The aforementioned

discussion concludes that cross-media retrieval method perfor-

mance is directly proportional to the nature of the dataset used

for evaluation [176]. Therefore, we propose some significant

characteristics for a good cross-media retrieval dataset, which

are as follow:

1) Social media platform is the best source for dataset

5http://host.robots.ox.ac.uk/pascal/VOC/

collection as it contains varied domains and informal text

language.

2) There must be no constraint in the modality categoriza-

tion.

3) Excluding images and texts the dataset also contain other

modalities such as video, audio and 3-dimensional (3D)

models, which is acceptable in real time scenario.

4) To avoid the overfitting problem during the training

of the network. The size of the dataset must be kept

significantly large. Also, a large dataset helps the learning

algorithm understand the underlying patterns in the data

and produce efficient results.

5) The dataset aid in reducing the semantic gap for efficient

retrieval by providing coherent visual content descriptors.

Also, the datasets with structured alignment between

distinct modalities help the learning algorithm to be more

robust.

2) Scalability on large-scale data: With the advancement

of technology and the expansion of social media websites

around the globe, a large number of multimedia data are

produced over the internet. Luckily, deep learning models have

exhibit very promising and efficient performance in handling

a huge amount of data [26] with the help of the Graphical

Processing Unit (GPU). Therefore, the need for a scalable and

robust model for distributed platforms is significant. Further-

more, it is also noteworthy to investigate further research on

effectively organizing individual related modality of data into a

common semantic space. We believe compression procedures

[177] as one of the promising future directions for cross-media

retrieval. High-Dimensional input data can be compressed to

compact embedding to reduce the space and computation time

during model learning.

3) Deep Neural Network: The work of deep learning on

multimodal research is very scarce. Different multimodal

hashing techniques are introduced for cross-media retrieval

[113], [178]–[188]. However, these methods are based on

shallow architecture, which cannot learn semantic information

efficiently between different modalities. Recently, different

deep learning models [83], [117], [125], [189]–[196] showed

that these models were able to extract semantic information

between different modalities more efficiently compare to shal-

low methods. However, they were restricted only to single

modality retrieval. One of the promising solutions for the

aforementioned problem is transfer learning. It significantly

improves the learning task in a specific domain by using

knowledge transferred from a different domain. DNN based

models are well-matched to transfer learning as it learns both

low and high-level features that separate the difference of

various cross-media domains.

4) Informal annotations: Social networks websites such

as YouTube, Facebook, Instagram, Twitter, and Flickr have

produced a large amount of multimodal data over the internet.

Generally, this data is poorly organized and has scarce and

noisy annotations. However, these annotations provide a cor-

relation between different multimodal data. The key question

is how to use the restricted and noisy annotations for a large

amount of multimodal data to learn semantic information

among the cross-media?
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5) Practical Cross-media Retrieval Applications: As a hot

topic these days, practical applications of cross-media retrieval

will soon become conceivable due to continuous enhancement

in the performance of multimodal efficiency. This will provide

easy and flexible retrieval from one modality to another

modality. Furthermore, cross-media retrieval is also important

in many firms, such as press companies, Television, the

entertainment industry, and many others. Currently, people not

looking to search for text only but they want to completely

visualize things. For example, If you are looking for the

installation of a window (operating system) on your machine,

it’s hard to complete read an article rather than just follow few

steps by watching a video. Moreover, the video explains and

visualize things better than text and is easily understandable.

It is the need for a smart city where people not only search

in the same domain but cross-modal searching is also at the

fingertips.

6) Evaluation Criteria: In the cross-media community we

have seen that each time a model is proposed, it is expected

that the model show efficiency against numerous baselines.

However, most of the authors did not take it seriously and

avail free options for choosing baselines and datasets. This

makes several issues in evaluating cross-media models. First,

it makes the output prediction score inconsistent. Since indi-

vidual author reports their own assessed results. By doing this,

sometimes, we also encounter conflicts of results. For instance,

the original score of the NCF model predicted in its pioneer

research work [77] is ranked very low compared to its vari-

ant/modified version [197]. This makes state-of-the-art neural

models very difficult. The main question arises here is, how

would we solve this issue? Considering other domains such

as Natural Language Processing (NLP) or Image Processing

they have baseline datasets, such as ImageNet and MNIST for

the evaluation of models. Therefore, we strongly believe such

a standardized system for the cross-media domain. Second,

there must be proper designing of dataset split, particularly,

test sets. Without this, in fact, it is challenging to measure

the performance of model evaluation. Finally, by using deep

learning models it is important to estimate the dataset. As deep

learning models performance varies with the amount of data

fluctuates.

7) Requirement Gap and Conflict: Through our review,

we found some blind-spots in DNN-based approaches, such

as pairwise based DL methods and rank based DL meth-

ods, for solving alignment and translation in cross-media

retrieval. The purpose of pairwise based DL methods to learn

common representations through similar/dissimilar pairs, in

which, a semantic metric distance is learned between data

of various modalities, whereas, rank based DL methods are

used to learn common representations for cross-media retrieval

through learning to rank. These approaches are necessary to

solve the aforementioned challenges in cross-media retrieval.

However, these approaches received little attention in cross-

media retrieval and only a few articles have been published in

shallow domain [198]–[200].

Moreover, the deep learning model used by most of the

researchers is an individual model for a separate modality.

It is strongly recommended that researchers should unfold

the recent mathematical theory of deep learning models to

investigate the reason why a single model did not achieve

benchmark results in cross-media retrieval. It is also encour-

aged to find out a common semantic space for the features

extracted from different modality data using DL models,

simultaneously. Furthermore, the confliction between service

quality and retrieval is also noteworthy. For example, DL

methods fulfill multiple requirements of feature extraction and

distance detection but can be too heavyweight to achieve the

real-time constraints of cross-media retrieval. How to strike

a balance among contradicting requirements deserves future

studies. The key is to balance feature extraction, similarity

measurements, and service quality.

VI. CONCLUSION

Multimedia information retrieval is a rapidly growing re-

search field that aims to build models that can validate the

information from different modalities. This paper reviewed

cross-media retrieval in terms of DNN-based algorithms and

presented them in a common classification built upon three

technical challenges faced by multimodal researchers: align-

ment, translation, and representation. For individual challenge,

we introduced different sub-classes of DNN-based methods to

bridge the media gap, and provide researchers and developers

with a better understanding of the underlying problems and

the potential solutions of the current deep learning assisted

cross-media retrieval research.
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[170] S. S. Sarfjoo, C. Demiroğlu, and S. King, “Using eigenvoices and
nearest-neighbors in hmm-based cross-lingual speaker adaptation with
limited data,” IEEE/ACM Transactions on Audio, Speech, and Lan-

guage Processing, vol. 25, pp. 839–851, 2017.

[171] S. Taylor, T. Kim, Y. Yue, M. Mahler, J. Krahe, A. G. Rodriguez,
J. Hodgins, and I. Matthews, “A deep learning approach for generalized
speech animation,” ACM Transactions on Graphics (TOG), vol. 36,
p. 93, 2017.

[172] O. U. Rehman, S. Yang, S. Khan, and S. U. Rehman, “A quantum par-
ticle swarm optimizer with enhanced strategy for global optimization
of electromagnetic devices,” IEEE Transactions on Magnetics, vol. 55,
no. 8, pp. 1–4, 2019.

[173] S. ur Rehman, Y. Huang, S. Tu, and B. Ahmad, “Learning a semantic
space for modeling images, tags and feelings in cross-media search,”
in Pacific-Asia Conference on Knowledge Discovery and Data Mining.
Springer, 2019, pp. 65–76.

[174] O. U. Rehman, S. Tu, S. U. Rehman, S. Khan, and S. Yang, “Design
optimization of electromagnetic devices using an improved quantum

inspired particle swarm optimizer.” Applied Computational Electro-

magnetics Society Journal, vol. 33, no. 9, 2018.
[175] S. ur Rehman, S. Tu, M. Waqas, Y. Huang, O. ur Rehman, B. Ahmad,

and S. Ahmad, “Unsupervised pre-trained filter learning approach for
efficient convolution neural network,” Neurocomputing, vol. 365, pp.
171–190, 2019.

[176] S. ur Rehman, S. Tu, M. Waqas, O. Rehman, B. Ahmad, Z. Halim,
W. Zhao, and Z. Yang, “Optimization based training of evolutionary
convolution neural network for visual classification applications,” IET

Computer Vision, 2020.
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