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Abstract 

In wireless powered sensor networks (WPSN), data of ground sensors can be collected or relayed by an unmanned 
aerial vehicle (UAV) while the battery of the ground sensor can be charged via wireless power transfer. A key 
challenge of resource allocation in UAV-aided WPSN is to prevent battery drainage and buffer overflow of the 
ground sensors in the presence of highly dynamic lossy airborne channels which can result in packet reception 
errors. Moreover, state and action spaces of the resource allocation problem are large, which is hardly explored 
online. To address the challenges, a new data-driven deep reinforcement learning framework, DDRL-RA, is 
proposed to train flight resource allocation online so that the data packet loss is minimized. Due to time-varying 
airborne channels, DDRL-RA firstly leverages long short-term memory (LSTM) with pre-collected offline datasets for 
channel randomness predictions. Then, Deep Deterministic Policy Gradient (DDPG) is studied to control the flight 
trajectory of the UAV, and schedule the ground sensor to transmit data and harvest energy. To evaluate the 
performance of DDRL-RA, a UAV-ground sensor testbed is built, where real-world datasets of channel gains are 
collected. DDRL-RA is implemented on Tensorflow, and numerical results show that DDRL-RA achieves 19\% lower 
packet loss than other learning-based frameworks.  
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Abstract—In wireless powered sensor networks (WPSN), data

of ground sensors can be collected or relayed by an unmanned

aerial vehicle (UAV) while the battery of the ground sensor can be

charged via wireless power transfer. A key challenge of resource

allocation in UAV-aided WPSN is to prevent battery drainage

and buffer overflow of the ground sensors in the presence

of highly dynamic lossy airborne channels which can result

in packet reception errors. Moreover, state and action spaces

of the resource allocation problem are large, which is hardly

explored online. To address the challenges, a new data-driven

deep reinforcement learning framework, DDRL-RA, is proposed

to train flight resource allocation online so that the data packet

loss is minimized. Due to time-varying airborne channels, DDRL-

RA firstly leverages long short-term memory (LSTM) with pre-

collected offline datasets for channel randomness predictions.

Then, Deep Deterministic Policy Gradient (DDPG) is studied

to control the flight trajectory of the UAV, and schedule the

ground sensor to transmit data and harvest energy. To evaluate

the performance of DDRL-RA, a UAV-ground sensor testbed is

built, where real-world datasets of channel gains are collected.

DDRL-RA is implemented on Tensorflow, and numerical results

show that DDRL-RA achieves 19% lower packet loss than other

learning-based frameworks.

Index Terms—UAV, WPSN, Deep reinforcement learning,

LSTM, Wireless power transfer

I. INTRODUCTION

Wireless powered sensor networks (WPSN) are deployed

to sustainably monitor surroundings [1] or charge electric

vehicles [2]. The data of distributed ground sensors that are

deployed in harsh areas can be collected by using unmanned

aerial vehicles (UAVs). The UAV can also charge the ground

sensors remotely via wireless power transfer (WPT) [3] to

power sensory data generation and wireless transmission. At

different altitudes, the UAV is able to communicate with

ground sensors. Thanks to line-of-sight (LoS) communica-

tions, transmit rate of WPSN and the UAV is highly im-

proved [4].

Fig. 1 depicts a UAV-aided WPSN for precision agriculture,

where ground sensors are deployed on a remote farmland for

sensing the environment, e.g., acid precipitation, and ambient

temperature and humidity [5], [6]. When the UAV approaches

a ground sensor, the ground sensor equipped with a WPT

receiver is charged by the UAV [7]. When the UAV flies away

from the ground sensor, the ground sensor uses the harvested

energy that is stored in the battery for the sensing operation.

Moreover, the UAV can fly along its flight trajectory, and

schedule the data transmission of the sensors [8], [9]. The

transmit data queue of the sensor can be used to buffer sensory

data that is transmitted to the UAV when the UAV is not

around.

The number of packets in the queue of the ground sensor is

distinctive from each other, due to time-varying data arrivals.

When the UAV schedules a ground sensor which has a short

queue to transmit data and WPT, the data buffer of the

unscheduled sensors can be already full, and the newly arrived

data can overflow the buffer. Moreover, packet transmission

errors increase if a ground sensor experiencing a poor link

quality is scheduled by the UAV, and the ground sensor can

suffer from insufficient energy harvesting. In practice, the

UAV is hardly to know the time-varying network dynamics,

e.g., number of packets in the queue, WPT charging, and

channel link qualities between the UAV and the ground

sensor [10]. Additionally, the time-varying network dynamics



Fig. 1: UAV-aided WPSN for precision agriculture.

and waypoints of the UAV consists of a large number of

real-time values, which results in an extremely large flight

resource allocation space [11]. Therefore, it is difficult to

jointly optimize the trajectory control and the scheduling

of data transmission and WPT in a continuous domain, for

minimizing buffer overflows and communication errors.

In this paper, a flight resource allocation, named as DDRL-

RA, is proposed based on deep deterministic policy gradient

(DDPG). DDRL-RA enables the UAV to learn the battery

energy charged by WPT, and number of packets in the data

queue of the sensors, and the link qualities. The UAV, i.e.,

trajectory planning and data transmission scheduling of ground

sensors Since the trajectory of the UAV, battery energy and

channel link qualities consist of a large number of real num-

bers, DDRL-RA needs to be trained in a continuous domain.

We also investigate Long short-term memory (LSTM) with

DDRL-RA for predicting the airborne channel qualities in

terms of data transmission and WPT. The LSTM addresses the

partial observability of the UAV on the states of the sensors,

approximating the obscure states of unselected sensors at every

instant for DDPG implementation.

In this paper, we present the literature review in Section II.

The network model is studied in Section III. Section IV

develops DDRL-RA to train the flight resource allocation at

the UAV. In Section V, datasets of channel gains are collected

from a UAV-ground sensor testbed, and the performance is

evaluated. We conclude this paper in Section VI.

II. RELATED WORK

In [12], the ground nodes’ utilities are adjusted to determine

a packet delivery and energy transfer policy for the UAV.

Graph-based Markov Decision Process is used to formulate

the problem. A mean-field approximation algorithm is studied

to choose the best policy for each system state. The UAV’s

flight trajectory can be designed to increase the minimum

received energy among all ground sensors given the maximum

UAV flying speed limit [13]. The UAV-speed-constrained

trajectory can be transformed into an equivalent UAV-speed-

free problem, which is solved via Lagrange dual method. UAV-

aided WPT is used to charge the ground sensors in [14]. Given

different deployment of the ground sensors, the location of

the UAV is designed to improve the sum harvested energy of

the ground sensors, according to the power consumption of

the UAV. In [15], the UAV’s trajectory planning and ground

sensors’ scheduling scheme is studied to satisfy UAV’s flying

constraints from two WPT perspectives, i.e. the sum harvested

energy of all ground sensors and the minimum received energy

among all ground sensors. A resource allocation algorithm is

presented to solve the problem by alternately adjusting wake-

up scheduling of the ground sensor according to the UAV

trajectory plan. A radio-map-based design approach is studied

in [16], in which the UAV exploits the information of channel

propagation environments for finding waypoints of the UAV.

The objective is to increase the minimum energy transferred

to all ground sensors over a particular charging duration. A

basic two-ground sensor scenario is considered in [17]. The

UAV’s trajectory is designed to improve the amount of energy

transferred to the two ground sensors during a given charging

period. It shows that when the distance between the two

sensors is smaller than a certain threshold, the boundary of

the energy region is found when the UAV hovers above a

fixed location between them.

Some preliminary results of using a DDPG-based trajectory

planning are presented in our recent work [18], where actions

of the UAV are trained without the channel prediction. Dif-

ferent from previous works that only provided solutions based

on known knowledge of the network, this paper focuses on a

practical scenario where the UAV has no a-priori knowledge

on the network state. A new data-driven deep reinforcement

learning is developed to exploit DDPG with LSTM to train

the trajectory and the scheduling of data collection and WPT.

III. FLIGHT, CHANNEL, AND WPT MODELS

In this section, we study the flight, channel, and WPT

models of the considered UAV-aided WPSN.

A. Flight model of the UAV

We denote the location of the UAV as (x(t), y(t), z) on

a Cartesian plane, and the altitude of the UAV maintains at

z [19]. The patrol speed of the UAV is v(t), and we have

Vmin ≤ |v(t)| ≤ Vmax, (1)

where Vmin and Vmax represent the minimum and the max-

imum speeds, respectively. Moreover, the UAV can conduct

∆v(t) to accelerate the flight from (x(t), y(t), z) to (x(t +



1), y(t + 1), z), where the timespan is ∆t. As the angular

velocity of the UAV is θ(t)/∆t, we have

∆v(t) = θ(t)/∆t× c, (2)

where θ(t) ∈ (0, 180◦] and c is the distance between the

circle centre and the position of the UAV. The accelera-

tion/deceleration of the UAV fulfills

(Vmin − Vmax) ≤ ∆v(t) ≤ (Vmax − Vmin), (3)

where ∆v(t) < 0 stands for the deceleration, and ∆v(t) ≥ 0

is for the acceleration.

Thus,

(Vmin − Vmax) ≤ θ(t)/∆t× c ≤ (Vmax − Vmin). (4)

Given the maximum speed Vmax = 15m/s for most of

commercial UAVs, we assume θ(t) ∈ (0◦, 15◦], where c = 1m

and ∆t = 1s.

We consider the smooth turn mobility model of the UAV

with aeronautics and practicality consideration. Fig. 2 illus-

trates the flight model of the UAV, where θ(t) is a turning

angle at time t, and the coordinates of the circle centre at

time t are (xo(t), yo(t), z). Thus, we have [20]

θ(t) = arctan
( y(t+ 1)− yo(t)

x(t+ 1)− xo(t)

)

− arctan
( y(t)− yo(t)

x(t)− xo(t)

)

(5)

Particularly, it is assumed that the UAV does not move

backward. The UAV flies along a trajectory, where the instan-

taneous heading of the UAV is adjusted online according to

the proposed DDRL-RA framework. The details are provided

in the next section.

B. UAV-ground channels

Given constant Sigmoid parameters a and b, the LoS prob-

ability of the UAV-ground channel is

PrLoS(t) =
1

1 + a exp(−b[ϕi(t)− a])
. (6)

Let ϕi(t) denote an elevation angle of sensor i [21]. The path

loss of the data transmission to the UAV is

hi(t) = PrLoS(ϕi(t))(ηLoS − ηNLoS) + 20 log(R secϕi(t))

+ 20 log(fc) + 20 log(4π/vc) + ηNLoS (7)

where the radius of the communication range of the UAV is

R. The radio frequency is fc, and vc gives the speed of light.

ηLoS is the excessive path loss of LoS, and ηNLoS is the non-

LoS one, where their values can be set for different application

scenarios [22].

The UAV and the ground sensor can carry out channel

reciprocity to be aware of the complex coefficient of the

reciprocal UAV-ground channel. We denote the data rate and

flight trajectory

θ(t1)

θ(t100)

…

θ(t200)

…

θ(t300)

…

coordinates of the circle 

centre: (xo(t), yo(t), z)

turning angle

Fig. 2: The flight model of the UAV.

transmit power of sensor i as ri(t) and Pi(t), respectively.

According to [23], we have

Pi(t) ≈
κ−1
2 ln κ1

ε

‖hi(t)‖2
(2ri(t) − 1), (8)

where κ1 and κ2 are two channel constants, and ‖ · ‖ denotes

norm.

C. WPT model

The distance between the UAV and sensor i along the flight

trajectory at t is qi(t). The WPT transceiver alignment between

the UAV and the ground sensor is γi(t). The WPT efficiency

factor φ(qi(t), γi(t)) depends on the distance between the

UAV and the ground sensor, as well as the WPT transceiver

alignment. Thus, the power transferred from the UAV to the

ground sensor via WPT can be given by

P̃i(t) = φ(qi(t), γi(t))P
tx
UAV‖hi(t)‖

2, (9)

where P tx
UAV is the transmit power at the UAV on WPT.

IV. DATA-DRIVEN DEEP REINFORCEMENT LEARNING

In this section, the data-driven deep reinforcement learning,

DDRL-RA is developed, which minimizes data losses due to

buffer overflows and time-varying channels.

A. Problem formulation

Suppose that the number of ground sensors in the WPSN is

N , where sensor i ∈ [1, N ]. E denotes the battery capacity of

the sensors, and the battery energy of sensor i has ei(t) ≤ E.

Sensor i experiences random data arrivals, and the data to

be transmitted is buffered in the queue. The number of data

packets in the queue of sensor i is di(t) ∈ [1, D]. The buffers

are finite with capacity of D, and the new data arrivals have to

be dropped if di(t) > D and start overflowing. The network

state contains ei(t), di(t), eUAV(t), (x(t), y(t), z), and hi(t),

where i ∈ [1, N ]. Therefore, the battery energy of the UAV at

t is

eUAV(t) = eUAV(t− 1) + ∆eUAV(t)−∆EUAV(t), (10)

∆EUAV(t) = P̃i(t) ∗ t, (11)



where ∆EUAV(t) denotes the energy consumption on WPT,

and ∆eUAV(t) is the amount of energy that the UAV harvests

from its onboard solar panels.

At network state St, the UAV can conduct an action to

determine the next location, i.e., (x′(St), y
′(St), z), and select

a ground sensor to transmit data. Thus, the action can be given

by

ut = ((x′(St), y
′(St), z), it), (12)

where it denotes the selected sensor ID. When an action

ut is carried out at St, the packet loss can be measured as

C{St+1|St, ut}, i.e., network costs, and the next state is St+1.

B. Data-driven deep reinforcement learning

Fig. 3 depicts the proposed DDRL-RA, where LSTM is used

to predict the time-varying channel fading in the environment.

With the future network state prediction, DDPG optimizes

the instantaneous heading of the UAV and sensor selection.

DDRL-RA concurrently learns an action-value function and

a policy. DDRL-RA utilizes an Actor-Critic architecture to

combine the value iteration and the policy iteration to im-

plement the proposition of the continuous state space and

the continuous action space by using deep reinforcement

learning. This is different from deep Q-networks (DQN) which

focus on a discrete action space. Moreover, DDRL-RA can

enlarge the continuous state and action space while minimizing

C{St+1|St, ut} compared with reinforcement learning which

suffers from the well-known curse of dimensionality [24].

The experience tuple
(

St, St+1, ut, C{St+1|St, ut}
)

at each

training step can be stored at the onboard replay memory

at the UAV. Let it denote the selected ground sensor at

state St. The network state that the UAV can observe is

{eUAV(St), bit(St), hit(St), dit(St), (x(St), y(St), z)}.

The action ut can be optimized by a gradient-assisted

training µ{St}. Specifically, an actor neural network decides

(x′(t), y′(t), z) and the scheduled sensor it (1 ≤ it ≤ N) to

train µ{St}. A critic neural network is trained to approximate

the optimal action-value function Q{St, ut} to obtain the

expected overall data loss. Moreover, µ{St|w
µ} provides the

flight resource allocation policy of the actor neural network.

µ′{St|w
µ′} is the target policy in the actor neural network.

wµ and wµ′ define the weights with regards to the policies

training. The approximation loss ∆loss can be minimized by

adjusting the weights wQ in the critic neural network.

Since the time-varying channel fading leads to unknown

network state transitions, the Actor-Critic architecture suf-

fers from learning uncertainties, which reduces the train-

ing accuracy of the actions. Particularly, the DDRL-RA is

carried out onboard at the UAV, where the network states

are not fully observable. It can only make the observa-

tion of the UAV itself and the selected ground sensor, i.e.,

Actor neural 

network

experience: 

(St, St+1, ut, 

C{St+1| St, ut})

Replay 

memory 

Target network
update

Critic neural 

network
Target network

update

Actions ut

Gradients of the 

DDPG policy

Min(Δloss)
update

Shidt

Q {St,ut}
Q’{…}

network state St

LSTM predicts network 

state dynamics

channel 

conditions

battery 

levels

data buffer 

lengths

battery 

levels

location

Fig. 3: The architecture of DDRL-RA, where LSTM is used

to predict the time-varying channel fading in the environment,

while DDPG optimizes the instantaneous heading of the UAV

and sensor selection.

{eUAV(St), bit(St), hit(St), dit(St), (x(St), y(St), z)}. As a

result, the deep reinforcement learning accuracy can be com-

promised. To address this issue, LSTM is developed with

DDRL-RA to predict the unobservable network states. The

network state prediction achieved by LSTM is feed into the

training environment of the DDPG. The output of the LSTM

gives hidden states Shid
t . The hidden state depends on the

network activation in the previous time steps. Thus, LSTM is

suitable for the proposed flight resource allocation problem, in

which we wish to extract useful features from the actions of

the UAV and predicted state dynamics, and reduce our state

space.

V. DATASETS AND PERFORMANCE EVALUATION

Datasets of channel gains are presented in this section, and

the proposed DDRL-RA is implemented on Google Tensor-

Flow. For performance evaluation, the packet loss is shown in

accordance to the training episodes.

A. Datasets of channel gains

As shown in Fig. 4(a), a UAV is employed to communicate

with a ground sensor to measure the channel gain, where the

UAV patrols along a predetermined trajectory and broadcasts

beacon packets to the ground sensor. Fig. 4(b) shows the

dataset that records the link qualities between the UAV and

the ground node. In particular, the link quality drops when the

UAV moves away from the ground sensor.

The collected datasets of channel gains are used to train the

proposed DDRL-RA, which enables LSTM for predicting the

time-changing channel fading. The dataset is firstly normalized
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by MinMaxScaler() in TensorFlow. Next, the LSTM model is

implemented by Sequential() in Keras to predict the future

channel gain. In addition, the LSTM model is configured

by LSTM model.compile (loss = ‘mean squared error’, opti-

mizer = ‘adam’), which applies adam optimizer in TensorFlow

for minimizing ∆loss.

B. Performance of DDRL-RA

Fig. 5(a), (b), and (c) study the cruise routes of the UAV

in terms of training duration of LSTM and DDPG. It is

observed that DDRL-RA can adjust the cruise control onboard

at the UAV in the continuous action space. The actions of

(x′(St), y
′(St), z) and it for data collection and WPT are

constantly optimized. In Fig. 5(a), as the experience in the

replay memory is not ample, the trajectory of the UAV and

sensor selection are hardly optimized given a small number of

LSTM epochs and learning iterations. In Fig. 5(b), the training

of LSTM and DDPG is extended to 500 and 100, respectively.

The UAV starts to adjust the flight to schedule more ground

sensors for data transmission and WPT. In Fig. 5(c), since

the training of DDRL-RA is extended, LSTM and DDPG are

sufficiently trained for minimizing ∆loss.

Fig. 6 plots the packet loss rate of the DDRL-RA, DDRL-

RA without LSTM, and DQN-based solution. The number

of sensors increases from 50 to 300. More ground sensors

will keep the data in the queue and wait for the UAV, until

the sensor that is scheduled finishes the data transmission

and WPT. As a result, the packet loss rate increases steadily

with the growth of the WPSN size. In the case of actor-critic

based policies such as DDRL-RA and DDRL-RA without

LSTM, their packet loss rates are similar when N ≤ 150

sensors. Moreover, the packet loss rate of DDRL-RA is about

15% and 19% lower than the DDRL-RA without LSTM and



DQN-based one when N = 300. This is because LSTM of

DDRL-RA predicts the channel dynamics of all the ground

sensors, which efficiently adapts the sensor selection for data

transmission and WPT to reduce the data packet loss.

VI. CONCLUSION

This paper studied a data-driven deep reinforcement learn-

ing to train resource allocation in UAV-aided WPSN for

minimizing the data loss. The proposed DDRL-RA lever-

aged LSTM to predict channel randomness while DDPG is

developed to determine the UAV’s trajectory as well as the

scheduling of data transmission and WPT. A UAV-ground

sensor testbed was built, which measures the link quality of the

UAV-ground channel in real world. The collected experimental

datasets were utilized to train the LSTM. DDRL-RA was

implemented on Tensorflow, and numerical results showed that

DDRL-RA achieves 19% lower packet loss than other deep

reinforcement learning frameworks.
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