

Creation of a pilot for the FlexOffer concept

BEng Thesis

CISTER-TR-161205

2016/11/15

Joss Santos

BEng Thesis CISTER-TR-161205 Creation of a pilot for the FlexOffer concept

© CISTER Research Center
www.cister.isep.ipp.pt

1

Creation of a pilot for the FlexOffer concept

Joss Santos

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159

E-mail: 1120527@isep.ipp.pt

http://www.cister.isep.ipp.pt

Abstract

The revolution in the energy market and the end user need to control the things he has around him lead to the
creation of a new concept: flexoffers. The flexoffer is built around scheduling energy usage with the prices of the
energy market. The flexoffer is comprised of the pattern of usage and a window of when the pattern can begin.
Those parameters are exposed to the energy markets using an Aggregator, entity responsible for gathering all the
flexoffers in a region. The market will reply to the flexoffer proposition with the best time for the consumption of
that energy, which in this case is when the prices are the lowest.

This project revolves around the implementation of a pilot capable of applying that concept to a real life situation.
Thus FlexHousing was created. It allows for the control of the energy usage of the appliances in a home or
building. Such is possible by the integration of external technologies. Virtual Power Solutions, a national energy
solutions company developed a product called Cloogy. The Cloogy is a gateway installed in one 19s house and is
capable of communicating with smart device provided by VPS. In this case, smart plugs were deployed. These
smart plugs are placed between the appliance and the electrical outlet. From there the plug is able to control the
flow of electricity towards the appliance. Sensors are also installed in these plugs, capable of collecting data
regarding the energy usage amongst other metrics. In order to operate the plugs, VPS also provided us with an
external API, capable of receiving request and forwarding those request back to the plugs.

FlexHousing is comprised of 2 modules: the FlexHousing middleware and the FlexHousing FrontEnd. The
middleware acts as a hub for every operation in the FlexHousing environment. It bridges the various system in
play, the flexoffer services and the VPS services. FlexHousing allows for the creation of rooms and the attachment
of devices equipped with VPS technology. The user is then able to perform a variety of operations, such as,
applying flexoffers, remotely controlling the appliances and collect data from the sensors in the VPS devices. For
the interaction with the user, FlexHousing FrontEnd was developed. It provides a user-friendly graphical interface
for the user to setup and control FlexHousing middleware. The interface revolves around the rooms and the
devices. The user is able to check the flexoffers he has applied and the schedules the flexoffers services sent
back. If the user wants, he can deploy the VPS smart plugs to non flexoffer complaint devices, such as lamps,
television and computer. Using the FrontEnd, he is also capable of using them.

PESTI- TECHNICAL REPORT

CREATION OF A PILOT FOR THE FLEXOFFER CONCEPT

Student: Joss Santos - 1120527

Organization: CISTER research unit

Project Managers: Luis Lino Ferreira & Michele Albano

Project Supervisor: Constantino Martins

Creation of a pilot for the flexoffer concept

LEI-DEI

2015/2016

1120527 – Joss Dos Santos

Degree in Informatics Engineering

October 2016

ISEP Supervisors- Constantino Martins

External Supervisor- Michele Albano & Luis Lino Ferreira

i

͞“treŶgth aŶd growth coŵe oŶly through effort aŶd struggle͟

Napoleon Hill

ii

iii

ACKNOWLEDGMENTS

I want to thank all the key participants involved in the creation of projects. Professor Michele

Albano and Professor Luis Ferreira were an unimaginable help, always present for any kind of

discussion. Bruno Silva was a valuable colleague, helping me throughout this internship. I also want

to thank Paulo and Renato for having dealt with me all of these months.

I want to thank CISTER, for making this experience possible, as well as the DEI department for giving

me the tools and education that I need in order to pursue my dreams.

To all of my family that had to put up with all the stress and complications that were met along this

project, I say sorry for being such a hassle but also thank for accepting me as such.

MǇ fƌieŶds ĐouldŶ͛t ďe left out of this, theǇ helped ŵe ďuilt the ƌoad I took to aĐhieve my dreams.

TheǇ aƌe too ŵaŶǇ to eŶuŵeƌate theŵ all, ďut I͛ŵ suƌe theǇ kŶoǁ ǁho theǇ aƌe.

A special thanks to Jordann and Ana. Without Ǉouƌ suppoƌt, I ǁouldŶ͛t haǀe ďeeŶ aďle to get ǁheƌe
I am.

Joss Santos

iv

v

ABSTRACT

The revolution in the energy market and the end user need to control the things he has around him

lead to the creation of a new concept: flexoffers. The flexoffer is built around scheduling energy

usage with the prices of the energy market. The flexoffer is comprised of the pattern of usage and

a window of when the pattern can begin. Those parameters are exposed to the energy markets

using an Aggregator, entity responsible for gathering all the flexoffers in a region. The market will

reply to the flexoffer proposition with the best time for the consumption of that energy, which in

this case is when the prices are the lowest.

This project revolves around the implementation of a pilot capable of applying that concept to a

real life situation. Thus FlexHousing was created. It allows for the control of the energy usage of the

appliances in a home or building. Such is possible by the integration of external technologies. Virtual

Power Solutions, a national energy solutions company developed a product called Cloogy. The

CloogǇ is a gateǁaǇ iŶstalled iŶ oŶe͛s house aŶd is Đapaďle of ĐoŵŵuŶiĐatiŶg ǁith sŵaƌt deǀiĐe
provided by VPS. In this case, smart plugs were deployed. These smart plugs are placed between

the appliance and the electrical outlet. From there the plug is able to control the flow of electricity

towards the appliance. Sensors are also installed in these plugs, capable of collecting data regarding

the energy usage amongst other metrics. In order to operate the plugs, VPS also provided us with

an external API, capable of receiving request and forwarding those request back to the plugs.

FlexHousing is comprised of 2 modules: the FlexHousing middleware and the FlexHousing FrontEnd.

The middleware acts as a hub for every operation in the FlexHousing environment. It bridges the

various system in play, the flexoffer services and the VPS services. FlexHousing allows for the

creation of rooms and the attachment of devices equipped with VPS technology. The user is then

able to perform a variety of operations, such as, applying flexoffers, remotely controlling the

appliances and collect data from the sensors in the VPS devices. For the interaction with the user,

FlexHousing FrontEnd was developed. It provides a user-friendly graphical interface for the user to

setup and control FlexHousing middleware. The interface revolves around the rooms and the

devices. The user is able to check the flexoffers he has applied and the schedules the flexoffers

services sent back. If the user wants, he can deploy the VPS smart plugs to non flexoffer complaint

devices, such as lamps, television and computer. Using the FrontEnd, he is also capable of using

them.

Keywords (Theme): Internet of Things, Flexoffer, Energy automation.

Keywords (Technologies): Java, Derby Apache, REST, C#, Service-oriented Architecture.

vi

vii

RESUMO

A revolução dos mercados energéticos e a necessidade do consumidor final em controlar as coisas

que estão a sua volta levou à criação de um novo conceito: a flexoffer. A flexoffer é composta pelo

padrão de consumo energético e da janela temporal em que esse consumo pode começar. Esses

parâmetros são relacionados com os mercados energéticos usando o Aggregator, entidade

responsável por reunir todas as flexoffers numa região. O mercado irá indicar a melhor hora em

que a flexoffer pode começar, em que a melhor hora é quando os preços estão os mais baixos.

O projeto baseia-se na implementação de um piloto capaz de aplicar o conceito da flexoffer a uma

situação real. Para tal foi criado o FlexHousing. Permite o controlo do consumo energético dos

aparelhos dentro de uma casa ou edifício. Tal é apenas possível através a utilização de tecnologias

externas. VPS, Virtual Power Solutions, uma empresa nacional de soluções energéticas desenvolveu

um produto chamado Cloogy. O Cloogy é um gateway instalado no edifício do utilizador e é capaz

de comunicar com os aparelhos elétricos desenvolvidos pela VPS. Neste caso, esses aparelhos são

fichas inteligentes. As fichas são colocadas entre o aparelho a controlar e a ficha de eletricidade. As

fichas possibilitam o controlo de fluxo de eletricidade que vai para o aparelho. As fichas também

têm sensores, capazes de recolher informação sobre consumo elétrico do aparelho, entre outras

métricas. A VPS também forneceu a utilização de uma API externa, capaz de receber pedidos e de

os reenviar para a fichas.

FlexHousing é composto por 2 módulos: o FlexHousing Middleware e o FlexHousing FrontEnd. O

middleware age como centro de todas as operações no ambiente FlexHousing. Consegue ligar os

diferentes sistemas, os serviços flexoffer e os serviços VPS. O ambiente FlexHousing permite a

criação de salas e o registo de aparelhos equipados com a tecnologia VPS. O utilizador pode então

proceder à aplicação de flexoffers, controlo remoto dos aparelhos e a recolha de dados a partir dos

sensores nas fichas da VPS. Em relação à interação com o utilizador, o FlexHousing FrontEnd foi

desenvolvido. Fornece uma interface gráfica com grande usabilidade, para que o utilizador possa

configurar e controlar o middleware. A interface trabalha sobretudo com as salas e com os

aparelhos. O utilizador tem então a possibilidade de verificar as flexoffers que aplicou e os horários

que daí originaram. Se pretender, o utilizador pode instalar as fichas em aparelhos que não

compatíveis com flexoffers, tais como candeeiros, televisões ou computadores. Usando o FrontEnd

o utilizador pode esses aparelhos controlar remotamente.

viii

ix

NOTATION AND GLOSSARY

Notation Meaning

CISTER Research Centre in Real-Time &Embedded Computing Systems

DEI Departamento de Informática

FH FlexHousing

FHFE FlexHousing FrontEnd

FHMW FlexHousing Middleware

FO Flexoffer

IoT Internet of Things

ISEP Instituto Superior de Engenharia do Porto

LEI Licenciatura em Engenharia Informática

REST Representational State Transfer

RESTful Characteristic of a device/system that conforms the constrains of REST.

RUP Rational Unified Process

SOA Service Oriented Architecture

SoS System of Systems

UML Unified Modeling Language

VPS Virtual Power Solutions

x

xi

INDEX

Figure Index ...xiv

Table Index ... xviii

1. Introduction ... 1

1.1 Framework ... 1

1.2 Project Goal.. 3

1.3 Organization Overview and Presentation .. 3

1.4 Contributions .. 4

1.5 Report Structure ... 4

2. Context ... 5

2.1 Presented Problem .. 5

2.2 Buisness Area and Technical context ... 7

2.2.1 Energy solutions .. 8

2.2.2 Smart Housing / Smart Building .. 10

2.2.3 Energy Markets ... 11

2.4 Solution overview .. 13

3. Work environment ... 14

3.1 Work methods ... 14

3.2 Project planning ... 15

3.3 Meetings & Milestones .. 16

3.4 Used technologies .. 18

4. Technical description ... 22

4.1 ArrowHead Document Methodology .. 22

4.2 System Description and Design .. 26

4.2.1 System-of-Systems Design .. 26

4.2.2 System-of-Systems Design Description ... 47

4.2.3 System Design – Middleware .. 55

4.2.4 System Design – FrontEnd .. 59

4.2.5 System Design Description – Middleware .. 61

4.2.6 System Design Description – FrontEnd ... 76

4.2.7 Service Description and Interface Description – Middleware .. 87

4.3 Testing .. 120

xii

4.3.1 Acceptance Tests .. 120

5. Conclusion .. 124

5.1 Summary .. 124

5.2 Accomplished Objectives ... 125

5.3 Limitations and future work .. 125

5.4 Final Appreciation .. 126

Bibliography ... 127

Appendixes .. 130

xiii

xiv

FIGURE INDEX

Figure 1- Arrowhead Framework System of System [2] .. 2

Figure 2 – Typical Flexoffer example [4] .. 5

Figure 3- High level design for the Virtual Market of energy Flex-offer Agents [4] ... 6

Figure 4- Real Time Energy Management in a smart grid [13] ... 9

Figure 5- IoT house-hold fields of application [20] .. 11

Figure 6- Typical RUP Chart [25] .. 14

Figure 7 -The Arrowhead documentation relationships [30]. ... 22

Figure 8 – Overview of the all the systems .. 27

Figure 9- Component diagram for the systems ... 29

Figure 10- Use Case diagram for FlexHousing ... 31

Figure 11 - Sequence Diagram of UC1. .. 40

Figure 12- Sequence Diagram of UC2. ... 41

Figure 13 - Sequence Diagram of UC3. .. 42

Figure 14 - Sequence Diagram of UC4. .. 43

Figure 15 - Sequence Diagram of UC5 ... 44

Figure 16 - Sequence Diagram of UC6. .. 45

Figure 17 - Sequence Diagram of UC7. .. 45

Figure 18 - Sequence Diagram of UC8. .. 46

Figure 19 - FlexHousing System overview ... 47

Figure 20- Components Diagram for the FlexHousing Pilot ... 49

Figure 21- Sequence diagram for the typical usage of the system .. 51

Figure 22- Creation of flexoffer screenshot ... 52

Figure 23- Managing the rooms screenshot .. 53

Figure 24- Device list screenshot ... 53

Figure 25- Screenshot of the 1st step to retrieve measurements .. 54

Figure 26 - Domain Model of the FlexHousing system. ... 55

Figure 27- Normal execution of a request response ... 57

Figure 28 – Component diagram for the FHMW interfaces .. 58

Figure 29 - Domain Model of FlexHousing FrontEnd system. .. 59

Figure 30 - Component diagram for the FHFE interface .. 60

Figure 31 - Component Diagram of the FlexHousing Middleware system. ... 63

file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145465
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145466
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145473
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145483
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145485
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145486
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145487
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145488
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145490
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145491

xv

Figure 32 - Diagram sequence for the FlexofferTimer ... 68

Figure 33 - Sequence diagram for the inner mechanism of the FO emission .. 70

Figure 34 - Sequence diagram for the creation of ExecuteActuation threads... 71

Figure 35 - Sequence diagram for the ActuationExecution thread ... 72

Figure 36 - Class diagram for FHMW ... 74

Figure 37 - Schema for the database in the middleware ... 75

Figure 38- Sequence diagram for UC 1 .. 77

Figure 39 - Sequence diagram for UC 2 ... 78

Figure 40 -Sequence diagram for UC 3 .. 78

Figure 41- Sequence diagram for UC 4 .. 79

Figure 42 - Sequence diagram for UC 5 ... 80

Figure 43- Sequence diagram for UC 6 .. 81

Figure 44- Sequence diagram for UC 7 .. 81

Figure 45 - Chart for the projected implementation of UC 8... 82

Figure 46 - Component Diagram of the FlexHousing system... 83

Figure 47 – Flexoffer Interface ... 88

Figure 48 - Sequence diagram for getAllFlexoffers .. 93

Figure 49 - Sequence diagram for getAllActiveFlexoffers ... 94

Figure 50 - Sequence diagram for getFlexoffer ... 94

Figure 51 - Sequence diagram for getSchedule .. 95

Figure 52 - Sequence diagram for getFObyDay ... 96

Figure 53 - Sequence diagram for getSchedulesByDay ... 97

Figure 54 - Sequence diagram for posting a flexoffer ... 97

Figure 55 - Sequence diagram for deleting a flexoffer ... 98

Figure 56 - Sequence diagram for retrieving the statistics of the house ... 102

Figure 57 - Sequence diagram for deleting a room ... 103

Figure 58 - Sequence diagram for registering a room ... 103

Figure 59 - Sequence diagram for retrieving all the devices in a room ... 104

Figure 60 - Sequence diagram for retrieving the details for a room ... 104

Figure 61 - Sequence diagram for the login in the system .. 105

Figure 62 - Flexoffer Interface ... 105

Figure 63 - Sequence diagram for retrieving all the devices in the system ... 111

Figure 64 - Sequence diagram for retrieving all the actuable devices ... 111

Figure 65 - Sequence diagram for retrieving the details for a specific device ... 112

file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145501
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145502
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145503
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145504
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145505
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145506
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145507

xvi

Figure 66 - Sequence diagram for requesting an actuation on a device ... 112

Figure 67 - Sequence diagram for deleting a sensor ... 113

Figure 68 - Sequence diagram for registering a device.. 113

Figure 69 - Sequence diagram for adding a sensor in the system ... 114

Figure 70 - Sequence diagram for obtaining the details for a sensor .. 114

Figure 71 - Sequence diagram for retrieving the types of sensors from the system 115

Figure 72 - Measurements Interface ... 115

Figure 73 - Sequence diagram for retrieving the measurements collect between 2 dates 117

Figure 74- Sequence diagram for deleting the measurements from a sensor .. 118

xvii

xviii

TABLE INDEX

Table 1 - Gantt diagram for the internship .. 15

Table 2 - Meetings during internship ... 17

Table 3 - Milestones for the project .. 17

Table 4 - List of technologies and libraries used and where .. 18

Table 5 Concepts related to the flexoffer pilot .. 27

Table 6 - Pointers to the description of each system .. 28

Table 7 - Use Case 1 execution flow. ... 32

Table 8 - Use Case 2 execution flow. ... 33

Table 9 - Use Case 3 execution flow. ... 34

Table 10 - Use Case 4 execution flow. ... 35

Table 11 - Use Case 5 execution flow. ... 36

Table 12 - Use Case 6 execution flow. ... 37

Table 13 - Use Case 7 execution flow. ... 38

Table 14 - Use Case 8 execution flow. ... 39

Table 15 - Pointers for the systems in play .. 48

Table 16 - Workflow execution for the handling of requests .. 57

Table 17 - Example for a valid request for a token .. 62

Table 18 - Code sample for the XMPP credentials ... 62

Table 19 - Class for the Models Component .. 64

Table 20 - Class for the Arrowhead Component .. 64

Table 21 - Class for the Controller Component ... 64

Table 22 - Class for the Execution Component .. 65

Table 23 - Class for the DAO Component .. 65

Table 24 - Class for the VPS_Servlet Component .. 65

Table 25 - Class for the DTO Component ... 66

Table 26 - Class for the FH_API Component .. 66

Table 27 - Table description for the Flexoffer .. 75

Table 28 - Sample of code representing the controller method Actuate .. 83

Table 29 - Code sample for a View in the FrontEnd... 84

Table 30 - The representation of the Flexoffer object ... 85

Table 31 - Code for the GetAllDeviceList function of the device handler .. 85

xix

Table 32 - Code for the appendSlice function ... 86

Table 33 - Example of a request to get all flexoffers ... 88

Table 34 - Example of a request to retrieve all active flexoffers ... 88

Table 35 - Example of a request to retrieve the latest flexoffer attached to a device 89

Table 36 - Example of a request to retrieve a schedule attached to a specific device 90

Table 37 - Example of a request to retrieve the flexoffers on a certain day ... 90

Table 38 - Example of a request to retrieve the schedules for a specific day ... 91

Table 39 - Example of a request to store a flexoffer.. 91

Table 40 - Example of a request to delete a flexoffer .. 92

Table 41 - Example of a request to get the statistics of a house ... 99

Table 42 - Example of a request to delete a room ... 99

Table 43 - Example of a request to register a room .. 100

Table 44 - Example of a request to retrieve a specific room ... 100

Table 45 - Example of a request to get all the rooms .. 101

Table 46 - Example of a request to execute the login ... 102

Table 47- Example of a request to retrieving all the devices from the system ... 106

Table 48- Example of a request to retrieve all the actuable devices ... 106

Table 49- Example of a request to retrieve a specific device .. 107

Table 50 - Example of a request to request an actuation on a device ... 108

Table 51 - Example of a request to delete a sensor ... 108

Table 52 - Example of a request to register a device ... 109

Table 53 - Example of a request to register a sensor... 109

Table 54 - Example of a request to retrieve the details of a sensor .. 110

Table 55 - Example of a request to retrieve the sensor types in the system ... 110

Table 56 - - Example of a request to retrieve the data collected by a sensor between dates 116

Table 57- Example of a request to delete the data collected by a sensor ... 116

Table 58 - Description of the parameters used in the flexoffer interface ... 118

Table 59 - Description of the parameters used in the house interface ... 119

Table 60 - Description of the parameters used in the device interface .. 119

Table 61 - Description of the parameters used in the measurement interface .. 119

Table 62 - Acceptance test for UC 1 ... 120

Table 63 - Acceptance test for UC 2 ... 121

Table 64 - Acceptance test for UC 3 ... 121

Table 65 - Acceptance test for UC 4 ... 121

xx

Table 66 - Acceptance test for UC 5 ... 122

Table 67 - Acceptance test for UC 6 ... 122

Table 68 - Acceptance test for UC 7 ... 122

Table 69 - Table describing the goals for the project .. 125

PESTI Report- Flexoffer Pilot

1

1. INTRODUCTION

This section will introduce the reader regarding the framework of this project, its goal and

proponent.

1.1 FRAMEWORK

 CISTER Research Centre has one great work and academic environment: it allows for

challenging state of the art problems, dealing with international partners and means to expand

yourself as an academic student. If the work is appreciated by any international partner, it the first

step for an internship abroad, where you may experience new challenges and new situations, not

available if you were to stay in your country. Furthermore, the Internet of Things research and

application area is about to expand [1]: by being in such an early approach, one is able to be ahead

of the curve and be part of the creation of new paradigm, similar to the web based and mobile

services behaved in the last decade.

 Aƌƌoǁhead is pƌojeĐt foĐused oŶ ͞ƌeiŶǀeŶtiŶg͟ effiĐieŶĐǇ aŶd fleǆiďilitǇ ďǇ usiŶg
collaborative automation. By using networks of embedded devices, it is enabling interoperability

and integration of ŶeaƌlǇ aŶǇ deǀiĐe. Aƌƌoǁhead͛s goal is to iŵpleŵeŶt aŶd eǀaluate pilots foƌ
different application fields (Smart building, industrial production, energy production); Enable

integration with older/legacy systems; Provide a framework for the said purposes.

The Arrowhead Framework builds and transforms the local cloud to meet automation system

requirements regarding: Real time properties; Security and safety; Engineering of automation

functionalities. A local cloud is defined a collection of devices or IoT in a relative proximity. The local

cloud always provides a number of basic core services enabling fundamental Service Oriented

Architectures(SOA) properties like service registration, service discovery, authentication and

authorization plus orchestration of system of systems (see Figure 1).

The ServiceRegistry System -Allows a service that is producing to expose itself to the cloud and

allows consumer services to discover producer services they wish to consume from.

 The Authorization System-Is responsible to control which service can consume a certain producer.

The Orchestration System-Allows coordination (orchestration) of which producer will a certain

consumer be able to employ/use.

PESTI Report- Flexoffer Pilot

2

Figure 1- Arrowhead Framework System of System [2]

A device is defiŶed ͞Aƌƌoǁhead-ĐoŵpliaŶt͟ ǁheŶ ǁith its featuƌes ƌespeĐts ϯ iteŵs:

 design according to Arrowhead Framework Templates- It must be described using

a System of system template document.

 Adapt legacy system or implement new system according to Arrowhead

Framework principles/patterns

 Perform interoperability tests- A compliance test tool is available to test the

interoperability.

PESTI Report- Flexoffer Pilot

3

1.2 PROJECT GOAL

This pƌojeĐt͛s goal is to twofold:

 Validate the flexoffer concept in a new environment

 Validate the application of the Arrowhead Framework with non-Arrowhead compliant

devices.

 This proof of concept revolves around creating a pilot for a home system that can use Flexoffers to

maximize the energetic efficiency of home appliances using a hub for the communication with the

different devices like the in-house terminals (electrical sockets, light bulbs) and an external

Aggregator. Flexoffers (FO) are a new concept which aims to balance energy demand and response

by synchronizing consumption with production. The FO concept, which works by scheduling when

energy is consumed, has the advantage of reducing the energy costs of industrial or domestic

installations. In order for the FO to be relevant for the Energetic Market (EM) it has to be combined

or aggregated with other FO͛s on the same energetic grid. The Aggregator receives the FO from all

the house-holds and combine them and send it as a unique FO. When the EM reply arrives, his

responsibility is to redistribute the energy between the house-holds it supervises. For this project,

the external technologies that are in use are smart plugs provided by a Portuguese energy solution

company. The employment of these plugs allows us to enforce the schedule sent back from the AG.

1.3 ORGANIZATION OVERVIEW AND PRESENTATION

CISTER is one of the leading international research centres in real-time and embedded computing

systems. In both the 2003 and 2007 evaluation processes, the Unit was granted the classification

of ͚EǆĐelleŶt͛ ;the highest possiďle mark at that time) [3].

CISTER has been focusing its activity in the analysis, design and implementation of Real-Time and

Embedded Computing Systems. Particularly, CISTER has provided advances in architectures for

distributed embedded real-time systems, real-time wireless sensor networks, cyber-physical

systems, middlewares for embedded systems and on the usage of multicore processors on real-

time systems. CISTER is consistently involved in several collaborative European, national RTD

projects and initiatives. Relevant to this project, the unit was a core partner in the ArtistDesign and

CONET (Cooperating Objects) European NoE, EMMON (EMbeddedMONitoring) projects, lead the

International SENODs project (together with Portugal Telecom and the Carnegie Mellon University),

on energy-efficient data centres and has recently finalized the ENCOURAGE (Embedded iNtelligent

COntrols for bUildings with Renewable generation and storage) project. Currently CISTER is

involved in several European projects, particularly relevant to this project is the participation, in

PESTI Report- Flexoffer Pilot

4

multiple workpackages of the Arrowhead project, the participation in DEWI, CISTER is also

participating in the MANTIS project, which is just about to start.

1.4 CONTRIBUTIONS

This project represents the only solution that integrates the sole implementation of the

Arrowhead concept of flexoffers with technology to manage appliances, given in this case by a

national company. This platform, in its current stage is, easily deployable, only needing a device to

run the jar and internet connection, as long as the user has an installation of the external

technologies (A Cloggy gateway and compliant devices such as plugs or sensors) approached further

is this paper. FlexHousing, marketing/code name given to this application, empowers the user with

the full control of his devices. This platform allows monitoring, flexoffer application, actuation on-

the-go and even energy control/planning. The user has the information to understand and know

what is going on in his facility, this being either his house or industrial site. The existence of the web

interface also makes this platform the only one for an energy manager, in regards of the flexoffer.

The existing ones only target the user and from an energy point of view, not in energy or device

manager one. There already implementations that manage flexoffers but FlexHousing is the first to

manage energy and flexoffer compliant devices.

1.5 REPORT STRUCTURE

This report is divided in four main chapters, Context, Work Environment, Technical Description, Testing and

Conclusions.

Chapter Erro! A origem da referência não foi encontrada., Context, starts by describing the problems in

question. It gives an insight on the various areas that had to be studied in order to create a valid solution. It

also gives a description of the solution that was developed.

Chapter 3, Working Environment, depicts the how the work was planned and what were the technologies

that were used to create the end product.

Chapter 4, Technical Description, how the name implies, describes the implementation of the solution from

a technical point of view. The 1st sections explains how the description is documented. In this case, it͛s made

by using the Arrowhead project documentation.

Chapter Erro! A origem da referência não foi encontrada., Tests Description, focus on software testing, in

which we have the description of each test..

Chapter 6, Conclusion, describes the conclusions regarding all aspects of the project, both technical and

management. It approaches the limitations, future work, goals achieved and gives a final overview of the

internship and project

PESTI Report- Flexoffer Pilot

5

2. CONTEXT

This section will allow the reader to understand the origin and theoretical stand-point of the

project, how solution will be tackled and its design.

2.1 PRESENTED PROBLE M

 Flexoffer is the idea that has been developed within the EU FP7 project MIRABEL [2]. It

permits exposing demand and supply loads with associated flexibilities in time and quantity for

energy commerce, load levelling, and different use-cases. Flexoffers are generic entities, and may

accommodate numerous varieties of consumers (e.g., electrical vehicles, heat, pumps, home

equipment, industry) and producers (discharging electrical vehicles, solar panels). it's presently

undergoing an EU standardization process through CEN/CENELEC CWA. In its simplest form, a

flexoffer specifies a quantity of energy, a duration, an earliest begin time, a latest finish time, and

a price, e.g., "I want ten KWh over two hours between one AM and five AM, for a value of 0.35

DKK/kWh". An additional complete example is shown in Fig. 1 [4].

Flexoffer are built by supplying information about the earliest start time, latest star time

and the time slice with their respective high and low load of energy. This information is needed to

better meet the energetic needs: during a time-slot, the energy usage may vary, thus, we may find

a better solution if we work between values. Flexoffers can be applied to low producing/consuming

entity such has households but can also be applied to larger ones such as factories. Flex-offers will

be aggregated and disaggregated irrespectively to a kind of consumption or production they

represent. Each collective and non-aggregated flex-offers may be mixed and dealt uniformly. A flex-

offer may be seen as a sort of "option" that a user wants put out on an energy market. The flex-

offer may be rejected, for instance if the price isn't right. If the choice is accepted, the flex-offer is

Figure 2 – Typical Flexoffer example [4]

PESTI Report- Flexoffer Pilot

6

given a schedule, e.g., the flex-offer is scheduled at two AM, and the consumer system is notified.

On the best case, the schedule is applied as specified. However, one of perks of using flex offer may

only be put in play once things don't go as expected, for example as a result of an abrupt drop in

wind energy. In this case, the flex-offer will be rescheduled, shifted to three AM, once the wind has

come back. [4]

The planned architecture is structured upon 5 modules, where 3 belong to the core

arrowhead framework – Service registry, Authorization, and Orchestration, and the other 2

modules exchange business logic information – the aggregator and the Flex-offer Agent (FOA). [4]

Its design already provides functionalities for obtaining info regarding the creation of flex-offers,

the power consumption profile of specific devices, and control the execution of a scheduled flex-

offer. Flex-offer Agents are very versatile, its design permits for its total implementation to be

running on one device or distributed through many devices. As an example, the company providing

the flex-offer service may offer the user a specific hardware device, solely for the FOA. The

Aggregators receives flex-offers from FOAs, combines them with flex-offers from other sources,

into larger macro flex-offers and then puts them to the Virtual Market of Energy. Note that

Flexoffers need a specific dimension before being able to be bided on at the Energy Market

Afterwards, the aggregator receives a response from the Virtual market of Energy, disaggregates

the response and sends the FOA its consumption schedule. Many types of Aggregators may exist,

Figure 3- High level design for the Virtual Market of energy Flex-offer Agents [4]

PESTI Report- Flexoffer Pilot

7

and a few Aggregators may be more specific for the management of electrical motors whereas

others may be more adequate for the management of heating systems. In addition, selecting the

most adequate aggregator additionally depends on the geographic region. To get the information

of a specific aggregator, a FOA uses the Service registry module, to register itself, and the

Orchestration module to find the aggregator that matches the needs. Has stated before, both

modules can be reach using the arrowhead system. The Service Discovery service has already 2

implementations, one uses DNS Service Discovery (DNSSD) [5] and another uses Berkeley internet

Name Domain (BIND) [6] [7]. The security issues are dealt by the Authorization module. This module

is by different entity, most often the electrical company, with whom the prosumer is supposed an

agreement to profit from flex-offers. By using a combination of Public Key Infrastructure (PKI) and

X.509 certificates over REpresentational State Transfer (REST) protocol the Authorization module

was built [8]. All communications may be encrypted by using Extensible Messaging and Presence

Protocol (XMPP) [9] over Transport Layer Security (TLS) [10]. After that, the FOA and therefore the

aggregator should first obtain its security certificates through the Authorization module. Only after,

are the modules able to connect. The FOA obtains the address of the Orchestration module using

the Service registry module that stores info concerning all of the accessible service producers, their

location and characteristics. As to being discovered, an arrowhead compliant module will begin by

communicating with the Service registry module and then register itself by providing info

concerning its address and its offered services. The Orchestration module contains info regarding

connection rules and system configuration, so permitting the FOA to get the address of the most

adequate aggregator for the devices controlled by it. The aggregator or a system administrator

ought to antecedently have configured the connection rules for the aggregator considering its

geographical location and therefore the kind of devices that it's enabled to receive flex-offers from.

This feature allows FOAs to connect to Aggregators that implement specialized algorithms capable

of optimizing the results for specific styles of devices. The Orchestration module has been

implemented using REST. The aggregator and the FOA communicate using XMPP, and exploits the

present arrowhead to establish connections by using their services and protocols. The main

advantage of XMPP is that it supports the Publish/Subscribe communication paradigm, that

provides an asynchronous and extremely scalable many to-many communication model. In

addition, XMPP is additionally in the process of being standardized.

2.2 BUISNESS AREA AND TECHNICAL CONTEXT

The internet was created to help research by connecting various universities [11]. It started

as an exchange of packets with a speed of 56 kb/s and as evolved into the World Wide Web we

kŶoǁ todaǇ. TodaǇ͛s soĐietǇ uses the iŶteƌŶet foƌ ǀaƌious puƌposes suĐh has Ŷet ďƌoǁsiŶg, usiŶg
Mozilla Firefox or Google Chrome, communication with emails or Instant Messaging and to share

various media, videos, photos or music. More and more devices are now able to connect

themselves onto the internet: Cell phones, Cars, Appliances. If any object has some integrated

electronics capable of running some basic software, it can be connected too. This allows it to send

or and receive data and act depending on it. An electrical socket can be turned off after a server

sent it a shutdown signal or an oven can be turned on after the user used an App on his cell phone

PESTI Report- Flexoffer Pilot

8

to seŶd a ŵessage to do so. The Ŷuŵďeƌ of these ͞ThiŶgs͟ that aƌe ĐuƌƌeŶtlǇ ĐoŶŶeĐted aŶd aĐtiǀe
is increasing [12]. The next step is to diminish the interactions between man and things and have

exclusive thing to thing communication. Such evolution will be accompanied by various solutions

in terms of devices, technologies and performance. New technologies have been invested in, in

order to have a better performance while old ones have been refurbished. IoT can have big impact

on our society and on our economy. The transport industry can be heavily impacted too: having an

accurate reading of passengers can have an impact on which route of a sub way grid reinforce,

therefore reducing the waiting of the travelers and attaining a better response time. There also

place for IoT in medical care: A little microchip implanted in a patient can track its movements

around the hospital and have an on-the-go reading of the medication he has already been

prescribed. The solutions are limited by our imagination and by our current technology.

IoT has various methods to apply itself to the real world: If you must act as a response to a certain

event then you can use a IoT solution to make it happen. Some solutions are already in place around

us: newborn babies in most modern hospitals have a small tracker either under their skin or in a

snug-fitted bracelet. This allows to track their locations and act with the utmost quickness, either

to avoid a serious condition or to avoid theft. Sensors and devices are all around us.

2.2.1 ENERGY SOLUTIONS

Most eŶeƌgǇ ĐoŵpaŶies ďill Ǉou foƌ the poǁeƌ Ǉou ƌeŶt: eǀeŶ Ǉou doŶ͛t ĐoŶsuŵe has ŵuĐh as Ǉou
are given, you will still be billed. By having a sensor directly connected to main power line going

inside your house, which is normally the cable that goes into the meter, you can have an accurate

reading off how much you are actually consuming. The electrical grid is intelligent, hence its new

name: smart grid (see figure 4).

PESTI Report- Flexoffer Pilot

9

Figure 4- Real Time Energy Management in a smart grid [13]

There are some solutions for outside public lighting employing smart grids [14]: Having sensors on

street lamps that will receive that on the luminosity so that the intensity of the light that the lamp

is giving can be related to current natural lighting. You could also relate the luminosity emanating

from the street lamp with the time and day of the week: On week days, people are less active during

the earlier hours of the day in contrast with the night life during the weekends: More people equals

more need for lighting. These kinds of problem lead to a new paradigm: the old hierarch

uŶidiƌeĐtioŶal gƌid isŶ͛t ďuilt ĐoƌƌeĐtlǇ: the sŵaƌt gƌid Ŷeeds ŵoƌe ĐoŶŶeĐtiǀitǇ, ďi diƌeĐtioŶalitǇ aŶd
is more complex. The end users are now able to be relevant to the grid in consumption and also

production. These users are known as prosumers. With the number of prosumers increasing every

year, the last mile of the grid needs to be structured as it will behave differently from before this

surge [15]. A common trait of the entities or end points in the last mile of the smart grid is the

usage of sensors and actuators that will manage the energy and handle the schedules. The ones

ĐuƌƌeŶtlǇ aǀailaďle iŶ the ŵaƌket doŶ͛t haǀe the ĐoŵputiŶg poǁeƌ to haŶdle complex or heavy

protocols: the sensors normally act as relays, sending their data to a gateway installed inside the

building. The gateway is connected to internet, bridging the interaction between the user, the

sensors/actuators and the grid [16].

PESTI Report- Flexoffer Pilot

10

2.2.2 SMART HOUSING / SMART BUILDING

Having sensors installed on appliances can enable us to receive information about them and

make them do actions in consequence. When you leave your work place, you can, with your

cellphone, make you AC turn on so that when you arrive home, the room temperature is as you

like. Studies have revealed that each appliance has a unique energetic signature. A freezer has a big

spike iŶ ĐoŶsuŵptioŶ has it staƌts it͛s ĐooliŶg ĐǇĐle, theŶ goiŶg to a ŵoƌe moderate one finally

shutting off completely when the desired temperature is reached. Controlling which appliances are

consuming the most energy can allow the user to react to any kind of unnecessary spending and

actually do some savings. It can have a big impact on security: Closed Circuit TV (CCTV) cameras can

be connected directly to the internet and allow instant viewing of the exterior or interior of your

house. Dooƌ ĐoŶtƌol oǀeƌ the iŶteƌŶet ĐaŶ eŶaďle Ǉou to opeŶ the dooƌs eǀeŶ if Ǉou͛ƌe Ŷot hoŵe.
Monitor the movement inside your house be connecting the sensors to a database. This

redundancy can be used in case of a break in. This can also save lives: if the routine of a family is to

wake up around 7 in the morning to start their day, if no movement is picked up in the living room

or kitchen at around 8, it can make the phone ring or even send a text or email to someone to check

if that situation is normal. As loŶg has it has soŵe kiŶd of ĐoŶŶeĐtiǀitǇ aŶǇ deǀiĐe ĐaŶ ďe ͞sŵaƌt͟
(see figure 5)

There are already products using IoT for smart housing:

 Neurio – By installing a Wi-Fi enable device with the power/electrical panel,

through the use of sensors, Neurio can monitor the usage of each device,

identifying them by their energetic signature [17];

 Canary – A single hub contains sensor for air quality, sound, motion, temperature

and motion. By using machine learning it can establish the regular behaviour of

your house hold. Any data capture by those sensors outside of the standard

behaviour triggers the emission of an email or an alert on their mobile app [18];

 Ivee Sleek- An alarm looking device, enabling you to talk with the house. It connects

to various other smart devices, allowing you to speak commands to them. Also able

to report the weather and other news through the usage of internet [19];

PESTI Report- Flexoffer Pilot

11

Figure 5- IoT house-hold fields of application [20]

2.2.3 ENERGY MARKETS

The energy markets consist of producers, transmitters, distributors and consumers. The producers

create the energy from power plants. They can be from either fossil or green origins. The

transmitters are responsible for the supply of energy, taking it from its origin to the demand points

(eg: from the dam to the city) and the distributors for the local distribution within the city (the

overhead cables in the streets). Society is, nowadays, becoming a low consumption economy,

driven to use more competitive prices and greener energy. A European agreements of

commitŵeŶts kŶoǁŶ as ͞ϮϬ/ϮϬ/ϮϬ͟ has set goals, ƌegaƌdiŶg eŶeƌgǇ foƌ ϮϬϮϬ: A ŵiŶiŵuŵ of ϮϬ%
reduction in GHG emissions, 20% of energy production coming from renewable resources and a

20% reduction in energy usage, by upping energy efficiency. In order to stimulate international

development of renewable energies, Renewable Energy Certificates System were implemented,

relating the power being sold and its impact in the environment. By 2020, under EU legislation, 80%

of consumers will have smart meters, allowing a greater efficiency, more competitive prices and a

better demand-response management. The nationwide is responsible, fed by power plants,

PESTI Report- Flexoffer Pilot

12

transport the energy through the country, normally with 400 and 100kV. Then we have regional

grids, relaying the national grid to the local one, with energy, typically, within 130 and 5kV. Small

energy producers (large wind farms or decentralized power plants) and large consumers (large

industrial complexes) can be connected to the regional grid. The local grid provides the consumers

with 400V energy. Domestic wind and sun power plants are connected to the local grid. Upon

obtaining the obligatory licenses and agreements, generation and consequent supply of electricity,

plus the administration of electricity retail markers are fully open to competition. Still, public

concessions are needed for the assignment of the transmission and distribution of components of

the electricity industry.

Generation of electricity can be divided into the ordinary regime and special regime.

The ordinary regime refers to the majority of electricity production. In Portugal, the rights to

manage the 26 large hydropower plants are retained by EDP (Energias de Portugal) and the

transmissions are managed by the National transmission grid, currently credited to REN Rede

Eléctrica.

The electricity market is opened since 2006, with all consumers in the mainland being able to

choose their electricity supplier, without additional charges for switching companies. On the other

side, suppliers can openly buy and sell electricity, and can access the national transmission and

distribution networks upon payment of the required fees, set by the Regulatory Authority. In 2001,

the Portuguese Government presented several energy efficiency measure, with the aim to ͞ suppoƌt
the progressive implementation of telemetering for electricity, water and gas as a strategy for

distƌiďutioŶ Ŷetǁoƌk aŶd ƋualitǇ seƌǀiĐe iŵpƌoǀeŵeŶt͟. Lateƌ that Ǉeaƌ, togetheƌ ǁith the “paŶish
Government, approved the Electricity Iberian Liberalized Market (MIBEL), stating that citizens from

the Iberian Peninsula could purchase electricity freely from any agent in the market. Compulsory

installation of digital meter for new facilities and the replacement of all traditional meters by smart

meters are some of the agreements stipulated for MIBEL. In 2011, Portugal started a wide

implementation of Smart Electricity Grid (Smart Grid), with the final goal to cover six million of all

customers until 2017.

The special regime is associated with the production of electricity, via renewable sources.

Generation of electricity under the special regime is subject to different legal requirements, but on

the other hand benefits from special pricelists. Portugal is one of the countries in the European

Union (EU) most dependent of fuel importation (77% in 2010). Hydropower in the most significant

renewable energy source, with the total share of renewable energy consumed of 22,9% in 2010

[21].

PESTI Report- Flexoffer Pilot

13

2.4 SOLUTION OVERVIE W

By using external technologies, in this case provided by VPS [22], a Portuguese energy

solutions company, we are able to apply the Flex-Offer(FO) concept to a real-life situation. By using

smart-plugs as our actuators and sensors we can control the energy usage of appliances in order to

make them work, respecting the Flex-Offer created on them. FlexHousing is a middle-ware

application that communicates with the flexoffer cloud through its components, such as the

FlexOfferInterface and FlexOfferAgent, and with VPS API, that provides the necessary

services to operate with the smart-plugs. The application runs in a device, inside the building, and

provides services through an API so that the WEB-Service, we also implemented, allows the user to

configure FlexHousing to his needs. The application also allows the user to check the energy

consumption of any plugs he has installed, regardless if a Flex-Offer has been applied or not. This

also helps the user get to know his appliances better and make informed decisions about whether

or not to apply a certain Flex-Offer to a device. Once a FO has been applied to a device/plug, the

application maintains the energy usage of the said device linked to that FO until the user chooses

otherwise, by either establishing a new FO or just remove the device from the FO interface of the

application. The WEB-Service server is running externally and provides an easy-to-use graphical-

iŶteƌfaĐe foƌ the useƌ to iŶput all the iŶfoƌŵatioŶ, ƌegaƌdiŶg the house, FO͛s and devices.

Fƌoŵ the useƌ͛s poiŶt-of-view, FlexHousing will allow the user to:

 Manage his devices- The user is able to register new ones, edit the configuration of old

ones (either name or location). We are currently only using smart plugs but the application

will allow to use any device provided by VPS (Water temperature sensors, gas sensors, etc.)

[23]. If the user wants he can also turn off and on any device. Every plug has the capability

to cut the flow of electricity (The execution of the command is what allows us to apply the

FO concept);

 Check the Consumption – Because we are using ISA technology and devices, we provide

the user the possibility of checking the current consumption of any appliance/plug you

have installed. You have the possibility of monitoring a device for a given period of time,

resulting in a graph of energy consumption throughout that period;

 View and manage his Energetic Profile- The aggregation of every FO the user has in his

building will give us his Energetic Profile. With this option, we allow the user to create the

FO for his appliances. The user inputs the information needed for the FO creation such as

start time, end time, latest start or finish and more importantly the energy for each time-

slice. If available, the consumption graph of the device he is trying to setup will display in

order to help the user build a correct FO. Nonetheless, the user is able to setup any kind

of energy configuration he wants;

 Manage the house – Create new rooms in order to have devices be placed there. This also

allow the user to have an overview of the house and check the relationship between the

rooms and devices;

PESTI Report- Flexoffer Pilot

14

3. WORK ENVIRONMENT

The work developed for the internship differs from a traditional software development: new

products are services are being created in order to create a proof of concept demonstrator. This

work will be a staple for the Arrowhead European Project.

3.1 WORK METHODS

For the accomplishment of the initial proposed project objectives, an iterative work

method was adopted, using the Rational Unified Process technique.

According to the 4 phases of RUP [24], the project was distributed in the following way:

1. Inception – Research and code analysis. It was studied the best technologies to

put in practice for the project.

2. Elaboration – Code design, such as functional and non-functional requirements

were documented.

3. Construction – All the use cases were implemented.

4. Transition – Some prototypes were made and posted on practice, resulting on

code tests and improvements.

Figure 6- Typical RUP Chart [25]

Because this project was being worked on in a research centre, it has various partners with different

responsibilities. This work is to be seen as a demonstrator of concepts and solutions, in this case

developed beforehand. The demonstrator has the responsibility of showing the reliability of the

Flexoffer for the real world. That was the only requirement for this project therefore any sub

adjacent analysis and design were directed to features and use-cases created by myself. The

analysis & design step took longer because of the high load of theoretical concepts and by the fact

that most of the code directly linked to this project was created by partners in Aalborg, Denmark.

PESTI Report- Flexoffer Pilot

15

During the project, various milestones were implemented (see Table 3).

3.2 PROJECT PLANNING

A considerable amount of new technologies was introduced therefore a large amount of

time was allocated for their adaptation and introduction. Several small tasks were necessary

before actually tackling the project, such as installing the AH server, testing the technologies

developed, testing the devices received from the partners. Table 1 represents the Gantt diagram

with the deadlines for each task approached in this project.

Table 1 - Gantt diagram for the internship

Task Duration Begin End

Kickoff 1d 25/02/16 25/02/16

Studying Framework Arrowhead 232d 25/02/16 14/10/16

REST e XMPP in Java 7d 25/02/16 04/03/16

Dummy application using grizzly 3d 25/02/16 29/02/16

Installation and maintenance of Openfire

Sever
4d 29/02/16 03/03/16

Testing of Dummy application 5d 29/02/16 04/03/16

Local installation of Arrowhead Core Services 6d 04/03/16 11/03/16

Studying of documentation 4d 04/03/16 09/03/16

Installation on physical machine 3d 07/03/16 09/03/16

Service configuration 3d 09/03/16 11/03/16

Dummy application using local Arrowhead

Deployment
6d 11/03/16 18/03/16

Design and implementation 4d 11/03/16 16/03/16

Testing 3d 16/03/16 18/03/16

Pilot for flexoffer concept 100d 21/03/16 05/08/16

Design 90d 21/03/16 22/07/16

PESTI Report- Flexoffer Pilot

16

Investigation of previous Arrowhead and flexoffer applications. Try-outs for various

architectures

using the smart plugs. Each new design was introduced using UML then they were submitted to

the supervisors for acceptance. All the Use-Case were also accepted by the project supervisors.

Implementation 80d 11/04/16 29/07/16

The implementation had 2 phases: the middleware, hosting the services and the business logic,

and the web-server, seƌǀiŶg as a fƌoŶt eŶd ͞ƌeŶdeƌeƌ͟ foƌ the useƌ to ŵaŶage his deǀiĐes. The
front end was only started after the middleware was in an advanced stage of development.

Testing 65d 09/05/16 05/08/16

Unit, integration, deployment and performance tests

Final Report 100d 21/03/16 05/08/16

Structure and Content 85d 21/03/16 15/07/16

Result Gathering 50d 09/05/16 15/07/16

Result analysis 6d 18/07/16 25/07/16

Revision and Proofreading 10d 25/07/16 05/08/16

End of internship Tasks 51d 05/08/16 14/10/16

Writing of an article about FlexHousing for INForum 2016. Preparing a presentation and video

for the presentation at INForum 2016.

Nearly every milestone and deadlines were met, even though some new tasks were introduced that

might have delayed the project. Quick reaction and effective planning allowed us not to be delayed.

At the end of the project, due to some delay and due to time constraints the implementation of the

FrontEnd had some setbacks and some the deadlines in the original planning were crossed. One of

the featuƌes ǁasŶ͛t iŵpleŵeŶted.

3.3 MEETINGS & MILESTONES

 For each major decision or event, we had a meeting informal meetings, either to decide

to employ a solution or approach or to check if a decision was correct. The meetings took place

either in the supeƌǀisoƌ͛s offices or at the work station. Milestones were establishing to control

the workflow and to have palpable results, in a gradual and incremental way.

PESTI Report- Flexoffer Pilot

17

Table 2 - Meetings during internship

Date Presences Description

25/02/16
Joss Santos, Luis Ferreira, Michele Albano,

Paulo Barbosa, Renato Ayres e Pedro Moura

Discussion about each project and

projected results

10/03/16
Joss Santos, Luis Ferreira, Michele Albano,

Constantino Martins

Meeting between ISEP and external

supervisors

11/03/16 Joss Santos, Luis Ferreira, Michele Albano Discussion for code design

06/04/16 Joss Santos, Luis Ferreira, Michele Albano Project status

02/05/16 Joss Santos, Luis Ferreira, Michele Albano
Project status and demonstration of

prototype

09/06/16 Joss Santos, Luis Ferreira Demonstration of features

19/07/16 Joss Santos, Michele Albano
Discussion for possible publishing of

paper

31/08/16 Joss Santos, Luis Ferreira, Michele Albano Demonstration of FrontEnd prototype

15/09/16 Joss Santos, Luis Ferreira, Michele Albano Final Demonstration

The millstones were decided by the supervisors, except when it was required for an event such as an event

at CISTER or an external one. Such is figured in Table 3.

Date Description of milestone
Day it was

finished

01/05/16 Prototype of Middleware capable of connecting to all the services 01/05/16

06/06/16 Final implementation of Middleware 07/06/16

31/08/16 Prototype of FrontEnd capable of communicating with middleware 29/08/16

15/09/16 FlexHousing as a complete system 15/09/16

Table 3 - Milestones for the project

PESTI Report- Flexoffer Pilot

18

3.4 USED TECHNOLOGIES

This section will briefly approach every technology used, at some time, along the project.

Beneath, you will find Table 4 containing information about the technology and regarding where

it was used.

Table 4 - List of technologies and libraries used and where

Name Where it was Used

JAVA

All the code used in the middleware was written using JAVA. The code

received from the Arrowhead platform and from the partners was also

written in JAVA.

Jersey & Grizzly These JAVA libraries enable the usage of services hosted by an API. These

are used in the middleware in order to consume service hosted by API but

also to host them.

Apache Derby

The data stored in the middleware. The persistence is guaranteed by an

Apache Derby database.

XMPP

XMPP is used for communication between some of the modules in

FlexHousing. It allows for secure message exchange.

Linux

A local server of the Arrowhead core services was installed at CISTER. The

ISO installed used a CentOS distribution.

C# The web client code is written in C#. The FrontEnd system is going to run

on a ISS server.

MVC The web client will mostly do CRUD operations. MVC allows an easy

interaction between app and user.

.NET This framework provides several components, essential for web clients.

Each technology usage was heavily discussed. Several approaches with other technologies were

possible but these were the ones that were either chosen or continued (The WP5 modules were

written in JAVA, therefore a JAVA written Middleware was the obvious choice)

 Java

Java is an object-oriented programming language first released by Sun Microsystems in 1995. It is

fast, secure, and reliable. From laptops to datacentres, game consoles to scientific supercomputers,

cell phones to the Internet, Java is widely used. Java language is very based on C and C++ languages,

many of Java´s defining characteristics come from this two predecessors, which are refinements

aŶd ƌespoŶses to the pƌedeĐessoƌ͛s liŵitatioŶs. [26]

PESTI Report- Flexoffer Pilot

19

What really defines Java is its portability, because to make C and C++ work in different CPUs it is

needed a compiler for each type of CPU, and compilers are expensive and time-consuming to

create. Therefore, back then Java founders decided to work on a portable, platform independent

language that could be run every type of CPUs, leading to the creation of Java.

Currently the latest Java version is Java SE 8 and represents another very significant upgrade with

the introduction of lambda expression. The purpose of lambda expressions is to simplify and reduce

the amount of source code needed to create any functions. [27]

 Apache

Apache Derby is simple but powerful: easily deployable, as it is seen as Java class library, but from

a relational database point of view it has various features like crash recovery, rollback on

transactions, query injection, views and even constraints for the primary and foreign keys.

Installing it is as simple as copying a jar file to your project. It can be embedded to a project or used

as a stand-alone package. Because of this you can use the same package for various platforms and

operating systems simply by copying a few files.

You can employ Apache derby in 2 ways: when its embed its part of the application. It͛s part of the

Java Virtual Machine, launched and stopped at the same time as the project. The jar contains both

the database engine and JDBC driver; In the network mode it can service application from different

VM, or in other words, from different application in different coding languages such as php, python

oƌ eǀeŶ C. All Ǉou haǀe to do is use the speĐifiĐ ĐoŵŵuŶiĐatioŶ ŵodules aŶd Ǉou͛ƌe good to go.

 XMPP

Extensible messaging and Presence Protocol (XMPP) is an open XML technology for real-time

communication, that powers a large range of applications as well as instant electronic

communication, presence and collaboration. XMPP is a protocol; a collection of standards that

enables systems to speak to each other. XMPP is employed wide across the net, however is

commonly unadvertised. The presence indicator tells the servers what is your current availability.

In technical terms, presence determines the state of an XMPP entity; in common man terms,

whether or not you're there and prepared to receive messages or not. The ͚ŵessagiŶg͛ a paƌt of
XMPP is the ͚pieĐe͛ Ǉou see; the instant message sent to the users. XMPP has been designed to

send all messages in real-time employing a very efficient push mechanism. whereas existing net

primarily based mechanisms usually build many unneeded requests introducing network load, and

are consequently not real-time. Defined in an open standard and exploiting an open systems

PESTI Report- Flexoffer Pilot

20

approach of development and application, XMPP is meant to be extensible. In different words, it's

been designed to grow and accommodate changes. [9]

 BIND

BIND is open source package that implements the domain name System (DNS) protocols for the

web. it's a reference implementation of these protocols, however it's also production-grade

software, appropriate to be used in high-volume and high-reliability applications. The name BIND

staŶds foƌ ͞BeƌkeleǇ iŶteƌŶet Naŵe DoŵaiŶ͟, as a ƌesult of the Đode oƌigiŶated ǁithiŶ the eaƌlǇ
Eighties at the University of California at Berkeley. [6]

BIND is out and away the most widely used DNS software on the web, providing a sturdy and stable

platform on top of which organizations will build distributed computing systems with the

knowledge that those systems are absolutely compliant with published DNS standards.

 C-Sharp

C# syntax is very expressive, nonetheless it's also straightforward and simple to learn. The curly-

brace syntax of C# is instantly recognizable to anyone acquainted with C, C++ or Java. Developers

who understand any of those languages are usually ready to begin to work profitably in C# inside a

really short time. C# syntax simplifies several of the complexities of C++ and provides powerful

options like nullable value types, enumerations, delegates, lambda expressions and direct memory

access, that don't seem to be found in Java. C# supports generic methods and types, which give

enhanced type safety and performance, and iterators, that alter implementers of collection classes

to define custom iteration behaviours that are straightforward to use by client code. Language-

Integrated query (LINQ) expressions build the strongly-typed query a first-class language construct.

As an object-oriented language, C# supports the ideas of encapsulation, inheritance, and

polymorphism. All variables and methods, together with the main method, the application's entry

point, are encapsulated among class definitions. A class could inherit directly from one parent class;

however, it may implement any variety of interfaces. methods that override virtual methods in a

parent class need the override keyword as a way to avoid accidental definition. In C#, a struct is

sort of a light-weight class; it's a stack-allocated type which will implement interfaces however

doesn't support inheritance.

In addition to those basic object-oriented principles, C# makes it simple to develop software

elements through many innovative language constructs [28].

PESTI Report- Flexoffer Pilot

21

 APS.NET MVC

APS.NET MVC is a framework for building internet applications employing a MVC (Model view

Controller) design. The MVC model defines internet applications with three logic layers:

 The business layer (Model logic)

 The display layer (View logic)

 The logic layer (Controller logic)

The Model is the part of the application that handles the logic for the application information. Often

model objects retrieve information (and store data) from a database. The view is the elements of

the application that handles the display of the information. Most often the views are created from

the model information. Interaction is handled by the Controller. The Controller will receive the

input from the view and act accordingly. Typically, controllers read data from a view, manage user

input and send input data to the model. The MVC separation helps you manage advanced

applications, as a result of you'll focus on one side a time. as an example, you'll target the view

without depending on the business logic. It additionally makes it easier to test an application. The

MVC separation additionally simplifies cluster development. different developers will work on the

view, the controller logic, and also the business logic in parallel [29].

PESTI Report- Flexoffer Pilot

22

4. TECHNICAL DESCRIPTION

As partner of Arrowhead Framework, the developer is obliged to write the technical documentation

following the Arrowhead templates and guidelines. Since most of this documentation approaches

both project analysis and implementation, it was decided to put in this chapter all written

documents

4.1 ARROWHEAD DOCUMENT METHODOLOGY

Every Arrowhead partner must document and describe its developed solutions according to the

Arrowhead compliant documentation. This has the purpose of accomplishing a common

understanding of every Arrowhead partner. The Arrowhead compliant methodology includes

design patterns, documentation templates and guidelines that aim at helping systems to conform

to Arrowhead framework specifications.

The Arrowhead compliant documents consist in three levels: System-of-Systems, System and

Service levels Figure 7 depicts.

Figure 7 -The Arrowhead documentation relationships [30].

The approach is to applǇ teƌŵs ͞ďlaĐk-ďoǆ͟ aŶd ͞ǁhite-ďoǆ͟ oŶlǇ iŶ the “Ǉsteŵ Leǀel, iŶ seŶse of
writing an abstract high-level description of a system approaching only its behaviour, and on the

other case in the sense of writing with detail the implementation done.

PESTI Report- Flexoffer Pilot

23

4.1.1 SYSTEM-OF-SYSTEMS LEVEL

At the System-Of-Systems (SoS) there are two types of documentation, System-of-Systems

Description (SoSD) document and System-of-System Design Description (SoSDD).

SYSTEM-OF-SYSTEMS DESCRIPTION (SOSD) TEMPLATE

This document should contain an abstract high level view, describing the main functionalities and

generic architecture, without referring any specific technology. Such document must include use-

cases to help understanding the expected behaviour. Bases on these use-cases, the document

should include behaviour diagrams. It is also recommended the support of UML diagrams, mainly

component and activity diagrams [30].

In this document, it is also important to include information about non-functional requirements,

which the security must be treated separately. This includes the definition of security principles

that SoS needs to follow on a non-technical generic level, the security objectives and the assets

which need to be protected.

SYSTEM-OF-SYSTEMS DESIGN DESCRIPTION (SOSDD) TEMPLATE

This doĐuŵeŶt desĐƌiďes hoǁ a ͞“Ǉsteŵ-of-“Ǉsteŵ DesigŶ DesĐƌiptioŶ͟ has ďeeŶ iŵpleŵeŶted oŶ
a specific scenario, describing the technologies used and its setup. The document starts with an

abstract high-level view of the SoS realization, describing how its main functionalities can be

logically implemented. Specific use-cases are described next, supported by structure and behaviour

diagram.

The non-functional requirements implemented by this realization must be listed along with its

security features. To support the validation of the security attributes of this SoS realization, it is also

necessary to include information identifying the data flows in the system as well as its threads and

vulnerabilities [30].

4.1.2 SYSTEM LEVEL

At the sǇsteŵ leǀel theƌe aƌe tǁo diffeƌeŶt ƌepƌeseŶtatioŶs, the ͞“ǇsD Teŵplate͟ ĐoŶsists iŶ a
͞ďlaĐk-ďoǆ͟ desigŶ, ǁhile the ͞“ǇsDD Teŵplate͟ ĐoŶsists iŶ a ͞ǁhite-ďoǆ͟ desigŶ.

SYSTEM DESCRIPTION (SYSD) TEMPLATE

This document provides the main template for the System Description of Arrowhead compliant

sǇsteŵs. As a ͞ďlaĐk-ďoǆ͟, theƌe should ďe a desĐƌiptioŶ of the ŵaiŶ seƌǀiĐes aŶd iŶteƌfaĐes of a
system without describing its internal implementation where all the system produced/consumed

services are listed. It is recommended the use of component diagrams to represent the

interoperability of different systems. This structural view can be complemented with a high-level

behavioral view such as sequence diagrams [30].

SYSTEM DESIGN DESCRIPTION (SYSDD) TEMPLATE

PESTI Report- Flexoffer Pilot

24

This document provides the main template for the description of Arrowhead Systems, technological

implementations, describing in detail the proposed solution. Here it is encouraged the usage of

formal or semi-formal models in order to enable the automation generation of code from the

specifications as much as possible. When automation is not possible, the document should be

precise enough to guide developers towards an implementation that matches these specifications

[30].

4.1.3 SERVICE LEVEL

The service level consists of four documents: the SD Template, the IDD Template, the CP Template

and the SP Template.

SERVICE DESCRIPTION (SD) TEMPLATE

A service description document provides an abstract description of what is needed for systems to

provide and/or consume a specific service. SD´s for Application Service are created (specified) by

the developers of any Arrowhead compliant system and by the developers of the Core Arrowhead

Framework services. The SD shall make it possible for an engineer to achieve an Arrowhead

compliant realization of a provider and/or consumer of description of how the service is

implemented by using the Communication Profile and the chosen technologies [30].

The document starts by describing the main objectives and functionalities of the service and follows

on defining the Abstract Interfaces and an Abstract Information Model. On Abstract Interfaces

section all interfaces should be detailed using a UML sequence diagram. The Abstract Information

Model section must provide a high level description of the information model with types, attributes

and relationships, bases on UML Class diagram. Finally, non-functional requirements must be

described for each service.

INTERFACE DESIGN DESCRIPTION (IDD) TEMPLATE

An IDD provides a detailed description of how a service is implemented by using a specific

Communication Profile and specific technologies. This document describes each of the interfaces

in a separate sub-section, and the functions included in each interface. To support the descriptions,

it is recommended the use of UML sequence, class and components diagrams. There must be an

Information Model section present in the document, containing detailed information about the

data formats used by the interface along with metadata information. [30]

COMMUNICATION PROFILE (CP) TEMPLATE

The CP document describes the types of message exchange patterns, defining in detail how the CP

handles security issues, regarding authentication and encryption based on the protocol

specifications. For instance, in the use of CoAP, DTLS is enabled. This document can be identified

by three characteristics: transfer protocol (e.g. CoAP); security mechanism (e.g. DTLS); data format

(e.g. XML).

PESTI Report- Flexoffer Pilot

25

SEMANTIC PROFILE (SP) TEMPLATE

The SP describes the data format by pointing out what its type (e.g. JSON; XML) and how specific

a piece of data is encoded.

PESTI Report- Flexoffer Pilot

26

4.2 SYSTEM DESCRIPTION AND DESIGN

This section approaches each document written for the project. It presents the System of System

Design and Design Description of the Pilot, followed by the Design and Design Description for each

system implemented. Finally, it describes the services of the middleware using a mix of SD and IDD

documents

4.2.1 SYSTEM-OF-SYSTEMS DESIGN

This document provides a high level overview of the FlexHousing system. It will approach the use

case for the system as well as the system that are in play.

1. SYSTEM DESCRIPTION OVERVIEW

The pilot named FlexHousing aims to apply flex-offer concepts to a real life situation from the

domotics area.

In particular, the FlexHousing System of Systems (FHSoS) was created to demonstrate the real life

management of appliances based on flexoffers. FHSoS acts as a proof of concept, allows a user to

create flexoffers upon devices, and lets the power usage of the device be dictated by the

aforementioned flexoffer. In order to be made more user friendly, FHSoS provides graphical

frontends and allows for the abstraction of devices: the user can organize his devices into rooms

;KitĐheŶ, liǀiŶg, ƌooŵ, gaƌage…) that pertain to buildings/houses. The devices are equipped with

different sensors to collect data from the environment and the appliances, and actuators to manage

energy consumption of the appliances.

This pilot considers that most devices are smart plugs equipped with both sensors and actuators.

The actuator of the smart plug allows to remotely switch on and off the appliance it is installed

onto. Moreover, through its sensors, the smart plug can collect data regarding energy consumption,

and the user can then create flexoffers based on past consumption. FHSoS is articulated into the

FlexHousing middleware (FHMW), responsible for the flexoffers and devices management, and the

FlexHousing fronted (FHFE), which is a graphical interface for the setup of user configurations and

all-around managing of the building/house. The FlexHousing frontend is hosted by a web server

and interacts with the FlexHousing middleware through the services it provides.

A context diagram of the systems is depicted in Figure 8.

PESTI Report- Flexoffer Pilot

27

Figure 8 – Overview of the all the systems

The FlexHousing SoS communicates with the VPS API, which is exposed by an external service

provider and communicates with the Cloogy gateway (the device with the infinity symbol in Figure

1) to interact with the appliances equipped with the smart plugs. Table 1 reports a summary of the

concepts described in this section.

Table 5 Concepts related to the flexoffer pilot

Name Description Contains

Building/house A location pertaining to a user Rooms, Cloogy

Room A physical place in a building/house Devices

Device A smart plug, usually connected to an

appliance

Sensors and Actuators

Sensor Collect data from environment, and from

the appliance it is connected to

Actuator It provides remote control of the energy

feed to the appliance it is connected to

Appliance An electrical machine that uses electricity.

E.g.: HVAC systems, lights, washing

machines

FHSoS The System of Systems supporting the

FlexHousing pilot

FHMW, FHFE

FHME The FlexHousing Middleware, which is

controlled by the FHFE, and interacts with

the flexoffer system and the VPS API

FHFE The graphical FlexHousing FrontEnd

PESTI Report- Flexoffer Pilot

28

Flexoffer system A set of Arrowhead services to interact

with energy market to sell energy

flexibility and buy energy

VPS API A service to drive the operations of the

Actuators present in the Devices

Cloogy A gateway that connects the house to the

internet, and thus to the Flexoffer system

and the VPS API

1.1 INTERACTION BETWEEN SYSTEMS

As already presented in Section 1, FlexHousing SoS is composed by 2 systems: the FlexHousing

middleware (FHMW) and the FlexHousing front end (FHFE). The FHMW interacts with 2 other

services, the Flexoffer service and the VPS service.

For the interaction with the Flexoffer service, the FHMW instantiates a session of communication

using the Arrowhead Framework, which remains valid for future interactions with the Flexoffer

service. With regards to the VPS service, the FHMW has to authorize itself against the VPS service,

and future service fruition will be authorized by caching the result of the authorization step.

Both FHMW system and FHFE system have 2 states: logged and non-logged, and they ideally transit

together between the two states.

When the user starts the interaction with the front end, he is immediately prompted to do the

login. The user inputs his credentials and the FHFE requests the FHMW for authorization. When the

FHMW transits to the logged state, as described in the next paragraph, it will also make the FHFE

switch to the logged state. When it is in the logged state, the user is able to interact with the whole

system, and all the features are now executable.

Regarding the FHMW, when it is in the non-logged state, it cannot perform any operation that

involves devices of external services: actuation on devices, application of flexoffer or the retrieval

of measurements. Anyway, the FHMW is still allowed for the management of the house (operations

on the Rooms). When the FHMW executes the login operation against the VPS service, it is then

able to do any FlexHousing operation, and it stores the authorization results received from the VPS

service to authorize automatically all other operations it wants to perform. Table 6 depicts the

location of the description of the systems. Figure 9 depicts the components that were developed

for this pilot.

Table 6 - Pointers to the description of each system

System name Path

Middleware …\SysDD FlexHousing-MiddleWare.docx
FrontEnd …\SysDD FlexHousing-FrontEnd.docx
Flexoffer Services

…\Arrowhead\Meetings\Multi WP Workshops \2013-
11-05\ Porto\Documenting\Examples
\SysDD\Arrowhead SysDD Aggregator_v0.1.docx

VPS Services [Legacy System]

PESTI Report- Flexoffer Pilot

29

Figure 9- Component diagram for the systems

As figure 2 describes, the middleware provides 4 interface that will be consumed by the FrontEnd. In the

other hand, the middleware consumes for 2 interfaces, one for the Flexoffer Services and another for the VPS

ones.

2. USE-CASES

FlexHousing SoS offers the possibility to manage (create, categorize, etc) flexoffers, devices and the

house. It also allows for operations on those entities (application of flexoffers on devices, etc).

2.1 FUNCTIONAL REQUIREMENTS

FlexHousing SoS has 8 major functional requirements:

- Send Flexoffer: the user selects a device to apply a flexoffer on. He will input the earliest

and latest time the energy consumption profile can begin. Then he will form the pattern of

consumption by indicating the minimum energy and the flexibility window. The flexoffer is

created and it is ready to be sent to the Flex-offer services. The execution flow of this use

case is presented in Table 3, and its message flow chart is represented in Figure 4.

- Receive Schedule: This feature consists of 3 parts: the emission of the flexoffer, the

reception of the schedule and the creation of the time triggered emissions of actuation to

enforce the received schedule. From then on the user is able to check the schedule that is

active on any given device. The execution flow of this use case is presented in Table 4, and

its message flow chart is represented in Figure 5.

PESTI Report- Flexoffer Pilot

30

- Login: The user has to login to be able to manage and interact with his devices. The

login/password combination is received by FHMW and sent to the VPS services. From there

on, the FHMW has the authorization to interact with the devices attached the VPS account

the user used. When the user wants to interact, FlexHousing will execute the needed

operations. The execution flow of this use case is presented in Table 5, and its message flow

chart is represented in Figure 6.

- Manage House: This allows to do CRUD (Create, Read, Update and Delete) operations on

the house, more specifically to the rooms. The execution flow of this use case is presented

in Table 6, and its message flow chart is represented in Figure 7.

- Manage Devices: The managing of the device allows for CRUD operations on device but

also on the sensors attached to said devices. When a device is registered, it has to be both

at FHMW and at VPS. Although, devices may be already registered at VPS are passible to

be registered in the FHMW, just by supplying the physical ID of the device, normally found

on the device itself. The execution flow of this use case is presented in Table 7, and its

message flow chart is represented in Figure 8.

- Check Measurements: Because the devices are equipped with power and tension sensors,

the user can check the values for those readings. Those readings are stored at VPS servers

and FHMW is able to collect them. The execution flow of this use case is presented in Table

8, and its message flow chart is represented in Figure 9.

- Actuate on Device: To apply flexoffers on to devices, they need the Actuator sensor to

pƌeseŶt oŶ theŵ ďut that doesŶ͛t ŵeaŶ Ǉou ĐaŶ͛t haǀe ŶoŶ fleǆoffeƌ ĐoŵpliaŶt appliaŶĐes
(Lamps and TV for example) with those plugs. The user is able to control their power flow:

he can turn them on and off remotely The execution flow of this use case is presented in

Table 9, and its message flow chart is represented in Figure 10.

- Verify if Flexoffer was respected: After a schedule of a flexoffer was executed, the user can

check if the energy values of the flexoffer were respected. That is, if the measurements in

power of a device for a specific period of time corresponds to the power level established.

The execution flow of this use case is presented in Table 10, and its message flow chart is

represented in Figure 11.

-

The previous list of features can be found depicted in the Use Case diagram in figure 3.

PESTI Report- Flexoffer Pilot

31

2.2 NON-FUNCTIONAL REQUIREMENTS

Regarding the non-functional requirements, there are five that must be respected:

- Availability: The system must be online and accessible as long as possible, 24 hours per day

and 365 days per year.

- Integrity: Dealing with sensible industrial requests the system must always report any

execution error. Some errors may have deep impact if a flexoffer malfunctioned when it

was attached to an important machine.

- Interoperability: The systems must be able to communicate independently of their

implementation: they just need to use the technologies used by their corresponding

services.

- Performance: The system and its requests must have the shortest execution time therefore

an advanced hardware, fast internet, and good programming code should be adopted.

- Scalability: The System must support new features. Those features must be added

seamlessly and must not hinder the previous ones. For a bigger management of energy, the

system must be able to scale in hardware and, in repercussion, scale in performance.

Figure 10- Use Case diagram for FlexHousing

PESTI Report- Flexoffer Pilot

32

2.3 USE-CASES EXECUTION FLOW

This section will approach each Use-case describing them in their execution workflow. The following section

will contain sequence diagrams for each of the UC described.

Table 7 - Use Case 1 execution flow.

UC 1 - Send Flexoffer

ID: 1

Brief description:

The user selects a device in order to apply a flexoffer on.

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:

-User

Preconditions:

- None

Main flow:

1- The user selects the option

2- FlexHousing Middleware returns the list with the devices that are actuatable.

3- The user selects the device and inputs the information about the flexoffers

4- FlexHousing Middleware receives the information, stores it in the database and

attaches the flexoffer to the device.

Post conditions:

- The flexoffer was stored in the database and is now eligible to be converted to a

schedule.

Alternative flows:

2*- The system may not have actuatable devices registered, returning an error stating so.

PESTI Report- Flexoffer Pilot

33

Table 8 - Use Case 2 execution flow.

UC 2 - Receive Schedule

ID: 2

Brief description:

The system will execute the Flexoffer emissions towards the Aggregator. FlexHousing will then

convert that Flexoffer schedule into a time triggered Actuation schedule

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:

-User

-FlexofferAgent

Preconditions:

- The database has flexoffers that will be applied the next day

Main flow:

1- FlexHousing Middleware starts the Flexoffer Emission process.

2- FlexHousing Middleware gathers all the Flexoffer and contacts the FlexofferAgent

3- The FlexofferAgent sends each Flexoffer to the FOServices.

4- The FOServices will attach a Flexoffer schedule to the Flexoffer.

5- The Schedule is inserted in the database.

6- An Actuation Thread is created using the information for the Schedule.

7- The User can check the Schedule attached to a certain Flexoffer

Post conditions:

- The schedules are stored in the database

- Actuation thread are created to control the device, based on the Flexoffer

Alternative flows:

4*- Fleǆoffeƌs aƌeŶ͛t ǀalid. The FO“eƌǀiĐes seŶds ďaĐk aŶ eƌƌoƌ

PESTI Report- Flexoffer Pilot

34

Table 9 - Use Case 3 execution flow.

UC 3 - Login

ID: 3

Brief description:

The user logins into FlexHousing which consequently logins in the VPS services

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:

-User

-VPS Services

Preconditions:

- The user must have an account registered at the VPS Services with the same credentials

Main flow:

1- User inputs the credentials

2- FlexHousing Middleware receives them and sends them to the VPS Services

3- The VPS Services send back the authorization.

4- FlexHousing Middleware stores the authorization

5- FlexHousing Front End confirms the login to the user

Post conditions:

-The authorization is now stored in the system.

-Any operation that involves the VPS Services will have the authorization attached to them.

Alternative flows:

3*- If the ĐƌedeŶtials aƌeŶ͛t ĐoƌƌeĐt foƌ the VP“ “eƌǀiĐes, aŶ eƌƌoƌ will be sent back instead of

the authorization.

PESTI Report- Flexoffer Pilot

35

Table 10 - Use Case 4 execution flow.

UC 4 - Manage House

ID: 4

Brief description:

Allows the user to do CRUD operations on the House, more specifically on the rooms.

Primary actors:

FlexHousing Middleware, FlexHousing Front End

Secondary actors:

User

Preconditions:

- None

Main flow:

1- The user inputs the name for a new Room

2- FlexHousing Middleware receives the name, creates a new Room and stores it in the

database

3- The User selects a Room

4- FlexHousing Front End shows the details of the Room, including name, House and the

Devices attached to that Room

5- The User selects another Room and inputs the new information to change.

6- FlexHousing Middleware receives the information, retrieves the Room from the

database, changes the details and stores it back.

7- The User selects a Room to be deleted

8- FlexHousing Middleware deletes that Room from the database.

Post conditions:

From this Use Case a room can be created, deleted, updated and read.

Alternative flows:

-None

PESTI Report- Flexoffer Pilot

36

Table 11 - Use Case 5 execution flow.

UC 5 - Manage Devices

ID: 5

Brief description:

This allows the user to do CRUD operations on the Devices.

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:

- User

-VPS Services

Preconditions:

- User is logged in at VPS

Main flow:

1- The user inputs the details for a new Device

2- FlexHousing Middleware receives the date, creates a new Device, stores it in the

database and relays the information to the VPS Services

3- The User selects a Device

4- FlexHousing Front End shows the details of the Device, including name and the

Flexoffers and Schedules attached to that Device

5- The User selects another Device and inputs the new information to change.

6- FlexHousing receives the information, retrieves the Devices from the database,

changes the details and stores it back.

7- The User selects a device to be deleted

8- FlexHousing deletes that device from the database.

Post conditions:

-The Device can be created, registered, updated, read and deleted

Alternative flows:

2*- If the device is already registered at VPS Services then the User only needs to input the

physical ID of the Device.

PESTI Report- Flexoffer Pilot

37

Table 12 - Use Case 6 execution flow.

UC 6 - Check Measurements

ID: 6

Brief description:

The user obtains the data collected by the Sensors attached to a Device.

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:

-User

-VPS Services

Preconditions:

- Login done at VPS Services

- Device registered in both systems

Main flow:

1- User selects a Device

2- User selects the Sensor to collect data from, as well as the period of time of the

collection

3- FlexHousing Middleware sends a request to the VPS Services

4- VPS Services sends back the data

5- FlexHousing Middleware stores the data

6- FlexHousing Front End presents the data to the User

Post conditions:

-The measurements are stored in the local database.

Alternative flows:

PESTI Report- Flexoffer Pilot

38

Table 13 - Use Case 7 execution flow.

UC 7 - Actuate on Device

ID: 7

Brief description:

The user can turn on and off a specific device remotely.

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:

-User

-VPS Services

Preconditions:

- The device has to be registered.

- The device has to have an Actuator sensor

- The Login at the VPS has to be valid

Main flow:

1- The User selects the Device.

2- The User selects the Actuation option.

3- FlexHousing Middleware receives the request and send the request to the VPS Services.

4- VPS Services receive the request and act accordingly to the command issued.

Post conditions:

- The state of the Device was changed.

Alternative flows:

4*- The command issued may not change the state of the device if it is changed to state it was

already at.

PESTI Report- Flexoffer Pilot

39

Table 14 - Use Case 8 execution flow.

UC 8 - Verify if Flexoffer was respected

ID: 8

Brief description:

This allows to check if the flexoffer was respected: see if the consumption of the device

corresponds to energy allocated by the Flexoffer

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:

-User

-Flexoffer Services

-VPS Services

Preconditions:

- The Schedule that is being verified needs to have been executed.

Main flow:

1- The User selects the Device

2- The User selects the Flexoffer

3- The information is sent by FlexHousing Front End to FlexHousing Middleware

4- FlexHousing Middleware selects the corresponding schedule

5- FlexHousing Middleware request the measurements for the device for the same period

of time as the schedule

6- FlexHousing Front End presents the data from both origins to the user, flagging any

records that violated the flexoffer.

Post conditions:

-

Alternative flows:

PESTI Report- Flexoffer Pilot

40

3. DIAGRAMS

This sections contains the diagrams sequence for the Use Case presented in section 2.

3.1 SEND FLEXOFFER

Figure 11 - Sequence Diagram of UC1.

The diagram in Figure 11, represents the workflow execution for UC 1 in which the user wants to

apply a flexoffer to a specific device. The user initiates the process and the FrontEnd retrieves the

device list from the Middleware. The user then picks the device he wants to apply the flexoffer on.

From there, the information of the flexoffer is introduced and is sent back to the middleware.

There, it is stored in the database.

PESTI Report- Flexoffer Pilot

41

3.2 RECEIVE SCHEDULE

Figure 12- Sequence Diagram of UC2.

Figure 12 depicts the workflow for UC2. The diagram also depicts the execution of the pre

conditions, which is the emission of the flexoffer and retrieval of its schedule. In order to retrieve

the schedule, the flexoffer has to be sent. That is accomplished by contacting the flexoffer agent

with the information about the flexoffer. The agent will communicate with the Flexoffers Services

and proceed to the emission. The schedule is then sent back by the services and stored in the

database. An actuation schedule is also created in order to automate the energy usage of the

device.

PESTI Report- Flexoffer Pilot

42

3.3 LOGIN

Figure 13 - Sequence Diagram of UC3.

Figure 13 evidences the steps required for the user to login into the system. The login is handled by

the middleware and then is sent to the VPS services. When the response is retrieved, the user is

officially logged in.

PESTI Report- Flexoffer Pilot

43

3.4 MANAGE HOUSE

Figure 14 - Sequence Diagram of UC4.

Figure 14 describes all the possible operations the user is able to do related to his house/building.

Each operation is handled by the middleware has repercussions on the database.

PESTI Report- Flexoffer Pilot

44

3.5 MANAGE DEVICES

Figure 15 - Sequence Diagram of UC5

Similar to Figure 15, the diagram in Figure 8 describes the possible operations but in this case

towards the devices. Again, the requests are handled by the middleware and the operation are

persisted in the database

PESTI Report- Flexoffer Pilot

45

3.6 CHECK MEASUREMENTS

Figure 16 - Sequence Diagram of UC6.

Figure 16 depicts the steps the system goes through for the retrieval of measurements. Again the

systems retrieves the device list to allow the user to choose the device to query. The User inputs

the parameters for the search. The request is received by the middleware which proceeds to

query the VPS services for the info the user wants to obtain. When the response is received, the

measurements are presented to the user.

3.7 ACTUATE ON DEVICES

Figure 17 - Sequence Diagram of UC7.

PESTI Report- Flexoffer Pilot

46

In Figure 17 is depicted the sequence diagram for the actuation on a device. The middleware,

once again, handles the request. The middleware will then execute a request to actuate on the

device the user selected towards the VPS services. When the request is processed by them, the

actuation will occur.

3.8 VERIFY IF FLEXOFFER WAS RESPECTED

Figure 18 - Sequence Diagram of UC8.

Figure 18 shows the steps for the verification to whether a flexoffer was respected. The schedule is

cross checked with the measurements that were gathered in that same period. With that

information, this system is able to detect any violation of the pattern the flexoffer had.

4. SECURITY

This section defines high-level security principles the system needs to follow on a non-technical,

generic level.

4.1 SECURITY OBJECTIVES

FlexHousing will have two states on both its systems: logged and non-logged. The transition is done

when the login is done at the VPS Services.

For the communication between FlexHousing Middleware and the Flexoffer services, the

Middleware has the credentials in order to create a session for the exchanges of messages. When

the link is established, every request is exchange in that session.

AŶǇ opeƌatioŶ oƌ eǆĐhaŶge ǁith the VP“ seƌǀiĐes ǁill fail if theǇ aƌeŶ͛t aĐĐoŵpaŶied ǁith a ǀalid
token, the same for the authentication between the Middleware and FrontEnd.

PESTI Report- Flexoffer Pilot

47

4.2.2 SYSTEM-OF-SYSTEMS DESIGN DESCRIPTION

This document defines the System-of-Systems Design Description of the FlexHousing Pilot. It

essentially complements the System-of-Systems Description with implementation details

1. OVERVIEW

The implementation of the FlexHousing pilot is built around 3 main components, as shown in

Figure 1:

 A local environment with both FlexHousing systems (FlexHousing Front end FHFE and

FleǆHousiŶg Middleǁaƌe FHMWͿ, the gateǁaǇ;͞CloogǇ͟Ϳ aŶd a sŵaƌt plug

 The Flexoffer services running on a server in Denmark

 The VPS services

Figure 19 - FlexHousing System overview

The Middleware FHME is being executed on a Windows environment as well as the front end

FHFE. In the same local installation, there is the Cloogy (the gateway from VPS) and a VPS smart

plug. The FHFE receives the inputs from the user, which translate in to the emission of request

towards the FHMW. From there on, it can lead to 3 execution paths:

- The FHMW communicates with VPS services in order to interact with devices

- The FHMW connects with Flexoffer Services for operations related with flexoffers

- The FHMW receives a request that is related to the data structures local to the FHMW, such

as the rooms

PESTI Report- Flexoffer Pilot

48

2. SYSTEMS

Table 15 - Pointers for the systems in play

System name Path

Middleware SysDD FlexHousing-Middleware

FrontEnd SysDD FlexHousing-FrontEnd

Flexoffer Services

Arrowhead\Meetings\Multi WP Workshops \2013-11-
05\ Porto\Documenting\Examples \SysDD\Arrowhead
SysDD Aggregator_v0.1.docx

VPS Services [Legacy System]

2.1 MIDDLEWARE

The FlexHousing Middleware (FHMW) is responsible for the major connectivity of the pilot: it sends

the flexoffers to the Flexoffer services, sends the requests for the operations on the VPS devices,

exposes its services for the FlexHousing FrontEnd (FHFE) and manages the Database. The FHMW

also does its own implementation of a DER object (see [1]) for the emission of flexoffer and

reception of schedules.

2.2 FRONTEND

It acts as a layer between the user and the middleware FHMW. It allows for all the operations the

middleware is capable of. It also provides user friendly graphs for the representation of more

complex or abstract objects such as the flexoffers, schedules or collections of measurements.

2.3 FLEXOFFER SERVICES

The FHMW interacts with an instance of the Flexoffer system, through the Flexoffer services it

exposes. The instance of this Arrowhead system is currently the one deployed in Alborg, Denmark.

The system was developed by other partners of the Arrowhead project. It is responsible for the

reception of flexoffers, compilation of schedules and their respective delivery to the Flexoffer

Agents. The communication with the Flexoffer system is done over a XMPP server hosted by the

system.

2.4 VPS SERVICES

The details of these services are protected by a Non-Disclosure Agreement. These services bridge

the FHMW and the devices. The FHMW sends requests to the VPS Services, which exposes an API.

From there on, the server hosting the VPS services communicates with the Cloogy gateway through

the internet. The Cloogy gateway is located in the house/building of the user, and it sends requests

to the devices to drive their operations.

PESTI Report- Flexoffer Pilot

49

In Figure 20 is depicted the components diagram for FlexHousing. The Middleware will be hosting

most of the services and logic of the system. It will be connected to the VPS and Flexoffer services.

Finally, the FrontEnd system will consume the services provided by the FH_API interface provided

by the Middleware

3. NON-FUNCTIONAL REQUIREMENTS REALIZATION

-Availability: The system is available 24/7. The FHMW feeds the flexoffers for the following day at

23h00 each day, to receive the corresponding schedules. Thus, flexoffers received between 23h00

and 24h00 of each day cannot be applied for the energy schedule of the following day.

-Integrity: The system handles all information the same way; Any action or change on any object or

instance is automatically persisted in the database owned by the FHMW.

-Interoperability: All systems communicate using protocols that are implementable on virtually any

platform or coding language. Any FlexHousing system can be replaced with a different

implementation and still be able to communicate with the other system as long as it respects the

protocols in use.

-The Flexoffer services can handle over 100 000 flexoffers per day. It was not possible to perform

any other stress test, since the available hardware was limited to just one Cloogy gateway and one

VPS smart plug.

4. SECURITY OBJECTIVES

FlexHousing has two states on both its systems: logged and non-logged. The transition is done when

the logiŶ is doŶe at the VP“ “eƌǀiĐes. Most opeƌatioŶs foƌ the FHMW aƌeŶ͛t feasiďle if the logiŶ isŶ͛t
done previously. Through that operation, an authorization token is generated. The FHMW holds on

to the token and attaches it to any operations involving the VPS services, to authorize them.

Figure 20- Components Diagram for the FlexHousing Pilot

PESTI Report- Flexoffer Pilot

50

Regarding the communication between FlexHousing and the Flexoffer services, the FHMW is

configured with Arrowhead credentials in order to create a session using XMPP. In the XMPP

terminology, the FHMW enters a room that is created by the Flexoffer services, and every exchange

is done inside the room, creating a secure environment.

5. WORKFLOW OF USAGE

The user logs in, using the credentials related to the VPS services, to connect to the devices, located

in the user house/building and already registered in the VPS services. Then the user is presented

with the list of devices he can use. Fƌoŵ theƌe oŶ, he ĐaŶ ĐolleĐt the ŵeasuƌeŵeŶts fƌoŵ the ͞ AĐtiǀe
Poǁeƌ͟ seŶsoƌ that all deǀiĐes haǀe, ǁhiĐh ǁill ďe ƌefeƌƌed lateƌ as ͞the eŶeƌgetiĐ pƌofile of the
deǀiĐes͟. With that iŶfoƌŵatioŶ, the useƌ ĐaŶ haǀe aŶ idea of ǁhat the ƌegulaƌ ĐoŶsuŵption of each

devices is. Then the user can apply a flexoffer to that specific device in two ways:

 The measurements taken earlier can be employed in order to create a flexoffer whose

pattern of energy usage corresponds to the energetic profile of that device.

 the user can create the flexoffer from scratch:

Then the user inputs remaining information for the setup of the flexoffer (name, start time, end

time). From there on, the FHMW will receive and store the information of the flexoffer. At a specific

time (Currently, at 11pm), the middleware initiates the flexoffer emission process: it gathers all the

flexoffers that are active for all the devices, starts a XMPP connection with the Flexoffer Services

and sends them. Each time a schedule is received, it is put in the database. Before midnight, the

FHMW retrieves all the schedules for each device and executes a threadpool of actuation schedules,

which will drive the execution of the energy schedules. Every 15m, the actuation schedule verifies

if an appliance should consume energy, and it will switch it on/off accordingly. Such is accomplished

by executing a request at the VPS services. Figure 21 depicts the steps described previously.

PESTI Report- Flexoffer Pilot

51

Figure 21- Sequence diagram for the typical usage of the system

PESTI Report- Flexoffer Pilot

52

6. USE CASE IMPLEMENTATION

The following figures depicts the implementation of some of the UC described in the SoSD.

This particular page (Figure 22) allows for the creation of the flexoffer. The user inputs the name,

start and end time, and the pattern of the consumption. The user also as the possibility of exporting

a pattern from the measurements of energy.

Figure 22- Creation of flexoffer screenshot

PESTI Report- Flexoffer Pilot

53

The following figure (figure23) regards the index view for the Room. It allows for the creation of

new rooms and the inspection of the details.

The following screen shot (Figure24) depicts the list of devices with the various options for each.

Figure 23- Managing the rooms screenshot

Figure 24- Device list screenshot

PESTI Report- Flexoffer Pilot

54

This figure shows the options of receiving measurements for a certain device

Figure 25- Screenshot of the 1st step to retrieve measurements

PESTI Report- Flexoffer Pilot

55

4.2.3 SYSTEM DESIGN – MIDDLEWARE

This document provides the System Description for the for the FlexHousing Middleware (FHMW)

system. It provides a high level overview of the FHMW module

1. SYSTEM OVERVIEW

Figure 26 - Domain Model of the FlexHousing system.

In figure 26 is the domain model for FlexHousing system. The core of the system revolves

around the Device, which is an abstraction for the smart plugs that can be deployed in a house

to control and measure the energy consumption of appliances. In order to allow for sorting and

traceability, the devices are encapsulated in Rooms. FlexHousing middleware is responsible to

bridge the house, rooms and devices, with the FlexofferAgent, who is responsible to

generate and send the Flexoffers to the Aggregator. In response, the Aggregator will

send back Schedules. Each device has Sensors to collect Measurements, which get

stored in the VPS Services, and Actuators, which can switch on/off the appliances

connected to the Device and are controlled through the VPS Services. FlexHousing

middleware executes Operations to either gather the Measurements or to feed

Actuations to the VPS Services. Actuations will trigger the Actuator of the Device

into turning off and on the appliance connected to the Device. But to do the said Operations,

a Login is required at the VPS Services which will grants an Authorization that is

attached to the Operations in order for them to be executed. All of this allows for the creation

of Actuation Schedules from the flexoffer Schedules. From there on, the system will

execute Actuations for the respect of the times and energy values. In order to make the

PESTI Report- Flexoffer Pilot

56

Flexoffer close to reality as possible, the Flexoffer may use Measurements to correctly

establish its energy values for each period of time.

2.USE CASES

The FHMW system is part of the FHSoS (see SoSD document) and it aims to satisfy the requests it

receives from the FHFE. As such, the Use cases of the FHMW correspond to the ones described

regarding the System of Systems.

2.1 FUNCTIONAL REQUIREMENTS

This system provides 4 interfaces: each manages or deals with a major type of objects or instances:

Flexoffer, Device, House and Measurements. Every service offered by FHMW is Arrowhead

compliant.

2.2 NON-FUNCTIONAL REQUIREMENTS

Regarding the non-functional requirements, the following are needed:

- Availability: The system must be online and accessible as long as possible, 24 hours per day

and 365 days per year.

- IŶtegƌitǇ: This sǇsteŵ is dealiŶg ǁith seŶsitiǀe iŶfoƌŵatioŶ that ŵaǇ iŶ jeopaƌdize the useƌ͛s
home/building

- Interoperability: New systems have to be able to communicate with the middleware. This

means the technology it uses has to be widespread and adaptable.

- Performance: The system and its requests must have the shortest execution time therefore

an advanced hardware, fast internet, and good programming code should be adopted.

- Scalability: The System must support new features. Those features must be added

seamlessly and must not hinder the previous ones. For a bigger management of energy, the

system must be able to scale in hardware and, in repercussion, scale in performance.

2.3 USE-CASE EXECUTION FLOW

The middleware is driven by means of requests. Each request leads to a response. If the request

aims to retrieve data, then it will be met with the communication of the data requested. On the

other hand, if the request is to register or to alter an item, if no exception was raised, the request

will be met with a code 200 response. Most operations will require that the user is logged onto the

system. Every change of state, object or stored data is automatically persisted in the database.

Figure 27 depicts the workflow described.

PESTI Report- Flexoffer Pilot

57

Table 16 - Workflow execution for the handling of requests

UC 1 - Respond to request

ID: 1

Brief description:

The system will respond accordingly to the request received

Primary actors:

-FlexHousing Middleware

Secondary actors:

-Requesting system

Preconditions:

- It most case, requires the system to be in a logged state.

Main flow:

5- The Middleware receives a request

6- The request is handle by the appropriate controller

7- The controller executes the logic for the operation

8- The controller retrieves the data from database

9- A DTO is built to send back the information

10- The service replies with the requested information

Post conditions:

-

Alternative flows:

4*- The system inserts the sent data into database.

5*- A response with a code is built and sent, accordingly to the result of the operation

Figure 27- Normal execution of a request response

PESTI Report- Flexoffer Pilot

58

3. APLICATION SERVICES

Being a distributed system and also being a middleware, FHMW exists between other systems: it

consumes services offered by other system and offers services of its own. In this case, as Figure 28

depicts, FHMW offers 4 interfaces while consuming from 2.

2.1 PRODUCED SERVICES

The middleware provides 4 interfaces, each with its own functions. The Semantic profile and

Interface Design Description are both included in the IDD for the middleware. These interfaces are

used when an external entity needs to interact with FHMW. More details are provided in section

4.2.3.

FlexHousing Interface

SP-IDD FlexHousing Middleware

2.2 CONSUMED SERVICES

As the name suggests, the FlexHousing middleware bridges 2 major systems: Flexoffer services and

VPS services.

Flexoffer Services

…\Arrowhead\Meetings\Multi WP Workshops \2013-11-05\
Porto\Documenting\Examples \SysDD\Arrowhead SysDD
Aggregator_v0.1.docx

VPS Services [Legacy System]

Figure 28 – Component diagram for the FHMW interfaces

PESTI Report- Flexoffer Pilot

59

4.2.4 SYSTEM DESIGN – FRONTEND

This document provides a high level overview of the FlexHousing FrontEnd system. It will approach

the domain model for the FHFE as well as the usage of services by it employed.

1. SYSTEM OVERVIEW

The FlexHousing FrontEnd (FHFE) system allows the user to configure the settings and manage his

house using services hosted on the middleware FHMW. FHFE offers the option of organizing his

appliances and devices into buildings/houses and rooms. Using the FrontEnd, the user can manage

his house, checks on the various flexoffers and corresponding schedules he has on his devices, and

analyze the data collected from the sensors located on his devices.

The goal of this system is to offer a user friendly graphical interface that connects the user to its

devices and offers a simple way to exploit the flexoffer capabilities. Through the usage of charts,

the flexoffer are depicted and information is conveyed to the user.

On the first approach, the user might get overwhelmed by the customization options, but after a

short learning curve, the system will feel rather easy and intuitive.

1.1 DOMAIN MODEL

Figure 29 - Domain Model of FlexHousing FrontEnd system.

The main building block of the system is the Device. The device is connected to an energy-

consuming appliance, and the device belongs in a Room and that room to a House. Each device

has Sensors, which are the generic sensor/actuator elements. In the model, the Sensor is

further refined (sub classed) into an Actuator when it has the capability to actuate. Each sensor

is able to collect Measurements. The actuator sensor will produce Actuations who are

PESTI Report- Flexoffer Pilot

60

responsible for toggling the energy state of the device. A Flexoffer is applied to a device. Many

flexoffers can be applied to a device and every single flexoffer will lead to the creation of a

Schedule. Figure 29 depicts the domain model for the FHFE.

2. USE-CASES

This FHFE Systems shares the same UC as the System of System it is inserted into. For further

description, please refer to the SoS Description and SoS Design Description documents.

Similar to the FHMW, the FHFE has 2 states: Logged and Non-Logged.

The FHFE starts as Non-Logged, and it has very limited available features. All the FHFE features can

be used when the system is in the Logged state. The transition between states occurs when the

user logs in within the FHFE.

3. APPLICATION SERVICES

FHFE doesŶ͛t pƌoǀide aŶǇ seƌǀiĐes ďut, iŶ oƌdeƌ to iŶteƌaĐt ǁith the FleǆHousiŶg Middleǁaƌe,
consumes the services it provides. Figure 30 the previous description.

Figure 30 - Component diagram for the FHFE interface

3.1. PRODUCED SERVICES

FHFE doesŶ͛t pƌoǀide aŶǇ seƌǀiĐes iŶ the Aƌƌoǁhead seŶse, due to the faĐt that it is a fƌoŶt eŶd used
only in conjunction with an instance of the FHMW.

3.2. CONSUMED SERVICES

The FHFE only consumes services provided by the FHMW.

System name Path

Middleware SysDD FlexHousing-Middleware

4. SECURITY OBJECTIVES

The communication between FHFE and FHMW is not encrypted, but most operations will fail if the

FHFE doesŶ͛t pƌoǀide ǀalid logiŶ iŶfoƌŵatioŶ.

PESTI Report- Flexoffer Pilot

61

4.2.5 SYSTEM DESIGN DESCRIPTION – MIDDLEWARE

This document defines the System Design Description of the FlexHousing System. FlexHousing

Middleware, as the name describes, is a middleware connecting the Flexoffers Services and the VPS

Services while still providing an interface for user interaction. The focus of this document is to

describe the implementation of the system architecture, the used components, and the use-cases

supported by UML diagram.

1. SYSTEM DESIGN DESCRIPTION OVERVIEW

Name FlexHousing Middleware

Owner ISEP

The FlexHousing Middleware system has been developed by CISTER/ISEP. The system is part of the

Flexoffer Pilot implement as part of the Work Package 5 of the Arrowhead Project. The middleware

is the central part of pilot, bridging the Flexoffer Services and the Virtual Power Solutions Services.

Virtual Power Solutions, or VPS, provide devices smart plugs and smart meters, allowing for remote

access through the emission of request at their external server.

The middleware consumes services provides by the VPS Services and communicates with the

Flexoffer Services using dedicated XMPP rooms. This system also provides an API for the

configuration and usage of the services hosted.

System name Path

FlexHousing Middleware Arrowhead/SysD FlexHousing Middleware

This system is implemented using Java, in order to stay similar to the implementation of the

Flexoffer Services and to minimize communication conflicts.

This documents lacks the Use Case section due to the fact that most of the services this system

provides aƌeŶ͛t Use Cases theŵselǀes, but are actually an essential part of the Use Case of the SoS

(System of Systems) Pilot. The description of each services can found in the SD/IDD document

System name Path

FlexHousing Middleware

SD-IDD

Arrowhead/SD-IDD FlexHousing Middleware

This document (found later in this chapter) provides the sequence diagram and description of each

service as well as an example for each request.

PESTI Report- Flexoffer Pilot

62

2. DECOMPOSITION OF THE SYSTEM

The system is comprised of 3 communication modules:

- The VPS Services: Request sent towards the VPS Servers need to be authenticated by using

a header containing a token, obtained by login in with valid credentials. Table 17 depicts an

example of response to a successful login

Table 17 - Example for a valid request for a token

<Session

xmlns="http://schemas.datacontract.org/2004/07/VPS.iEnergy.Entities.Sessions"

xmlns:i="http://www.w3.org/2001/XMLSchema-instance">

<RefreshToken>6V5xjGuoESL06jK0CuI6d/xbN25DRS4NIMrOTA1BMLbFI7sZnCyQPVJ+B0

7/5Ju25qgNGJDu4casNkGpqqwDsgaRQ+FxYPXAqtGuh0Relsej2O/ekc1erzcq</RefreshTo

ken>

 <Timeout>7200</Timeout>

<Token>wR1tD9G7QexviwwKZEqeADY+0H1astb5nESqx2NuXgz064HUebPzuzmtrquPDx

Ja1o0NESHhzFqr5VQCH9gnxzRkwnkoUkGYc2UMfmDQZ2G3CiywGa2QVHQO</Token>

</Session>

- The Flexoffers services: The exchange of messages is done inside a XMPP room which is

hosted by the services. The Middleware has the correct credentials for the joining of the

room. Table 18 depicts part of the configuration of the middleware in regard to the FO

services

Table 18 - Code sample for the XMPP credentials

/**

 * The id of this flexoffer manager. Used both for the XMPP network and the

 * uniqueness of flex offers

 */

 private String id = "isepagg";

 /** The id of the aggregator found by using Arrowhead service discovery **/

 private String aggId = "aggregator-test-tool";

- The FlexHousing API: The communication is not encrypted but the middleware system has

2 states: Logged and Non-Logged. The Non-Logged state will make most operations fail.

Once The middleware executes the VPS login then it transits to the logged state and enables

the full usage of the services.

PESTI Report- Flexoffer Pilot

63

-

3. SOLUTION DESCRIPTION

The purpose of this section is to describe the implementation of the solution. Along this section, an

overview of the system architecture is described with the support of a component diagram, in

which each component is explained along with a class diagram of the core classes. One of the core

functions of the middleware is the automatic emission of flexoffers and creation of actuation

schedules. Finally, the database which the system works with, are explained with the support of a

database model diagram.

3.1. COMPONENT DIAGRAM

Figure 31 depicts the organization of this system for a logical point of view. Also provides a

representation of the communication between components. The Controller employ most of the

other components and are only used by the services hosted by the API. The DAO controls all the

operations for the data while the Execution has the logic for the automated mechanism. The

or.arrowhead.wp5 and VPS_Servlet are responsible for the communication with the external

services.

Figure 31 - Component Diagram of the FlexHousing Middleware system.

3.2 COMPONENT DESCRIPTION

This section describes each component, providing an enumeration of each Class belonging to it.

3.2.1 MODELS

The Models component contains the information about the domain objects. It supplies the

controller with the entities used within the system. A description of each class can be found in table

19.

PESTI Report- Flexoffer Pilot

64

Table 19 - Class for the Models Component

Class Name Description

Device Represents the smart plugs. Always linked to a Room

Schedule Abstract class for the actuation schedule

InfraDaySchedule Implementation of the Schedule for same day flexoffers

NextDaySchedule Implementation of the Schedule for periodic flexoffers

Room Represents the rooms of the House

Sensor Representation of the sensors attached to a Device

Measurements Entity representing the data collected from the Sensors

3.2.2 ORG.ARROWHEAD.WP5

The WP5 package, short for org.arrowhead.wp5, has the implementation of DER for this system.

WPϱ͛s ƌespoŶsiďilities aƌe the eŵissioŶ of fleǆoffeƌs, ƌetƌieǀal of sĐhedules aŶd the ĐoŶŶeĐtioŶ to
the Flexoffer Services. MyFlexibleResource is a singleton in order to make sure that the emission of

the flexoffer originates for the same agent. A description of each class can be found in table 20.

Table 20 - Class for the Arrowhead Component

Class Name Description

HouseDER The House DER is an implementation of the Abstract DER. It

contains implementation of the generateFlexoffer()

functions, tailored to this system.

MyFlexibleResource Entity responsible for the connection to the Flexoffer Services. Has

methods for the XMPP connection and the Service Discovery for

the Aggregator.

3.2.3 CONTROLLERS

The Controller component contains the definition of every controller of the system. The controllers

are responsible for the usage of the other components of the system in order to implement the

logic. The House Controller contains a cached version for the objects with the most usage. When

an object suffers a change, both the cache and the database are altered. The HouseController is

therefore a Singleton, to avoid multiple instances of the same objects. A description of each class

can be found in table 21.

Table 21 - Class for the Controller Component

Class Name Description

DeviceController Responsible for every action on a Device object.

HouseController Contains a list of every Room and Device. Allows for the managing

of the house. Has the method to login at the VPS Services

PESTI Report- Flexoffer Pilot

65

3.2.4 EXECUTION

The Execution component contains all the implementation of every automatic process of system.

Also responsible for the setup of every communication component (FH API, org.arrowhead.wp5

and VPS servlet). Both timer apply the Threadpool pattern. A description of each class can be found

in table 22.

Table 22 - Class for the Execution Component

Class Name Description

Main Class executed when initiating the system. Starting point for every

component

FlexofferTimer Class responsible for keep track of the time of day for the emission

of flexoffers.

ExecuteFOEmission A runnable thread created for every flexoffer. Responsible for

emitting the flexoffer, retrieve the schedules and their respective

persistence.

ActuationTimer Class responsible for keep track of the time of day for creation of

the actuations schedules.

ExecuteActuations A runnable thread for the creation of the actuation schedules.

Retrieves the schedule for the flexoffers and monitors the energy

usage programed for the device

3.2.5 DAO

The DAO component allows for a layer between the database and the system. Responsible for

interacting with database, by executing queries. The DAO is a singleton in order insure concurrence

aŶd that theƌe͛s oŶlǇ oŶe ĐoŶŶeĐtioŶ to the data at any given moment. A description of each class

can be found in table 23.

Table 23 - Class for the DAO Component

Class Name Description

DAO Has every operation related to database. Responsible for receiving

objects and store them in the database. Also retrieves objects

from database.

3.2.6 VPS SERVLET

This component is responsible for the communication between this system and the VPS Services.

For the connection to be valid an authorization token is attached to every request. As such this

iŵpleŵeŶts the “iŶgletoŶ patteƌŶ, thus eŶfoƌĐiŶg that theƌe͛s oŶlǇ oŶe ǀalid ĐoŶŶeĐtioŶ to the VP“
Services, at any given time. A description of each class can be found in table 24.

Table 24 - Class for the VPS_Servlet Component

Class Name Description

VPSController Contains the definition for every VPS related request. Builds http

request aiming for the VPS API and also handles the responses.

PESTI Report- Flexoffer Pilot

66

3.2.7 DTO

This component acts a layer between the domain objects and the API. It creates representational

objects, originating from the ones in the Models Component, but only containing relevant

information for the operation it was requested for. A description of each class can be found in table

25.

Table 25 - Class for the DTO Component

Class Name Description

ActuationFH Used to demand the actuation on a given device

ActuationVPS Object used by the VPS services for the actuations on devices

FlexofferDTO Representation of the flexoffer only containing the fields

configurable by the end user

LoginSession Object used by the VPS Services in order to execute the login

MeasurementsDTO Represents the relevant information gathered from the

Measurements received after a request for such at the VPS

Services

NewDeviceDTO Object containing the physical ID of the VPS device

ScheduleDTO Contains the fields of the schedules that are relevant to the end

user

SensorDTO Used when a request evolving the sensor is received. Contains the

sensor name and ID

Statistics Object containing the statistical information of the system.

3.2.8 FH API

The FH API component contains the definition of the services hosted by system. Used by the http

server that FlexHousing Middleware creates. Helps creates the routing of the API. A description of

each class can be found in table 26.

Table 26 - Class for the FH_API Component

Class Name Description

DevicePath Definition of the services attached to the Device interface

FlexofferPath Definition of the services attached to the Flexoffer interface

HousePath Definition of the services attached to the House interface

MeasurementsPath Definition of the services attached to the Measurement interface

3.3 EMISSION OF FLEXOFFERS AND ACTUATION SCHEDULES CREATION

The whole system centers around enforcing the flexoffers applied to the devices. In order to

simplify and automatize the process, 2 mechanisms were implemented:

- One responsible for the emission of flexoffers and reception of the corresponding schedule

- Another for creating a mechanism to retrieve the schedules from data base and enforce

the devices to operate depending on them

PESTI Report- Flexoffer Pilot

67

As such we have 2 threads running, one for each mechanism. As soon as the system is stated 2

methods will load those threads into a Timer. Each Timer is configured to execute the thread when

a certain time is met.

3.3.1 FLEXOFFER EMISSION

When the system is 11pm then the timer Task executes the FlexofferTimer(FT). Ft will gather all the

devices that have active Flexoffers from the database. From there it will build a ExecutorService

with a thread pool size equals to the number of devices. From there for each device, every active

Flexoffer is retrieved form the database. For each flexoffer a ExecuteFOEmission thread is built and

by the ExecutorService. This description can be found Figure 32.

PESTI Report- Flexoffer Pilot

68

Figure 32 - Diagram sequence for the FlexofferTimer

PESTI Report- Flexoffer Pilot

69

The ExecuteFOEmission thread is built using a Flexoffer and a Device. The thread retrieves the

instance of the FlexofferAgent and executes the generateFlexoffer method and the flexoffer is then

sent to the Flexoffer Services. The thread then waits for the schedule to be attached to the flexoffer.

When the schedule is delivered the WP5 ID of the Flexoffer is updated in the database. The thread

also retrieves the schedule that was sent back and adds to the database. Figure 33 is an UML

diagram depicting this description.

3.3.2 ACTUATION SCHEDULE

Similar to the emission of flexoffers, when the system is started a thread runs to monitor the time

of the system. When the time hits the target then it executes the ActuationTimer thread. Again

similar to the flexoffer emission the thread builds an ExecutorService in order to execute a pool of

threads. The size of the poll is, again, again determined by the number of devices with schedules

that was previously retrieved from the database. Then the schedules for each device is retrieved.

ActuationTimer then builds a ExecuteActuation thread for each schedule. This description is also

depicted in Figure 34.

When a ExecuteActuation is created, it receives, as parameters, a flexoffer schedule and a device.

From there the schedule in converted into a NextDaySchedule. The NextDaySchedule contains an

array of integers with 96 positions, one for every quarter hours in a day, called commutations. The

first position corresponds to 00h00 while the 5th one corresponds to 01h15 and so on. When

created, the NextDaySchedule will fill all the slots of the commutation array with 0. Then will fill the

arraǇ ǁith ϭ͛s oŶ the positioŶs ĐoƌƌespoŶdiŶg to the tiŵe that the fleǆoffeƌ sĐhedule ǁas alloĐated
consumption. For example, if a schedule has consumption moments at 00h15,00h30 and 01h00 it

will to the 5 first positions of the array to look like this: [0, 1, ϭ,Ϭ, ϭ, …]. The EǆeĐuteAĐtuatioŶ thƌead
retrieves the commutation array and executes a cycle for all the positions. For each iteration it will

verify if the state changes from the previous state. If the states differ, then the thread will invoke

the actuate method of the device in order to toggle the state. This description is depicted in figure

35.

PESTI Report- Flexoffer Pilot

70

PESTI Project

Figure 33 - Sequence diagram for the inner mechanism of the FO emission

PESTI Report- Flexoffer Pilot

71

PESTI Project

Figure 34 - Sequence diagram for the creation of ExecuteActuation threads

PESTI Report- Flexoffer Pilot

72

PESTI Project

Figure 35 - Sequence diagram for the ActuationExecution thread

PESTI Report- Flexoffer Pilot

73

PESTI Project

3.4 CLASSES AND PATTERNS

This section describes the core class in the FlexHousing Middleware system, as well as, enumerating

the pattern in use. The Class diagram of the core class can be found in figure 36.

The classes are distributed into layers. The DAO class is in the Persistence layer and is only accessed

by the controller which are in the Application layer, accompanied by the internal mechanism class.

The models are in the in the Business layer. Every other class is in the External Services layer.

The controllers are only invoked by the business or external services. The DAO is only invoked by the

Controllers. An instance of a Model class can only be created, updated, read or deleted by a controller.

Each request sent to services hosted by the middleware is met the invocation of a controller method.

Further description and evidence of this can be found in the SD/IDD description of the FlexHousing

Middleware system.

System name Path

FlexHousing Middleware

SD-IDD

Arrowhead/SD-IDD FlexHousing Middleware.docx

PESTI Report- Flexoffer Pilot

74

PESTI Project

Figure 36 - Class diagram for FHMW

PESTI Report- Flexoffer Pilot

75

PESTI Project

3.5. DATABASE

When an object is altered or added to the system, it is also persisted in the database. The current

database is an Apache Derby DB. This section will describe the schema for the database. The full

schema can be found depicted in figure 37.

Figure 37 - Schema for the database in the middleware

The most tables in the schema are easy to perceive and only the more complex ones need explaining,

which a corresponding table can found in this section, contain the name of each field and a brief

description. The schema represents the various object that needs to persist in this system. The way

the system saves the data for the flexoffers and for schedules is that we have 2 tables: one for the

description (table 28) and another for the slices. The flexoffer has a name, a generated ID, start and

end time, the id of device it is attached to and an integer representing the ID of the Flexoffer in the

Flexoffer services. When storing the slices, it needs to store the upper and lower bound for the

corresponding Flexoffer. To do so, each entry tin the Slice table has 6 columns: the value for both

bounds, the name and ID of the flexoffer it belongs to and the ID and sequence number, Sequence

number gives us the order of the slice. A similar process is applied to the Schedule and its slices

Column Name Type Description

ID Integer Auto generated number for the local

identification

Name Varchar Name of the Flexoffer

StartTime Time Date and time of the earliest start of the

Flexoffer

EndTime Time Date and time of the latest start of the

Flexoffer

Active Boolean Determines if the flexoffer is still active

WP5ID Integer The ID of the Flexoffer in the Flexoffer

Services

DeviceID Integer ID of the Device it is applied on.

Table 27 - Table description for the Flexoffer

PESTI Report- Flexoffer Pilot

76

PESTI Project

4.2.6 SYSTEM DESIGN DESCRIPTION – FRONTEND

This document defines the System Design Description of the FlexHousing FrontEnd system.

FlexHousing FrontEnd, bridging the flexoffer concept and external technologies with the common

user. The focus of this document is to describe the implementation of the system architecture, the

used components, and the use-cases supported by UML diagram.

1. SYSTEM DESIGN DESCRIPTION OVERVIEW

Name FlexHousing FrontEnd

Owner ISEP

The FlexHousing FrontEnd system has been developed by CISTER/ISEP, in the context of the Work

Package 5 of the Arrowhead project. The goal of the project was to build a pilot that constituted a

proof of concept for the usage of flexoffers as integrated with external technologies. FlexHousing is a

system comprised of a middleware (FHMW) and a front-end type Webserver for user interaction

(FHFE). FlexHousing Front End (FHFE) is a C# project hosted on a webserver, allowing the user to

configure and use the FlexHousing Middleware (FHMW) within his building.

FlexHousing is a system comprised of a middleware (FHMW) and a front-end type Webserver for user

interaction (FHFE).

A more abstract description of the FHFE system can be found on the document referenced in Table 2.

System name Path

FlexHousing Arrowhead/ SysD FlexHousing FrontEnd.docx

The web-based front-end FHFE was implemented as a showcase prototype. Its goal is to provide a

basic graphical interface to demonstrate the capabilities of the middleware, and as such has been

changed with each version of the middleware FHMW. Thus, the FHFE is intended to be an added value

to the FHMW, and as such it covers all the services of FHMW itself; on the other hand, the FHFE cannot

be considered a mature product by itself and does not cover all possible operations unrelated to

FHMW. Incomplete use cases comprise missing CRUD operations over Rooms and Devices, and FHFE

to consume data from Use Case 8 (see Section 4.2.1) . Regarding this latter limitation, the FHFE is

already able to provide a representation of the data from other Use Cases, and the only missing graphs

regards showing a unique graph reporting the Flexoffer schedule and measurements for the same

period of time.

2. USE CASES

2.1 NON FUNCTIONAL REQUIREMENTS

To guarantee the non-functional requirements described in the document referenced in Table 2, this

section lists the proposed solutions to its corresponding requirement:

- Availability: Deployment on a dedicated server.

- Interoperability & Extensibility: Usage of SOLID software principles, developing a high

cohesion and low coupling code.

- Performance: Usage of high performance technologies.

2.2 USE CASES

Each implementation of a Use-case is accompanied by a SSD depicting the workflow, a reference to

the implementation of the services the front end uses and an explanation of how it was implemented

PESTI Report- Flexoffer Pilot

77

PESTI Project

and any decisions taken. The SSD will depict the interaction between the different objects within the

front end web server and the calls it makes to the FlexHousing middleware.

2.2.1 SEND FLEXOFFER

The workflow of the sending of flexoffers is depicted in Figure 38.

The user is presented with the list of the devices in the part of the System of Systems that he owns/has

access to. The user seleĐts ͞ApplǇ Flexoffer͟. The page is ƌediƌeĐted to the View and the user is

prompted to fill input information on the name of the flexoffer, start and end time, and the pattern

for the consumption. The info is collected and sent to the Flexoffer Controller. From there,

the controller invokes the Flexoffer Handler, responsible for the communication with the

FHMW, more specifically for the Flexoffer interface. The handler executes the request, posting the

flexoffer. The handler receives the response from the server and sends it back to controller. If the

request was responded with any errors, the user is notified of the success of the operation.

Figure 38- Sequence diagram for UC 1

PESTI Report- Flexoffer Pilot

78

PESTI Project

2.2.2 RECEIVE SCHEDULES

The following figure, Figure 2, shows the step the system does to receives schedules.

The previous figure, Figure 39, shows the step the system does to receives schedules. The user selects

the ͞Details͟ optioŶ of the deǀiĐe. The View is loaded and the user is presented with a date chooser

html object. When a date is selected, a JavaScript function is executed, retrieving the schedules for

that specific date from the FlexHousing Middleware. The data is stored and for each object a

html button is created, using the name of the flexoffer the schedule originated from as a title. When

a button is pressed, a second JS function is invoked, building a Highchart object [31], depicting the

data from that specific schedule. The chart is put in view for the user to see.

2.2.3 LOGIN

Figure 40 depicts the sequence of steps executed when the user logs into the system.

Figure 39 - Sequence diagram for UC 2

Figure 40 -Sequence diagram for UC 3

PESTI Report- Flexoffer Pilot

79

PESTI Project

The useƌ seleĐts the ͞LogiŶ͟ optioŶ. The useƌ theŶ iŶputs the eŵail aŶd passǁoƌd. The ĐoŶtƌolleƌ is
invoked, capturing the information. The AccountController then uses the AccountHandler

for the execution of the request. The login is sent to FHMW. When the FHMW replies back and if the

response was successful, then the user is redirected back to homepage and is now able to perform

the rest of the FHFE features.

2.2.4 MANAGE HOUSE

The figure below (Figure 41) depicts the sequence diagrams of the various steps and interactions

between the various components, enabling the managing of Rooms.

WheŶ seleĐtiŶg the ͞‘ooŵ͟ taď the useƌ ĐaŶ ĐheĐk eǀeƌǇ ƌooŵ ĐuƌƌeŶtlǇ ƌegisteƌed iŶ sǇsteŵ. WheŶ
the tab is pressed, the HouseController is issued the getAllRooms() request. The controller

proceeds to request execute the function with the same name located in the HouseHandler. Its

objective is to contact the middleware and request the list of rooms. When the response is sent back,

the controller receives the list from and handler a new View is built using the list of rooms as Model.

Figure 41- Sequence diagram for UC 4

PESTI Report- Flexoffer Pilot

80

PESTI Project

The option within that View, ͞Cƌeate ‘ooŵ͟, alloǁs the useƌ to add a Ŷeǁ ƌooŵ to the sǇsteŵ. The
user is redirected to a new View, where he has to input the name of the new room. When the

information has been provided and the user confirms the creation, the HouseController captures

that action. It will execute the postRoom() function of the HouseHandler providing as a

parameter the name of the room. The handler will contact the middleware and execute a POST

function. The room is added. If no exception was raised, the page is redirected to the Index of rooms

and the new room is now amongst the list.

2.2.5 MANAGE DEVICES

The following figure (Figure 42) shows a UML representation of the UC 5.

The ͞DeǀiĐe͟ taď oŶ the ŵaiŶ MeŶu leads to the list of deǀiĐes ĐuƌƌeŶtlǇ ƌegisteƌed iŶ sǇsteŵ. WheŶ

the option is selected, the DeviceController invokes the getAllDevices() of the

DeviceHandler. From there the handler executes a request targeting the middleware. The

middleware responds with the list of devices. When the handler sends back the information to the

controller. A new View is redirected to user, depicting the list of devices received. When the user is

pƌeseŶted ǁith the list of deǀiĐes oŶe of the optioŶ foƌ deǀiĐe is the ͞Details͟ optioŶ. WheŶ seleĐtiŶg
that option, the DeviceController͛s getDetails() function is invoked. This triggers the

function with the same name in DeviceHandler. The handler will execute a request aiming for the

middleware, using the ID of the device whose option was clicked as a parameter. The middleware

responds with the details of the device. The controller receives that data from the handler and creates

a View with the details. The View is then presented to the user.

Figure 42 - Sequence diagram for UC 5

PESTI Report- Flexoffer Pilot

81

PESTI Project

2.2.6 CHECK MEASUREMENTS

Figure 43 represents the sequence diagram for the check measurements use-case.

WheŶ pƌeseŶted ǁith list of deǀiĐes, oŶe of the optioŶs foƌ eaĐh deǀiĐe is ͞CheĐk MeasuƌeŵeŶts͟.

When the user selects that option, a modal pops up. The modal has 2 fields for input, the start date

and end date of the period you want to check the measurements for. The dates are collected and sent

as parameters to the getSchedulesByDay() function in the Measurements.js JavaScript.

The function communicates with the middleware requesting the measurements for the period the

user has selected. When the response is sent, the function will then create a Highchart chart,

graphically depicting the data collected. The chart is then added to the View for the user to observe.

2.2.7 ACTUATE ON DEVICES

The following figure (Figure 44) depicts the steps taken by the system when the features for UC 6 are

employed.

Figure 43- Sequence diagram for UC 6

Figure 44- Sequence diagram for UC 7

PESTI Report- Flexoffer Pilot

82

PESTI Project

The deǀiĐe iŶ the deǀiĐe list Vieǁ haǀe the ͞AĐtuate͟ optioŶ. The seleĐtioŶ of this option leads to the

invocation of the Actuate() function in the DeviceController. The controller requests the

DeviceHandler to execute the function with the same name. The handler emits a request towards

the middleware with the ID of device in question. When the response is received, it forwarded to the

controller, who refreshes the current View. The device who had the option executed on had its state

toggled.

2.2.8 VERIFY IF FLEXOFFER WAS RESPECTED

Due to time constraints, the implementation of UC8 is an ongoing work, and still has to be completed.

The implementation would revolve around the same procedure done for other UC: The user selected

the option and a View permitting the selection of the flexoffers the device had had applied. The list

ǁould oŶlǇ ĐoŶtaiŶ fleǆoffeƌs ǁith attaĐhed sĐhedules: iŶǀalid oƌ uŶsĐheduled fleǆoffeƌs ǁouldŶ͛t
appear. From there the user would select a flexoffer. The system would collect the information of that

flexoffer and schedule and would request the middleware for the measurements of the same time

period, similar to how UC 6 functions. The system would then build a chart, using Highcharts like it

did previously, and show the user the bar chart of the flexoffer with a different colored plot line

depicting the consumption for each quarter hour within that period of time. The end result would look

similar to Figure 45

Figure 45 - Chart for the projected implementation of UC 8

PESTI Report- Flexoffer Pilot

83

PESTI Project

3. SOLUTION DESCRIPTION

The purpose of this chapter is to describe the implementation of the solution. Initially, an overview of

the system architecture is described with the support of a component diagram, then all the core

classes used on the code implementation are explained along with a class diagram.

3.1 COMPONENT DIAGRAM

Typical to web design, a MVC pattern was adopted in the FHFE. More specifically we have ViewModels,

Views and Controllers. In order to enforce an even better development methodology, a Handler layer

is responsible for the communication with other components. In this particular cases, no DTO are

involved because the objects that are exchanged are the same as the Models. This description is

depicted in Figure 46.

Figure 46 - Component Diagram of the FlexHousing system.

3.2 CLASSES STRUCTURE, AND DESIGN PATTERNS UNDER USE

The MVC pattern is employed in order to facilitated the incremental development. In case it͛s
implemented using ASP.NET MVC. This means the Views use the Models for the building of the Web

foƌŵs, foƌ eaĐh ĐoŶtƌolleƌ ŵethod theƌe ĐaŶ a Vieǁ assoĐiated to it aŶd foƌ eaĐh ŵajoƌ ŵodel theƌe͛s
a controller used to execute the operations regarding those models. In this case the Models are

actually ViewModels due to the fact they represent the information the system shows the User.

This system has 5 major building blocks:

 The Controllers

 The Views

 The ViewModels

 The Handlers

 The Scripts

3.2.1 CONTROLLERS

Responsible for the logic of any operation. Normally linked to button or option in the view. There is

the Device, House and Flexoffer Controller. The controllers are used when the action involved leads

to a new View. Figure 29 depicts the Actuate() method.

Table 28 - Sample of code representing the controller method Actuate

public async Task<ActionResult> Actuate(string id)
 {
 Actuation act = new Actuation();
 act.ID = id;
 act.command = 3;

PESTI Report- Flexoffer Pilot

84

PESTI Project

 await DeviceHandler.Actuate(act);
 return RedirectToAction("Index", "Device");

 }

3.2.2 VIEWS

Using Html, Css and Razor, the system is able to create web pages integrated with WebForms. These

forms allow to easily represent the Models of the system. The͟ @͟ aŶŶotatioŶ staƌts a ƌazoƌ stateŵeŶt
or line of code. That line of code is processed before the page is rendered on the server side. Employing

razor enables us to embed controller methods in our options.

Table 29 - Code sample for a View in the FrontEnd

@foreach (var item in Model)
 {
 string id = item.ID;
 <tr>
 <td>
 @Html.DisplayFor(modelItem => item.ID)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.Name)
 </td>
 <td>
 @Html.DisplayFor(modelItem => item.deviceRoom.Name)
 </td>
 <td>

 @Html.ActionLink("Details", "Details", new { id = item.ID }) |

 @Html.ActionLink("Actuate", "Actuate", "Device", new { id = id },
null) |
 <a id="@Html.Raw(id)" , href="#myModal"
onclick="getLine(this.id)" data-toggle="modal">Measurements

 @Html.ActionLink("Apply Flexoffer", "Flexoffer", new { id =
item.ID })
 </td>
 </tr>

 }

The code represented in table 30 shows the usage of razor and html elements. For each object in the

Model list this method will create a new row in the table and add those option, which are connected

to controller methods.

3.2.3 VIEWMODELS

These classes represent the objects will we operate with. They are normally called Models but in case,

because they are also exactly what the system shows the user, they can be called ViewModels. They

are used by the razor for the creation of WebForms in the rendering/building of the Views.

PESTI Report- Flexoffer Pilot

85

PESTI Project

Table 30 - The representation of the Flexoffer object

public class Flexoffer
 {

 public long startTime { get; set; }

 public long endTime { get; set; }

 public List<double> upperEnergyValues { get; set; }

 public List<double> lowerEnergyValues { get; set; }

 public string name { get; set; }

 }

 Table 31 depicts the code for the representation of the Flexoffer object. The name of each field is

built in order to correctly match the name of the JSON string is received by the handlers. Doing so

enables the system to deserialize the string and returns the matching objects.

3.2.4 HANDLERS

These objects have the responsibility of sending the request towards the middleware. They use a

HttpServer, whose default URL is the abstract interface of the middleware. From there they build their

content, add the correct header and concatenate the rest of the URL in order to reach the service.

Then depending on the request they will execute the operation (GET, POST, DELETE, …). When the

response is received they will return it to the controller who invoked the handler in the first place.

Table 31 - Code for the GetAllDeviceList function of the device handler

public static async Task<ICollection<Device>> GetAllDeviceList(string url)
 {
 ICollection<Device> deviceList = new List<Device>();
 var client = WebClient.GetClient();

 HttpResponseMessage response = await client.GetAsync(url);
 if (response.IsSuccessStatusCode)
 {
 string jsonString = await response.Content.ReadAsStringAsync();
 deviceList =
JsonConvert.DeserializeObject<List<Device>>(jsonString);
 }

 return deviceList;

 }

The implementation of the function in table 32 is responsible for the retrieval of the devices in the

middleware. Using the HttpClient, that Handler executes the GET request for the list of devices in

FHMW.

3.2.5 SCRIPTS

Some of the operations, in order to be more responsive and user friendly, are done on client side,

directly using the web browser. Such operations are stored in .js Javascript files. Those functions will

retrieve information from the user, execute requests towards the middleware and alter the web page

depending to the results.

PESTI Report- Flexoffer Pilot

86

PESTI Project

Table 32 - Code for the appendSlice function

function appendSlice() {
 var from = document.getElementById("inputLower").value;
 lower.push(from);
 console.log(lower);
 var to = document.getElementById("inputUpper").value;
 upper.push(to);
 console.log(upper);
 var d1 = document.getElementById('Pattern');
 d1.innerHTML += "From "+from+"kW to "+to +"kW.";
 $('.modal-backdrop').remove();
 $('#myModal').modal('hide');

}

 The script depicted in table 33 is used when the user is building the pattern for a flexoffer. The

function retrieves the info from a modal, puts in the internal object and also adds it to a html object

list for the user to keep track of his work.

PESTI Report- Flexoffer Pilot

87

PESTI Project

4.2.7 SERVICE DESCRIPTION AND INTERFACE DESCRIPTION –

MIDDLEWARE

This document describes the services hosted by the FlexHousing Middleware. Each service is

described, has a sequence diagram of it implementation and an example for a request.

1. OVERVIEW

This document describes the services hosted by the FlexHousing middleware that supports the

flexoffer pilot, including its interfaces and its information model. The purpose of the FlexHousing

Middleware is to allow the user to perform CRUD (create, read, update and delete) operations on

devices and rooms representations, flexoffer creation, measurement verification and automated

actuations driven by received schedules.

The service integrates the flexoffer services implemented by Work Package 5 of the Arrowhead Project

with external technologies, in this case represented by a smart plug service provided by Virtual Power

Solutions.

Figure 1 – FlexHousing FlexHousing interface Overview

The FlexHousing service is an application service. It is attached to an Arrowhead cloud containing an

Aggregator as such multiple instances can be instantiated on the same network.

2. INTERFACES

The FlexHousing service exposes four interfaces, namely Flexoffer, House, Device and Measurements.

In the following, the function names are preceded by the type of request it handles, with its name in

capital letters (GET, DELETE, POST, PUT).

This section reports the definition of the functions related to each interface, and examples regarding

the messages used in the context of the functions. Section 3 reports information regarding the

Information Model, and it documents each field of the messages.

2.1 FLEXOFFER

This interface is used for CRUD operations upon flexoffers, namely creating flexoffers, retrieving

flexoffers, with or without filters, and retrieving schedule.

PESTI Report- Flexoffer Pilot

88

PESTI Project

Figure 47 – Flexoffer Interface

Figure 47 depicts the methods attached to the interface.

2.1.1 GET GETALLFLEXOFFERS

The GetAllFlexoffers function is used to retrieve all the flexoffers created by the user. It returns all

existing flexoffers, independently of their state, active, deleted or pending scheduling. This function is

mainly used for debugging purposes.

Table 33 - Example of a request to get all flexoffers

PATH

/FlexHousing/Flexoffer/GetAllFlexoffers

Request Response

Path Parameters: Body

None [

 { "name": "Test1",

 "startTime": 1638912,

 "endTime": 1638912,

 "upperEnergyValues": [25],

 "lowerEnergyValues": [50]

 },

 { "name": "Test2",

 "startTime": 1639008,

 "endTime": 1639008,

 "upperEnergyValues":

[12,12],

 “lowerEnergyValues":
[10,10]},

 {…..}
]

Query Parameters

None

Body

None

2.1.2 GET GETALLACTIVEFLEXOFFERS

It retrieves all the active flexoffers, namely the ones with an active schedule.

Table 34 - Example of a request to retrieve all active flexoffers

PATH

PESTI Report- Flexoffer Pilot

89

PESTI Project

/FlexHousing /Flexoffer/GetAllActiveFlexoffers

Request Response

Path Parameters Body

None [

 { "name": "Test1",

 "startTime": 1638912,

 "endTime": 1638912,

 "upperEnergyValues": [25],

 "lowerEnergyValues": [50]},

 { "name": "Test2",

 "startTime": 1639008,

 "endTime": 1639008,

 "upperEnergyValues":

[12,12],

 “lowerEnergyValues":
[10,10]},

 {…..}
]

Query Parameters

None

Body

None

2.1.3 GET {PARAM}

This function retrieves the flexoffer that is currently attached to a device, and whose device ID

corresponds to the parameter added to the path.

Table 35 - Example of a request to retrieve the latest flexoffer attached to a device

PATH

/FlexHousing/Flexoffer/3ZU-VGC-N3J-NWK-9P

Request Response

Path Parameters Body

Device ID – ͞ϯ)U-VGC-N3J-NWK-9P͟ ["name": "Test1",

 {"startTime": 1638912,

 "endTime": 1638912,

 "upperEnergyValues": [25],

 "lowerEnergyValues": [50]},

 {"startTime": 1639008,

 "endTime": 1639008,

 "upperEnergyValues":

[12,12],

 “lowerEnergyValues":
[10,10]},

 {…..}
]

Query Parameters

None

Body

None

2.1.4 GET SCHEDULE {PARAM}

Similar to the function in section 2.1.1.3., it allows for the retrieval of the schedules bound to the

device whose ID corresponds to the function path.

PESTI Report- Flexoffer Pilot

90

PESTI Project

Table 36 - Example of a request to retrieve a schedule attached to a specific device

PATH

/FlexHousing/Flexoffer/Schedule/3ZU-VGC-N3J-NWK-9P

Request Response

Path Parameters Body

Device ID – ͞ϯ)U-VGC-N3J-NWK-9P͟ [

 {

 "name": "Lamp",

 "Start": "Sep 24, 2016

7:00:00 PM",

 "energyAmounts": [

 15

]

 }

]

Query Parameters

None

Body

None

2.1.5 GET DAY {PARAM}

This function is used to access all the flexoffers created in a day specified by a query param attribute,

for the device represented by the ID in the path. Normally requested when the user desires to check

the flexoffer history of a given device.

Table 37 - Example of a request to retrieve the flexoffers on a certain day

PATH

/FlexHousing/Flexoffer/Day/3ZU-VGC-N3J-NWK-9P?Day=2016-09-21

Request Response

Path Parameters Body

Device ID – ͞ϯ)U-VGC-N3J-NWK-9P͟ [

 {

 "name": "Test1",

 "startTime": 1474452000000,

 "endTime": 1474459200000,

 "upperEnergyValues": [

 15

],

 "lowerEnergyValues": [

 12

]

 },

 {

 "name": "Test2",

 "startTime": 1474452000000,

 "endTime": 1474459200000,

 "upperEnergyValues": [

 80

],

 "lowerEnergyValues": [

Query Parameters

Day – ͞ϮϬϭϲ-09-Ϯϰ͟

Body

None

PESTI Report- Flexoffer Pilot

91

PESTI Project

 50

]

 }

]

2.1.6 GET SCHEDULE DAY {PARAM}

Similar to the function in section 2.1.1.5., this function returns all the schedules applied to the device

specified by the path, in a day specified as the query parameter param.

Table 38 - Example of a request to retrieve the schedules for a specific day

PATH

/FlexHousing/Flexoffer/Schedule/Day/3ZU-VGC-N3J-NWK-9P?Day=2016-09-24

Request Response

Path Parameters Body

Device ID – ͞ϯ)U-VGC-N3J-NWK-9P͟ [

 {

 "name": "Test1",

 "Start": "Sep 21, 2016

11:00:00 AM",

 "energyAmounts": [

 13

]

 },

 {

 "name": "Test2",

 "Start": "Sep 21, 2016

11:00:00 AM",

 "energyAmounts": [

 65

]

 }

]

Query Parameters

Day – ͞ϮϬϭϲ-09-Ϯϰ͟

Body

None

2.1.6 POST {PARAM}

Even though this function shared the same name as the one in 2.1.1.3., it allows the user to create a

flexoffer through the POST operation. The body of the request contains a string representing the name

of the flexoffer, its startTime and endTime in milliseconds, and two arrays of doubles representing the

upper and lower energy values for each slice of the flexoffer.

Table 39 - Example of a request to store a flexoffer

PATH

/FlexHousing/Flexoffer/3ZU-VGC-N3J-NWK-9P

PESTI Report- Flexoffer Pilot

92

PESTI Project

Request Response

Path Parameters Body

Device ID – ͞ϯ)U-VGC-N3J-NWK-9P͟

ResponseCode(200) Query Parameters

None

Body

{

"startTime":1474452000000.0,

"endTime":1474459200000.0,

"upperEnergyValues":[25.0],

"lowerEnergyValues":[12.0]

}"

2.1.7 DELETE

As the name implies, this function allows the deletion of a flexoffer. It is not supposed to be used often

since, when a new flexoffer is created as a replacement for a previous one, the older one will be

deactivated.

Table 40 - Example of a request to delete a flexoffer

PATH

/ FlexHousing/Flexoffer?DeviceID=3ZU-VGC-N3J-NWK-9P

Request Response

Path Parameters Body

None

ResponseCode(200) Query Parameters

DeviceID – ͞ϯ)U-VGC-N3J-NWK-9P͟

Body

None

PESTI Report- Flexoffer Pilot

93

PESTI Project

2.2 DIAGRAMS

2.2.1 GET GETALLFLEXOFFERS

Figure 48 - Sequence diagram for getAllFlexoffers

Figure 48 depicts the steps executed when retrieving all the flexoffers in the system.

PESTI Report- Flexoffer Pilot

94

PESTI Project

2.2.2 GET GETALLACTIVEFLEXOFFERS

Figure 49 - Sequence diagram for getAllActiveFlexoffers

Figure 49 represents the sequence diagram for the execution of the get all active flexoffers service.

2.2.3 GET {PARAM}

Figure 50 - Sequence diagram for getFlexoffer

PESTI Report- Flexoffer Pilot

95

PESTI Project

Figure 50 represents the sequence diagram for the retrieval of a specific flexoffer

2.2.4 GET SCHEDULE {PARAM}

Figure 51 - Sequence diagram for getSchedule

Figure 51 represents the sequence diagram for the retrieval of a specific schedule.

PESTI Report- Flexoffer Pilot

96

PESTI Project

2.2.5 GET DAY {PARAM}

Figure 52 - Sequence diagram for getFObyDay

The diagram depicted in figure 52 represents the steps taken in reiving the flexoffers for a specific

day.

PESTI Report- Flexoffer Pilot

97

PESTI Project

2.2.6 GET SCHEDULE DAY {PARAM}

Figure 53 - Sequence diagram for getSchedulesByDay

Figure 53 depicts the sequence diagram for the retrieval of the schedules for a specific day.

2.2.7 POST {PARAM}

Figure 54 - Sequence diagram for posting a flexoffer

Figure 54 depicts the sequence diagram for the registering of a flexoffer in the system.

PESTI Report- Flexoffer Pilot

98

PESTI Project

2.2.7 DELETE

Figure 55 - Sequence diagram for deleting a flexoffer

Figure 55 represents the steps taken when deleting a flexoffer.

2.3 HOUSE

This interface is used to interact with the devices in the building and the login against the VPS services,

the latter being required to be able to manage devices from an actuation and measurement retrieval

point of view.

Figure 3 – Flexoffer Interface

2.3.1 GET STATS

The stats function is used for the retrieval of statistics relevant to the VPS system, namely the number

of flexoffer applied on devices, the total number of flexoffers that had been applied and a value

representing the money saved using the FlexHousing service.

PESTI Report- Flexoffer Pilot

99

PESTI Project

Table 41 - Example of a request to get the statistics of a house

PATH

/FlexHousing/House/Stats

Request Response

Path Parameters Body

None

{

 "numberOfDevicesWithFO": 1,

 "numberOfFOApplied": 24,

 "moneySaved":

1.2000000000000002

}

Query Parameters

None

Body

None

2.3.2 DELETE ROOM

As the name implies, it allows the deletion of a room, specified in a query parameter, which has to be

the room ID.

Table 42 - Example of a request to delete a room

PATH

/FlexHousing/House/Room?RoomID=24

Request Response

Path Parameters Body

None

ResponseCode(200) Query Parameters

RoomID – ͞Ϯϰ͟

Body

None

2.3.3 POST ROOM

This function allows the creation and addition of the room with the name in the body of the request.

The service will automatically assign a unique ID when the room is added to the list. The ID is

obtainable when requesting the details of the room.

PESTI Report- Flexoffer Pilot

100

PESTI Project

Table 43 - Example of a request to register a room

PATH

/FlexHousing/House/Room

Request Response

Path Parameters Body

None

ResponseCode(200) Query Parameters

None

Body

{

 "Naŵe": ͞test͟

}

2.3.4 GET ROOM {PARAM}

When consumed, this function will return all the devices that are currently in the room whose name

was sent as a path parameter.

Table 44 - Example of a request to retrieve a specific room

PATH

/FlexHousing/House/Room/24

Request Response

Path Parameters Body

RoomID – ͞Ϯϰ͟

[

 {

 "ID": "3ZU-VGC-N3J-NWK-9P",

 "room": {

 "Name": "Sala",

 "ID": 24

 },

 "Name": "test",

 "sensors": [

 {

 "id": 9454,

 "Name": "Active Power"

 }

]

 }

]

Query Parameters

None

Body

None

PESTI Report- Flexoffer Pilot

101

PESTI Project

2.3.5 GET ROOM

This function allows for the retrieval of every room in the system. The returned data are a list of rooms

comprising name and unique ID.

Table 45 - Example of a request to get all the rooms

PATH

/FlexHousing/House/Room

Request Response

Path Parameters Body

None

[

 {

 "Name": "Sala",

 "ID": 24

 },

 {

 "Name": "Quarto Principal",

 "ID": 25

 },

 {

 "Name": "Garagem",

 "ID": 26

 },

 {

 "Name": "Cozinha",

 "ID": 27

 },

 {

 "Name": "Sala de Estar",

 "ID": 28

 },

 {

 "Name": "Teste",

 "ID": 29

 }

]

Query Parameters

None

Body

None

2.3.6 POST LOGIN

This function accepts a body with an email address and a password. The system will then communicate

with the VPS services in order to verify if the email/password combination that was sent is registered

in their system. If the response is a success code, it will also include an authorization token, used in

any operation involving their services.

PESTI Report- Flexoffer Pilot

102

PESTI Project

Table 46 - Example of a request to execute the login

PATH

/FlexHousing/House/Login

Request Response

Path Parameters Body

None

ResponseCode(200) Query Parameters

None

Body

{

"Login":1120527@isep.ipp.pt,

"Password":"cister"}

2.4 DIAGRAMS

2.4.1 GET STATS

Figure 56 - Sequence diagram for retrieving the statistics of the house

Figure 56 depicts the sequence diagram for retrieval of the statistics of the house.

2.4.2 DELETE ROOM

mailto:1120527@isep.ipp.pt

PESTI Report- Flexoffer Pilot

103

PESTI Project

Figure 57 - Sequence diagram for deleting a room

Figure 57 depicts the sequence diagram for deleting a room.

2.4.3 POST ROOM

Figure 58 - Sequence diagram for registering a room

Figure 58 depicts the sequence diagram for insertion of a room into the system.

PESTI Report- Flexoffer Pilot

104

PESTI Project

2.4.4 GET ROOM {PARAM}

Figure 59 - Sequence diagram for retrieving all the devices in a room

Figure 59 depicts the sequence diagram for obtaining the devices attached to a room.

2.4.5 GET ROOM

Figure 60 - Sequence diagram for retrieving the details for a room

PESTI Report- Flexoffer Pilot

105

PESTI Project

Figure 60 depicts the sequence diagram for the retrieval of the details of a room.

2.4.6 LOGIN

Figure 61 - Sequence diagram for the login in the system

Figure 61 depicts the sequence diagram the steps executed when the Login request is received

2.5 DEVICE

This interface gives the possibility managing the devices: register, update, check details, register

sensors and delete them. Any function that interacts with the VPS services will fail if the authorization

step ǁasŶ͛t pƌeǀiouslǇ eǆeĐuted. The seŶsoƌs aƌe eŵďedded iŶ the deǀiĐes ďut foƌ the sake of usage,
they need to be added to the FlexHousing system. The methods attached to interface are depicted in

Figure 62.

Figure 62 - Flexoffer Interface

PESTI Report- Flexoffer Pilot

106

PESTI Project

2.5.1 GET

The function with the GET request at the same path as the interface(/Device) returns a list with all the

devices currently registered in the application.

Table 47- Example of a request to retrieving all the devices from the system

PATH

/FlexHousing/Device

Request Response

Path Parameters Body

None

[

 {

 "ID": "3ZU-VGC-N3J-NWK-9P",

 "room": {

 "Name": "Sala",

 "ID": 24

 },

 "Name": "test",

 "sensors": [

 {

 "id": 9454,

 "Name": "Active Power"

 }

]

 }

]

Query Parameters

None

Body

None

2.5.2 GET GETACTUATABLE

Similar to the function described in section 2.3.1.1, with the exception of only returning devices with

the actuators attached to them. All the sensors have sensors embed, but some devices are capable to

actuate because they lack the actuatioŶ seŶsoƌ. “uĐh deǀiĐes aƌeŶ͛t fleǆoffeƌ ĐoŵpliaŶt.
Table 48- Example of a request to retrieve all the actuable devices

PATH

/FlexHousing/Device/GetActuatable

Request Response

Path Parameters Body

None

[

 {"ID": "3ZU-VGC-N3J-NWK-9P",

 "room": {

Query Parameters

None

Body

PESTI Report- Flexoffer Pilot

107

PESTI Project

None "Name": "Sala",

 "ID": 24

 },

 "Name": "test",

 "sensors": [

 {

 "id": 9454,

 "Name": "Active Power"

 },

 {

 "id": 9456,

 "Name": "Actuator"}]

 }

]

2.5.3 GET {PARAM}

Invoking this function with the interface path with and an extra path parameter will return the details

of the device whose ID is in the said parameter. This will return name, ID, Room and sensors currently

linked to that specific device.

Table 49- Example of a request to retrieve a specific device

PATH

/FlexHousing/Device/3ZU-VGC-N3J-NWK-9P

Request Response

Path Parameters Body

DeviceID – ͞ϯ)U-VGC-N3J-NWK-9P͟

{

 "ID": "3ZU-VGC-N3J-NWK-9P",

 "room": {

 "Name": "Sala",

 "ID": 24

 },

 "Name": "test",

 "sensors": [

 {

 "id": 9454,

 "Name": "Active Power"

 },

 {

 "id": 9456,

 "Name": "Actuator"

 }

]

}

Query Parameters

None

Body

None

2.5.4 POST ACTUATE

PESTI Report- Flexoffer Pilot

108

PESTI Project

This function is the backbone of the FlexHousing system: it allows to issue a command to a specific

device. The body of the request contains the ID of the device and the command to be issued: 0 for

turning off, 1 for turning on and 3 for commutation (from 1 to 0 or vice versa). When received, the

request will trigger FlexHousing into sending a second request to the VPS services, issuing the

demanded command to that specified device. This function can be used with any device, but will only

have an effect with devices equipped with actuators.

Table 50 - Example of a request to request an actuation on a device

PATH

/FlexHousing/Device/Actuate

Request Response

Path Parameters Body

None

ResponseCode(200) Query Parameters

None

Body

{

 "ID":"3ZU-VGC-N3J-NWK-9P",

 "command":3

}

2.5.5 DELETE SENSOR

This function is used when a sensor is to be deleted. The request is sent specifying the device ID and

sensor ID, representing which sensor to delete from the system

Table 51 - Example of a request to delete a sensor

/FlexHousing/Device/Sensor?DeviceID=3ZU-VGC-N3J-NWK-9P&SensorID=9454

Request Response

Path Parameters Body

None

ResponseCode(200) Query Parameters

DeviceID – ͞ϯ)U-VGC-N3J-NWK-9P͟

SensorID – ͞9ϰϱϰ͟

Body

None

2.5.6 POST

PESTI Report- Flexoffer Pilot

109

PESTI Project

Using this function, attached to path of the interface, allows the user to register a device. The only

information the user has to input is the ID of the device, normally placed directly on the device, and a

name, used for a human readable traceability within the system. FlexHousing is capable to link the

device to its sensors and measurements with the physical ID of the device.

Table 52 - Example of a request to register a device

PATH

/FlexHousing/Device

Request Response

Path Parameters Body

None

ResponseCode(200) Query Parameters

None

Body

{

 "ID": "3ZU-VGC-N3J-NWK-9P",

 "room": {

 "Name": "Sala",

 "ID": 24

 },

 "Name": "test"

}

2.5.7 POST SENSOR

This function allows for the attachment of sensors to the device. Essentially the sensors are already

attached to the device but only in the VPS services and have their own local ID. This function retrieves

the ID of that tag and allow the traceability and responsiveness of the said sensor, for either

measurements or in more specific case, the actuation. The body of the request contains the name of

the sensor meant to be added and the ID of the target device.

Table 53 - Example of a request to register a sensor

PATH

/FlexHousing/Device/Sensor

Request Response

Path Parameters Body

None

ResponseCode(200) Query Parameters

None

Body

{

 "ID": "3ZU-VGC-N3J-NWK-9P",

 "Name": "Active Power"}

PESTI Report- Flexoffer Pilot

110

PESTI Project

2.5.8 GET SENSOR

The usage of this function allows the user to retrieve the sensor currently attached to a device,

specified by its ID, attached by a query parameter

Table 54 - Example of a request to retrieve the details of a sensor

PATH

/FlexHousing/Device/Sensor/3ZU-VGC-N3J-NWK-9P

Request Response

Path Parameters Body

DeviceID – ͞ϯ)U-VGC-N3J-NWK-9P͟

[

 {

 "id": 9454,

 "Name": "Active Power"

 },

 {

 "id": 9456,

 "Name": "Actuator"

 }

]

Query Parameters

None

Body

None

2.5.9 GET SENSOR TYPES

This function enables the user to check which kind of sensors is available to be added. It returns a list

of strings, containing the names of the sensors.

Table 55 - Example of a request to retrieve the sensor types in the system

PATH

/FlexHousing/Device/Sensor/Types

Request Response

Path Parameters Body

None [

 "Voltage RMS",

 "Frequency",

 "Active Power",

 "Active energy+",

 "Actuator",

 "Power Factor",

 "Power Factor",

 "RSSI",

 "LQI"

]

Query Parameters

None

Body

None

PESTI Report- Flexoffer Pilot

111

PESTI Project

2.6 DIAGRAMS

2.6.1 GET

Figure 63 - Sequence diagram for retrieving all the devices in the system

Figure 63 depicts the sequence diagram for retrieving the device that are registered in the system.

2.6.2 GET GETACTUATABLE

Figure 64 - Sequence diagram for retrieving all the actuable devices

PESTI Report- Flexoffer Pilot

112

PESTI Project

Figure 64 depicts the sequence diagram for retrieving the devices that have the Actuator sensor

linked to them.

2.6.3 GET {PARAM}

Figure 65 - Sequence diagram for retrieving the details for a specific device

Figure 65 depicts the sequence diagram for obtaining the details a device.

2.6.4 POST ACTUATE

Figure 66 - Sequence diagram for requesting an actuation on a device

Figure 66 depicts the sequence diagram for the operations executed when a request for actuating on

a device is received.

PESTI Report- Flexoffer Pilot

113

PESTI Project

2.6.5 DELETE SENSOR

Figure 67 - Sequence diagram for deleting a sensor

Figure 67 depicts the sequence diagram for the deletion of a sensor.

2.6.6 POST

Figure 68 - Sequence diagram for registering a device

Figure 68 depicts the sequence diagram the registration of a device into the FlexHousing system.

PESTI Report- Flexoffer Pilot

114

PESTI Project

2.6.7 POST SENSOR

Figure 69 - Sequence diagram for adding a sensor in the system

Figure 69 depicts the sequence diagram for adding a sensor to the FH system.

2.6.8 GET SENSOR

Figure 70 - Sequence diagram for obtaining the details for a sensor

Figure 70 depicts the sequence diagram for retrieving the details from a sensor.

PESTI Report- Flexoffer Pilot

115

PESTI Project

2.6.9 GET SENSOR TYPES

Figure 71 - Sequence diagram for retrieving the types of sensors from the system

Figure 71 depicts the sequence diagram retrieving the different types of sensors.

2.7 MEASUREMENTS

This interface is used to query the measurements of the sensors embedded in the devices. Used for

verification of values, flexoffer establishment and to check if a flexoffer was respected energy-wise.

The services accept GET and DELETE operations, and their path have query parameters acting as filters.

Figure 72 depicts the methods attached to the Measurements interface.

Figure 72 - Measurements Interface

2.7.1GET

The GET function applied to a path allows the user to retrieve information about the measurements

fƌoŵ a deǀiĐe͛s seŶsoƌ. EǀeƌǇ seŶsoƌ has ŵeasuƌeŵeŶts although theǇ ĐaŶ iŶ speĐifiĐ Đases oŶlǇ ƌetuƌŶ
some stock values (The actuator will only return 0 or 1, depending whether the device was actuated

during that time). The measurements are stored at VPS servers, so the FlexHousing system acts as an

intermediate, with the option of storing specific information locally if the user desires.

PESTI Report- Flexoffer Pilot

116

PESTI Project

Table 56 - - Example of a request to retrieve the data collected by a sensor between dates

PATH

/FlexHousing/Measurements?DeviceID=3ZU-VGC-N3J-NWK-

9P&from=1473951600000&to=1473962400000&Sensor=Active+Power

Request Response

Path Parameters Body

None [

 {

 "Measuring": "Active Power",

 "Value": 0.0178,

 "Date": "Sep 15, 2016

3:00:00 PM"

 },

 {

 "Measuring": "Active Power",

 "Value": 0.0204,

 "Date": "Sep 15, 2016

3:15:00 PM"

 },

 {

 "Measuring": "Active Power",

 "Value": 0.0218,

 "Date": "Sep 15, 2016

3:30:00 PM"

 },

 {

 "Measuring": "Active Power",

 "Value": 0,

 "Date": "Sep 15, 2016

3:45:00 PM"

 },

 …..

Query Parameters

DeviceID – ͞ϯ)U-VGC-N3J-NWK-9P͟

From – ͞ϭϰϳϯ9ϱϭϲϬϬϬϬϬ͟

To – ͞ϭϰϳϯ9ϲϮϰϬϬϬϬϬ͟

Sensor – Active Power

Body

None

2.7.2 DELETE

The DELETE function allows the user to clear the database of the measurements that were stored

locally. The query parameters allow the system to pinpoint from which sensor to delete the

information and of which device

Table 57- Example of a request to delete the data collected by a sensor

PATH

/FlexHousing/Measurements?DeviceID=3ZU-VGC-N3J-NWK-9P&Type=Active+Power

Request Response

Path Parameters Body

None

ResponseCode(200) Query Parameters

DeviceID – ͞ϯ)U-VGC-N3J-NWK-9P͟

PESTI Report- Flexoffer Pilot

117

PESTI Project

Type – ͞AĐtiǀe Poǁeƌ͟

Body

None

2.8 DIAGRAMS

2.8.1 GET

Figure 73 - Sequence diagram for retrieving the measurements collect between 2 dates

Figure 73 depicts the sequence diagram for gathering the measurements from a sensor for a time

period

PESTI Report- Flexoffer Pilot

118

PESTI Project

2.8.2DELETE

Figure 74- Sequence diagram for deleting the measurements from a sensor

Figure 74 depicts the sequence diagram for the deletion of the measurements stored in the

middleware from a device and type of sensor.

3. INFORMATION MODEL

This section explains what each parameter and field represent for each interface of the FlexHousing

service.

3.1 FLEXOFFER

Table 58 - Description of the parameters used in the flexoffer interface

Parameter Format Description

DeviceID String The physical ID of the device

Flexoffer FlexofferDTO Contains the payload of the flexoffer

Schedule ScheduleDTO Contains the information about the

schedule

Day yyyy-MM-dd The date of a certain day

startTime/endTime long A specific moment in time in milliseconds

since 1st of January 1970

PESTI Report- Flexoffer Pilot

119

PESTI Project

upper/lowerEnergyValues List of Doubles Each double represents an amount of

energy in kW

Name String Name of the flex. Normally allusive to the

device it was applied to.

3.2 HOUSE

Table 59 - Description of the parameters used in the house interface

Parameter Format Description

RoomID Integer The local ID of the room

DeviceID String The physical ID of the device

Email Email (aaaaa@aaaa.aa) The email use to register at the VPS services

Password String The password use in conjuction with the

email for the VPS account

Room Room Contains the details of the room

Device NewDeviceDTO Contains the details of the device

Name String Sent to create a room with that name

3.3 DEVICE

Table 60 - Description of the parameters used in the device interface

Parameter Format Description

DeviceID String The physical ID of the device

Device NewDeviceDTO Contains the details of the device

Sensor SensorDTO Contains information about the sensor

ActuationFH ActuationFH Contains the ID and command of the

actuation

SensorTypes List of String Represents the List of names of the sensors

that may be present in the devices

SensorID Integer Represents the ID of sensor using the VPS

local ID

3.4 MEASUREMENTS

Table 61 - Description of the parameters used in the measurement interface

Parameter Format Description

DeviceID String The physical ID of the device

Sensor String Name of the sensor

from/to long A specific moment in time in milliseconds

since 1st of January 1970

PESTI Report- Flexoffer Pilot

120

PESTI Project

4.3 TESTING

The realization of software tests is crucial to ensure that it meets all of its requirements and has the

expected behavior. This process should be incremental and implemented alongside the project. If

soŵe eƌƌoƌs aƌeŶ͛t piĐked up eaƌlieƌ oŶ, it ŵight lead to some serious flaws [32].

IŶ faĐt, theƌe aƌe tǁo diffeƌeŶt appƌoaĐhes of deǀelopŵeŶt tests, ͞BlaĐk-Boǆ͟ aŶd ͞White-Boǆ͟
testiŶg. ͞BlaĐk-Boǆ͟ testiŶg is doŶe ǁithout kŶoǁiŶg the iŶteƌŶal paƌts of the softǁaƌe, the tester

knows what the program should do but does not know how it works. This testing approach applies in

different levels of software testing such as integration testing, system testing or acceptance testing.

Whereas the White-Box testing focus on the internal parts of the software, forcing the tester to know

the structure of the program. Most commonly, the White-Box testers have programming skills and

had already studied the implementation code. This testing approach applies in three different level of

software testing: integration, unit and system.

For the purpose of this project, seeing that a distributed system was developed, standard Unit Testing

would be lackluster. As such, a big emphasis was given to the acceptance tests [33].

4.3.1 ACCEPTANCE TESTS

Acceptance tests are developed focusing on specific scenario. Normally involving the usage of the

system as a whole. Each acceptance test tests a features, and features in this case translate into Use

Cases.

So for each Use Case, an acceptance test was developed.

Test for UC: 1

Goal: Send Flexoffer

Criteria Criteria Result

1. Input the required static information

2. Able to retrieve pattern from

measurements

3. Manually create flexoffer

4. Send Flexoffer

5. Flexoffer received

6. Flexoffer stored in database

1. Success

2. Success

3. Success

4. Success

5. Success

6. Success

Final Result Sucess

Table 62 - Acceptance test for UC 1

PESTI Report- Flexoffer Pilot

121

PESTI Project

Test for UC: 2

Goal: Receive the schedules

Criteria Criteria Result

1. Retrieve Flexoffer from database

2. Execute Flexoffer emission

3. Receive Schedule

4. Store Schedule into database

5. Ask for specific schedule

6. Retrieve schedule from database

7. Send Schedule

8. Create Chart for Schedule

1. Success

2. Success

3. Success

4. Success

5. Success

6. Success

7. Success

8. Success

Final Result Success

Table 63 - Acceptance test for UC 2

Test for UC: 3

Goal: Login

Criteria Criteria Result

1. Send credentials

2. Receive credentials

3. Send credentials to VPS Services

4. Retrieve response Token

5. Attach token to Controller

6. Return response

1. Success

2. Success

3. Success

4. Success

5. Success

6. Success

Final Result Success

Table 64 - Acceptance test for UC 3

Test for UC: 4

Goal: Manage House

Criteria Criteria Result

1. Send request for room list

2. Receive request

3. Return the room list

4. Receives room list

5. Creates new room

6. Receive new room information

7. Returns response

8. Request room details

9. Receives request

10. Return room details

11. Receives room details

1. Success

2. Success

3. Success

4. Success

5. Success

6. Success

7. Success

8. Success

9. Success

10. Success

11. Success

Final Result Success

Table 65 - Acceptance test for UC 4

PESTI Report- Flexoffer Pilot

122

PESTI Project

Test for UC: 5

Goal: Manage Device

Criteria Criteria Result

1. Send request for device list

2. Receive request

3. Return the device list

4. Receives device list

5. Request device details

6. Receives request

7. Return device details

8. Receives device details

1. Success

2. Success

3. Success

4. Success

5. Success

6. Success

7. Success

8. Success

Final Result Success

Table 66 - Acceptance test for UC 5

Test for UC: 6

Goal: Check Measurements

Criteria Criteria Result

1. Send request

2. Receive request

3. Send request to the VPS Services

4. Receive response

5. Send measurements back

6. Receive measurements

7. Build chart for measurements

1. Success

2. Success

3. Success

4. Success

5. Success

6. Success

7. Success

Final Result Success

Table 67 - Acceptance test for UC 6

Test for UC: 7

Goal: Actuate on Device

Criteria Criteria Result

1. Send request

2. Receive request

3. Send Request to VPS services

4. Receive response

5. Return response

1. Success

2. Success

3. Success

4. Success

5. Success

Final Result Success

Table 68 - Acceptance test for UC 7

In conclusion, one can verify that all the tests were successful. The is further evidence by the formal

demonstration done in an official Arrowhead Meeting held in Turin, in October. All the features were

PESTI Report- Flexoffer Pilot

123

PESTI Project

demonstrated to the various partners present. Dr Jerker Delsing, Director of the Artemis European

project in which Arrowhead is included, was pleased by the demonstration. In addition to being one

of 2 partners who had live demonstration, all the features were demonstrated successfully.

PESTI Report- Flexoffer Pilot

124

PESTI Project

5. CONCLUSION

This chapter resumes all the developed work, taking into account what went best and worst during all

the internship.

Section 5.1 does a recap of the problem and how it was dealt with, then Section 5.2 enumerates and

describes the objectives that were accomplished. The limitations of the developed solution along with

some future work perspectives are discussed in Section 5.3. Finally, Section 5.4 describes the opinion

of the student towards the internship as a whole.

5.1 SUMMARY

This pƌojeĐt͛s goal ǁas to implement a pilot for the integration of the Flexoffer Concept. As described

in section 1, the Flexoffer concept revolves around the exposure of the demands in electrical power

of the users to the energy market. The offer with the flexibility the user has is sent to an aggregator,

which sends back the schedule that meets the best prices (lowest price), ďut still ŵatĐhiŶg the useƌ͛s
needs.

This pilot integrates with external cloud technologies from VPS, turning it into a house energy

automation application. The user would install smart plugs between the appliance and the electrical

outlet. The smart plugs allow for the control and monitor of the energy flow towards the appliance.

The company that supplied the plugs, Virtual Power Solutions, also provided us with the API that allow

for the remote control of the plugs.

The implemented pilot worked structured upon 2 major components: the Middleware and the

FrontEnd. The middleware was responsible to connect the Flexoffers services and the VPS services.

Capable of persisting any operation that the user made, it allowed for managing of the House. To

faĐilitate the useƌ͛s ǁoƌk, eaĐh sŵaƌt plug is ĐoŶŶeĐted to a ƌooŵ aŶd eaĐh ƌooŵ is liŶked to the useƌ͛s
home/building. The middleware provides services for various features including application of

flexoffers, retrieval of schedules, control of measures gathered from the smart plugs. The mechanism

that solidly integrates the flexoffer concept in the house is the automatic emission of flexoffers and

actuation on the devices depending on the schedule that is received. When a schedule is received,

using that mechanism, the middleware will operate (e.g. turn or turn off) each device, in order to

enforce the schedule. The FrontEnd was developed with the goal of providing the User with user

friendly interface. Using the services that the middleware provides, the FrontEnd allows the user to

execute all the task regarding the pilot. Using its user friendly graphical interface, the user can

customize his house, from the automation of the usage of its appliances to the control and monitor of

any individual smart plug. Built using a web server the FrontEnd application can be accessed on any

platform with internet access.

The pilot was demonstrated in an official Arrowhead meeting in Turin, in October of 2016. The

demonstration was successful, even getting some comments from the Project Leader, Dr Jerker

Delsing. This project also lead to the publishing of a communication article and corresponding poster

at the national Informatics symposium, INForum 2016, that took place in September. The paper was

published and presented in the Distributed and Embed systems session, which had Dr Luis Pinho as

lead chair.

PESTI Report- Flexoffer Pilot

125

PESTI Project

5.2 ACCOMPLISHED OBJECTIVES

The pilot was successfully developed. The FlexHousing system, comprised of the Middleware and the

FrontEnd integrates the Flexoffers and VPS Services while supplying a user friendly interface for the

end-user The architecture relies on a middleware linking the Flexoffers services with the VPS Services.

Table 70 represents the various goals that the pilot had and whether or not they were achieved.

Goal Degree of implementation

Integrate the Flexoffer Service Done

Integrate the VPS Services Done with the exception of the

registration of devices from scratch

Build Middleware with persistence Done

Host middleware services Done

Build FrontEnd for user interaction Done

Allows user to apply Flexoffers Done

Allows user the check the schedules for his devices Done

Allow user to manage his house and devices Done

Allow user to check the measurements gathered by the

smart plugs

Done

Allow user to actuate remotely on devices Done

Allow system to verify if the flexoffers were respected Incomplete

Table 69 - Table describing the goals for the project

5.3 LIMITATIONS AND FUTURE WORK

The FrontEnd could still be iŵpƌoǀed. The usaďilitǇ isŶ͛t optiŵal for a commercial deployment and not

customizable for different markets or companies. The aesthetics also need some innovation and

ĐƌeatiǀitǇ. The iŵpleŵeŶtatioŶ of the FƌoŶt iŶ C# oŶ a I““ ǁeďseƌǀeƌ isŶ͛t the ďest appƌoaĐh, as the
execution can put a heavy strain on any resource constrained and low cost hardware. The

communication between the FrontEnd and the Middleǁaƌe isŶ͛t eŶĐƌǇpted, thus ƌevealing a

vulnerability.

Theƌe ǁas aŶ issue ǁith the VP“ “eƌǀiĐes, as theiƌ seƌǀiĐes ǁeƌeŶ͛t highlǇ doĐuŵeŶted, leadiŶg to
struggles in its integration with the middleware and support from VPS was not commonly available.

As such, the registration of the device on VPS cloud, was left incomplete – the solution was to register

the device manually, using VPS interfaces to the cloud. The service was available but the request was

incomplete: some of the fields required were IDs that referred to objects that were local to the VPS

Services, and thus unknown to the public.

One of the other issues was that every command or request that the pilot executed to operate a device

had to be sent to the VPS Services. The Services would then relay the request through the internet

towards the gateway in the house. Since the Gateway communicates with the smarts plug, a simpler

implementation would be to communicate directly with the gateway, thus decreasing the latency of

the system.

PESTI Report- Flexoffer Pilot

126

PESTI Project

With the further development of the Flexoffers, the integration might suffer due to the

implementation of new functionalities or the deletion of old ones. As such, until the Flexoffer Services

are considered complete, the pilot must keep track of the change the external systems might suffer.

The future work might also revolve around the implementation of more features or even the

integration of new systems, transforming FlexHousing into a system capable of controlling any smart

device inside the house-hold the user. VPS also has system for Business monitor and control. Its

integration could lead to the creation of a new platform, also capable of dealing with an industrial

environment

The pilot could also benefit with the implementation of a manager application. The application would

be responsible to manage various FlexHousing system that are registered in the Arrowhead

Framework. The manager would be able to control the various instances of FlexHousing, interacting

directly with it, thus minimizing the work of the end-user. Especially useful for condos or apartment

buildings.

5.4 FINAL APPRECIATION

An internship at CISTER is one of best experiences one could ask for. The work environment is very

flexible and any request for equipment or other demands met within a very short time.

The project allow for growth has it required the developers to deal with new technologies and new

ways or programming. Any problem that was tackled was met with a solution. That solution was then

discussed and revised with the project managers.

Considering the difficulties, the end result and time available, the outcome is pretty positive: 2 systems

were developed, 1 communication paper was written and published in a conference, another paper

is being written and the knowledge and experience of the developers was increased.

PESTI Report- Flexoffer Pilot

127

PESTI Project

BIBLIOGRAPHY

[1] "IoT Expansion," [Online]. Available: http://www.cloudoye.com/blog/cloud-hosting/how-big-data-

and-cloud-prowess-can-accelerate-iot-expansion. [Accessed August 2016].

[2] "ArrowHead FW Wiki," [Online]. Available:

https://forge.soa4d.org/plugins/mediawiki/wiki/arrowhead-f/index.php/Technical_architecture.

[Accessed August 2016].

[3] "Cister," [Online]. Available: http://www.cister.isep.ipp.pt/info/. [Accessed August 2016].

[4] L. L. e. a. Ferreira, "Arrowhead compliant virtual market of energy," in Proc. of the 19th IEEE Intl.

Conf. on Emerging Technologies and Factory Automation (ETFA), 2014.

[5] "OpenADR Alliance," [Online]. Available: http://www.openadr.org/. [Accessed 6 June 2016].

[6] "BIND9," [Online]. Available: https://www.isc.org/downloads/bind/. [Accessed 6 June 2016].

[7] M. P. D. W. R. a. S. Z. D. B. Terry, "The Berkeley Internet Name Domain Server," in Proceedings of

USENIX Summer Conference, 1984.

[8] R. N. T. R. T. Fielding, "Principled Design of the Modern Web Architecture," in ACM Transactions on

Internet Technology (TOIT), 2002.

[9] "XMPP," [Online]. Available: https://xmpp.org/about. [Accessed 15 June 2016].

[10] "ISO/IEC/IEEE P21451-1-4 Standard for a Smart Transducer Interface for Sensors, Actuators, and

Devices based on the eXtensible Messaging and Presence Protocol (XMPP) for Networked Device

Communication," [Online]. Available: http://wiki.xmpp.org/web/Tech_pages/IoT_Sensei. [Accessed

April 2014].

[11] "Internet History," [Online]. Available: http://www.internetsociety.org/internet/what-

internet/history-internet/brief-history-internet. [Accessed August 2016].

[12] "IoT Growth," [Online]. Available: http://www.businessinsider.com/how-the-internet-of-things-

market-will-grow-2014-10. [Accessed August 2016].

[13] "IBM-IOT," [Online]. Available: http://www.slideshare.net/ArrowECSMarketing/internet-of-things-

and-ibm. [Accessed 18 August 2016].

PESTI Report- Flexoffer Pilot

128

PESTI Project

[14] "Lighting Smart Grids," [Online]. Available: http://www.directcurrent.eu/en/projects/public-lighting-

on-dc-smart-grid. [Accessed August 2016].

[15] "Last mile smart grid," [Online]. Available:

http://www.cs.rug.nl/aiellom/publications/PaganiAielloIsgt13.pdf. [Accessed August 2016].

[16] "Last mile smart grid topology," [Online]. Available:

http://www.cister.isep.ipp.pt/docs/convergence_of_smart_grid_ict_architectures_for_the_last_mile

/1039/view.pdf. [Accessed August 2016].

[17] "Neur.io," [Online]. Available: http://neur.io/products/. [Accessed 29 August 2016].

[18] "Canary device," [Online]. Available: https://canary.is/how-it-works/. [Accessed 29 August 2016].

[19] "Ivee Sleek," [Online]. Available: http://helloivee.com/. [Accessed 29 August 2016].

[20] "IoT house-hold applications," [Online]. Available: http://www.iotphils.com/solutions/smart-home/.

[Accessed 18 August 2016].

[21] C. Teixeira, ""Convergence to the European energy policy in European countries: Case studies and

comparison"," in J. Soc. Technol, 2014.

[22] "VPS Cloogy," [Online]. Available: http://www.cloogy.com/en/about/. [Accessed 20 May 2016].

[23] "VPS Devices," [Online]. Available: http://www.vps.energy/#!solutions/x8d7y. [Accessed 20 May

2016].

[24] "RUP," [Online]. Available: http://www.agilemodeling.com/essays/agileModelingRUP.htm. [Accessed

August 2016].

[25] "RUP," [Online]. Available: https://en.wikipedia.org/wiki/Rational_Unified_Process. [Accessed 23

August 2016].

[26] "Java," [Online]. Available: https://java.com/en/download/faq/whatis_java.xml. [Accessed 15 June

2016].

[27] H. schildt, Java the Complete Reference Ninth Edition book, oracle press, 2014.

[28] "C#," [Online]. Available: : https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx. . [Accessed June

2016].

PESTI Report- Flexoffer Pilot

129

PESTI Project

[29] "MVC explanation," [Online]. Available: http://www.tomdalling.com/blog/software-design/model-

view-controller-explained/. [Accessed 18 May 2016].

[30] L. L. Ferreira, "The Arrowhead Aproach for SOA Application Development and Documentation,"

Arrowhead, EU, 2014.

[31] "Highcharts," [Online]. Available: http://www.highcharts.com/. [Accessed August 2016].

[32] M. E. Khan, Importance of Software Testing in Software Development Life.

PESTI Report- Flexoffer Pilot

130

PESTI Project

APPENDIXES

