pd

CISTER

Research Centre in
Real-Time & Embedded
Computing Systems

BEng Thesis

Creation of a pllot for the FlexOffer concept

Joss Santos

CISTER-TR-161205

2016/11/15

BEng Thesis CISTER-TR-161205 Creation of a pilot for the FlexOffer concept

Creation of a pilot for the FlexOffer concept

Joss Santos

*CISTER Research Centre

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Ant6nio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8321159
E-mail: 1120527 @isep.ipp.pt
http://www.cister.isep.ipp.pt

Abstract

The revolution in the energy market and the end user need to control the things he has around him lead to the
creation of a new concept: flexoffers. The flexoffer is built around scheduling energy usage with the prices of the
energy market. The flexoffer is comprised of the pattern of usage and a window of when the pattern can begin.
Those parameters are exposed to the energy markets using an Aggregator, entity responsible for gathering all the
flexoffers in a region. The market will reply to the flexoffer proposition with the best time for the consumption of
that energy, which in this case is when the prices are the lowest.

This project revolves around the implementation of a pilot capable of applying that concept to a real life situation.
Thus FlexHousing was created. It allows for the control of the energy usage of the appliances in a home or
building. Such is possible by the integration of external technologies. Virtual Power Solutions, a national energy
solutions company developed a product called Cloogy. The Cloogy is a gateway installed in one 19s house and is
capable of communicating with smart device provided by VPS. In this case, smart plugs were deployed. These
smart plugs are placed between the appliance and the electrical outlet. From there the plug is able to control the
flow of electricity towards the appliance. Sensors are also installed in these plugs, capable of collecting data
regarding the energy usage amongst other metrics. In order to operate the plugs, VPS also provided us with an
external API, capable of receiving request and forwarding those request back to the plugs.

FlexHousing is comprised of 2 modules: the FlexHousing middleware and the FlexHousing FrontEnd. The
middleware acts as a hub for every operation in the FlexHousing environment. It bridges the various system in
play, the flexoffer services and the VPS services. FlexHousing allows for the creation of rooms and the attachment
of devices equipped with VPS technology. The user is then able to perform a variety of operations, such as,
applying flexoffers, remotely controlling the appliances and collect data from the sensors in the VPS devices. For
the interaction with the user, FlexHousing FrontEnd was developed. It provides a user-friendly graphical interface
for the user to setup and control FlexHousing middleware. The interface revolves around the rooms and the
devices. The user is able to check the flexoffers he has applied and the schedules the flexoffers services sent
back. If the user wants, he can deploy the VPS smart plugs to non flexoffer complaint devices, such as lamps,
television and computer. Using the FrontEnd, he is also capable of using them.

© CISTER Research Center 1
www.cister.isep.ipp.pt

PESTI- TECHNICAL REPORT

CREATION OF A PILOT FOR THE FLEXOFFER CONCEPT

Student: Joss Santos - 1120527
Organization: CISTER research unit
Project Managers: Luis Lino Ferreira & Michele Albano

~ CISTER - Research Center in
o—> Real-Time & Embedded Computing Systems

Instituto Superior de
Isep Engenharia do Porto O—J INESCTEC

Creation of a pilot for the flexoffer concept

LEI-DEI

2015/2016

1120527 - Joss Dos Santos

Degree in Informatics Engineering

October 2016

ISEP Supervisors- Constantino Martins

External Supervisor- Michele Albano & Luis Lino Ferreira

I | Instituto Superior de
L ¥ Engenharia do Porto

“Strength and growth come only through effort and struggle”

Napoleon Hill

ACKNOWLEDGMENTS

| want to thank all the key participants involved in the creation of projects. Professor Michele
Albano and Professor Luis Ferreira were an unimaginable help, always present for any kind of
discussion. Bruno Silva was a valuable colleague, helping me throughout this internship. | also want
to thank Paulo and Renato for having dealt with me all of these months.

| want to thank CISTER, for making this experience possible, as well as the DEI department for giving
me the tools and education that | need in order to pursue my dreams.

To all of my family that had to put up with all the stress and complications that were met along this
project, | say sorry for being such a hassle but also thank for accepting me as such.

My friends couldn’t be left out of this, they helped me built the road | took to achieve my dreams.
They are too many to enumerate them all, but I’'m sure they know who they are.

A special thanks to Jordann and Ana. Without your support, | wouldn’t have been able to get where
lam.

Joss Santos

ABSTRACT

The revolution in the energy market and the end user need to control the things he has around him
lead to the creation of a new concept: flexoffers. The flexoffer is built around scheduling energy
usage with the prices of the energy market. The flexoffer is comprised of the pattern of usage and
a window of when the pattern can begin. Those parameters are exposed to the energy markets
using an Aggregator, entity responsible for gathering all the flexoffers in a region. The market will
reply to the flexoffer proposition with the best time for the consumption of that energy, which in
this case is when the prices are the lowest.

This project revolves around the implementation of a pilot capable of applying that concept to a
real life situation. Thus FlexHousing was created. It allows for the control of the energy usage of the
appliancesin a home or building. Such is possible by the integration of external technologies. Virtual
Power Solutions, a national energy solutions company developed a product called Cloogy. The
Cloogy is a gateway installed in one’s house and is capable of communicating with smart device
provided by VPS. In this case, smart plugs were deployed. These smart plugs are placed between
the appliance and the electrical outlet. From there the plug is able to control the flow of electricity
towards the appliance. Sensors are also installed in these plugs, capable of collecting data regarding
the energy usage amongst other metrics. In order to operate the plugs, VPS also provided us with
an external API, capable of receiving request and forwarding those request back to the plugs.

FlexHousing is comprised of 2 modules: the FlexHousing middleware and the FlexHousing FrontEnd.
The middleware acts as a hub for every operation in the FlexHousing environment. It bridges the
various system in play, the flexoffer services and the VPS services. FlexHousing allows for the
creation of rooms and the attachment of devices equipped with VPS technology. The user is then
able to perform a variety of operations, such as, applying flexoffers, remotely controlling the
appliances and collect data from the sensors in the VPS devices. For the interaction with the user,
FlexHousing FrontEnd was developed. It provides a user-friendly graphical interface for the user to
setup and control FlexHousing middleware. The interface revolves around the rooms and the
devices. The user is able to check the flexoffers he has applied and the schedules the flexoffers
services sent back. If the user wants, he can deploy the VPS smart plugs to non flexoffer complaint
devices, such as lamps, television and computer. Using the FrontEnd, he is also capable of using
them.

Keywords (Theme): Internet of Things, Flexoffer, Energy automation.

Keywords (Technologies): Java, Derby Apache, REST, C#, Service-oriented Architecture.

vi

RESUMO

A revolucdo dos mercados energéticos e a necessidade do consumidor final em controlar as coisas
gue estdo a sua volta levou a criagdo de um novo conceito: a flexoffer. A flexoffer é composta pelo
padrdao de consumo energético e da janela temporal em que esse consumo pode comecar. Esses
parametros sdo relacionados com os mercados energéticos usando o Aggregator, entidade
responsavel por reunir todas as flexoffers numa regido. O mercado ira indicar a melhor hora em
que a flexoffer pode comecar, em que a melhor hora é quando os pregos estdo os mais baixos.

O projeto baseia-se na implementacao de um piloto capaz de aplicar o conceito da flexoffer a uma
situacdo real. Para tal foi criado o FlexHousing. Permite o controlo do consumo energético dos
aparelhos dentro de uma casa ou edificio. Tal é apenas possivel através a utilizacdo de tecnologias
externas. VPS, Virtual Power Solutions, uma empresa nacional de solu¢des energéticas desenvolveu
um produto chamado Cloogy. O Cloogy é um gateway instalado no edificio do utilizador e é capaz
de comunicar com os aparelhos elétricos desenvolvidos pela VPS. Neste caso, esses aparelhos sdo
fichas inteligentes. As fichas sdo colocadas entre o aparelho a controlar e a ficha de eletricidade. As
fichas possibilitam o controlo de fluxo de eletricidade que vai para o aparelho. As fichas também
tém sensores, capazes de recolher informacdo sobre consumo elétrico do aparelho, entre outras
métricas. A VPS também forneceu a utilizagdo de uma API externa, capaz de receber pedidos e de
os reenviar para a fichas.

FlexHousing é composto por 2 mddulos: o FlexHousing Middleware e o FlexHousing FrontEnd. O
middleware age como centro de todas as operagdes no ambiente FlexHousing. Consegue ligar os
diferentes sistemas, os servicos flexoffer e os servicos VPS. O ambiente FlexHousing permite a
criacdo de salas e o registo de aparelhos equipados com a tecnologia VPS. O utilizador pode entdo
proceder a aplicagdo de flexoffers, controlo remoto dos aparelhos e a recolha de dados a partir dos
sensores nas fichas da VPS. Em relagdo a interagdao com o utilizador, o FlexHousing FrontEnd foi
desenvolvido. Fornece uma interface grafica com grande usabilidade, para que o utilizador possa
configurar e controlar o middleware. A interface trabalha sobretudo com as salas e com os
aparelhos. O utilizador tem entdo a possibilidade de verificar as flexoffers que aplicou e os hordarios
que dai originaram. Se pretender, o utilizador pode instalar as fichas em aparelhos que ndo
compativeis com flexoffers, tais como candeeiros, televises ou computadores. Usando o FrontEnd
o utilizador pode esses aparelhos controlar remotamente.

vii

viii

NOTATION AND GLOSSARY

Notation Meaning

CISTER Research Centre in Real-Time &Embedded Computing Systems
DEI Departamento de Informatica

FH FlexHousing

FHFE FlexHousing FrontEnd

FHMW FlexHousing Middleware

FO Flexoffer

loT Internet of Things

ISEP Instituto Superior de Engenharia do Porto

LEI Licenciatura em Engenharia Informatica

REST Representational State Transfer

RESTful Characteristic of a device/system that conforms the constrains of REST.
RUP Rational Unified Process

SOA Service Oriented Architecture

SoS System of Systems

UML Unified Modeling Language

VPS

Virtual Power Solutions

INDEX

= UL =T [T =D RPN Xiv
L1 S e 1= T T PP T PP P PO U PO PPROPPTO xviii
Lo INEFOTUCTION ettt et e sb e st sbt e s b et e bt e s b e e e bt e s be e e bt e s beeebeesabeeenneenane 1
L1 FramI@WOIK c.ueeeuteeiteeiteettest ettt ettt ettt b ekttt st e s bt e sbee s bt e bt e bt eat e e ae e e be e e b e e b e en b e e abesabesbeesheenbe e bt e bt enteene 1
B o o Y=Yt o - | PP 3
1.3 Organization Overview and Presentationccccceeciiieieciir i e et e e st e e e sae e e s eanaeas 3
14 CONEIIDULIONS. ..ttt st s bt ettt et s bt e s b e b e e be e b e sabesaeesbeenbeebeenseans 4
1.5 [0=] oo] A d U ot { U1 PP PP PRSPPI 4

B O] 1 1= PPN 5
2.1 Presented ProBIEMc.co ittt et st s he e b s bt ettt e ae e e b nbe e beerean 5
2.2 Buisness Area and TeChNICal CONTEXT........couiiiiriiiiiiiiiiieceeeeeee e e 7

B A B 3 = 4 VYo [0 4o TSR 8
2.2.2 Smart Housing / SMart BUIIAINGcc.veecuieiiiiiiieciee ettt ettt e eteestve e aeeeaveesaneennas 10
2.2.3 ENEIBY IMAIKEES ...t ciiiee ettt ettt e e et e e ettt e e e e ta e e e e abaeeeeabaaeesbbeeeenstaeseanssaeeeassaaesansseeaanses 11

2.4 SOIULION OVEIVIBW .ottt ettt s st st sa e et et eee e e e b e e b e neenesanesanesae 13

3. WOTK ENVIFONMIEBNT. ...ttt et ettt ae e s bt e bt e b e e st e sabesabesaeesbeenbeenbeembeeasesbaenbeenbenn 14
3.1 WOTK MELROMS ...ttt ettt st bt s b et e et e eateebeesbe e b e et e eabeeanesaeesae 14
A oY [Tot fl o] - [o o V- SRS 15
3.3 MEETINGS & IMIIESTONESvieeeiiieeeciiee e cttee e ettt e eet e e e ettt e e e s tte e e e etbeeesbbee e e staeeeansaeeesbseaeeastaeeeasaaaesassanaans 16
Y U =Te I =Tl o TaTo] [=4 =TSSR 18
B =Yl o T T ToF: | e 1T T o)1 o I USRS 22
4.1 ArrowHead Document MethOdOIOZYeeeiiiiiiiiiiiie et e e e et e e e e e sbraaeee s 22
4.2 System Description anNd DESIZNciii ittt e et e e e e e e et e e e e e e e e e aba e e e e e e eeeanrraaaaaaas 26
4.2.1 System-0f-SySTEMS DESIZNvvieeeiiiiecciee e cee et e s e e e s e e e s nte e e ssnaeeeesataeeeenteeesnnnaeeesnrneenns 26
4.2.2 System-of-Systems Design DeSCIIPLIONcccuiiieiitieeeeciee e ccieeeetee e eeete e eete e e e str e e e eeteeeeeaaeeeesareeaeas 47
4.2.3 System Design — MIAAIEWAIE.......cooiiiiiiee et e e e e e s e b e e e e e s e etabaeeeaeeseennneaes 55
4.2.4 System Design — FrONTENGoeiiieiiie et e e e e s e e e s tre e e e snte e e sennaeeesnaeeeeas 59
4.2.5 System Design Description — MiddIEWAreccoocuiiiiieiiiiiiie et s 61
4.2.6 System Design Description — FFONTENGc...oiiiiiiiiiiiie et s 76
4.2.7 Service Description and Interface Description — MiddIewareccccceeveieeevciiee e 87

L B =Ty o o = PO TP PP PPPPOPPPOE 120

Xi

4.3.1 ACCEPTANCE TESES 1.nueeiiiiiriieiiiite ettt st e e s e et a e e e s ba e e s s s b et e s e nne e e snaeeeeas 120

D CONCIUSTION .ttt sttt e s e st sbe e s bt e bt e et e st e e me e e b e e b e e b e e b e sanesanesbeesreenree bt enneenneane 124
DL SUMIMAIY ettt s st e e e s b e e e s e bt e e s bt e e e s b e e e s e br e e e sbbe e e s s b e e e s e nne e e sanraeas 124
5.2 ACCOMPIISNEA OBJECHIVES ...ttt st st st et e s bt e eabeesabeesanee s 125
5.3 Limitations and fULUIE WOTKcc.eiiiiiirieiieece e ettt 125
5.4 FINal APPIrECIation ...eieueieiiiiiieeee ettt ettt e s e sbe e st e e bt e s ab e e s ae e e sabeesab e e sbeeeareesbeeeanee s 126

BIDIIOBIAPINY .ttt sttt st e et bt e e bt s bt e e bt e s bt e e bt e s bee e bt e ebeeennee et 127

F Yo 01T oo [= SUPPR 130

xii

Xiii

FIGURE INDEX

Figure 1- Arrowhead Framework System of SYStemM [2]ccuiii i e e e e 2
Figure 2 — Typical Flexoffer @Xample [4] ... oottt ettt et esaee e 5
Figure 3- High level design for the Virtual Market of energy Flex-offer Agents [4]......cccccovvieecciieiviieeeccieeees 6
Figure 4- Real Time Energy Management in a smart grid [13] ...ccoeiiiiiieeiiiie et 9
Figure 5- 10T house-hold fields of application [20]cocuieiiiriiiie e e 11
Figure 6- TYPICal RUP Chart [25] ..iiiiiiiiiiiiee e ctiee ettt ettt e ettt e e e tte e e eetva e e e sataeeeeataeeeenbaeeesatseeeenssaeeeansaaeessrenanns 14
Figure 7 -The Arrowhead documentation relationships [30].ccveiiiiiiiiiiiie e e 22
Figure 8 — Overview of the all the SYStEMIScouii i s 27
Figure 9- Component diagram for the SYSLEMSiii it e st e e e rb e e e e aaee e eareeeens 29
Figure 10- Use Case diagram for FIEXHOUSING ...cccccuiiiiiiiiie ettt e e e et e e eeta e e e etb e e e eeatae e eeasaaeeeareaaans 31
Figure 11 - Sequence Diagram Of UCL.c.c.ciiiiiiiiiiiienieeeee sttt sttt st st s e sb e saneesabeeeanee s 40
Figure 12- Sequence Diagram Of UC2.coiiiiiieiiiiii ettt st e sttt e e st e e s enaae e e sbaeeesntaeesnasaeaesnseeaenn 41
Figure 13 - Sequence DIiagram Of UC3.oii ittt ete e eette e e s tae e e e ate e e e eataaeeetbeeeseataeeeeasaaeessrenaans 42
Figure 14 - Sequence Diagram Of UCH.oooiiiiiiiiiii e ceiee e steeee st e eette e sttt e e s atae e s saaeessnseeeesnsaeesssaeeessseeannn 43
Figure 15 - Sequence DIiagram Of UCScoiiiiiiiiiiiii e ciee e siee et e eette e sttt e s s sate e e senaaee s sntaeeesnteeesnasneessnsseeannn 44
Figure 16 - Sequence DIiagram Of UCH.ccccuiiiieiiiie e citee e ettt e e e tte e e s tae e e esttae e eetaaeestreeeseataeseeasaaeessrenanns 45
Figure 17 - Sequence DIiagram Of UCT.ciiiiiieiieiiii e citee e sttee ettt e s eate e st e e satae e ssaaaeasssseeesnnsaeessnsaeesssseeannn 45
Figure 18 - Sequence DIiagram Of UCS.ccoiuiieiiiiiieiiiee e siieeseiie e e seate e e stae e e ssatae e ssaaeesssseeeesstseesssseassnsseeesns 46
Figure 19 - FIeXHOUSING SYSLEM OVEIVIEWc..viiiieiiii it ettt e e ettt e eette e e st e e e enate e e e eaaaaeestbeeeseataeseeasaaeeesreaaans 47
Figure 20- Components Diagram for the FIeXHOUSING PilOt.........cceviieiiiiiiciie e 49
Figure 21- Sequence diagram for the typical usage of the systemccccoocieiieicii i 51
Figure 22- Creation of flexoffer SCre@NSNOt........cccuvii ittt et e e e abee e 52
Figure 23- Managing the rooms SCre@NShOt.......ccccuuiiiiiiie e e e e ae e e seae e e s ereeeeas 53
Figure 24- Device liSt SCrEENSNOTuii ettt e s e e e st e e eenea e e e streeeenraeeesanaeeessreeenns 53
Figure 25- Screenshot of the 15t step to retrieve MeasUreMENTScvcvvicvicveeeeeteeereeete et ete e esreesteenreens 54
Figure 26 - Domain Model of the FIeXHOUSING SYSTEM.ccccuiiiiiciii e e e 55
Figure 27- Normal execution Of @ reqUESE FESPONSEueeeeiviieieiiieeeettee e sree e e rete e e esre e e e streeeesataeeesnneeesnreeeans 57
Figure 28 — Component diagram for the FHMW interfacesccccceviiieiiiiiiiiiiie e 58
Figure 29 - Domain Model of FlexHousing FrontEnd SYySteM..........cciieiiiiiiiiieecciies e 59
Figure 30 - Component diagram for the FHFE iNterfaceccveeeiiiii it 60
Figure 31 - Component Diagram of the FlexHousing Middleware System.cccceeveererieniienieeneeneeseeiene 63

Xiv

file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145465
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145466
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145473
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145483
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145485
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145486
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145487
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145488
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145490
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145491

Figure 32 - Diagram sequence for the FIeXOfferTimer. ...t 68

Figure 33 - Sequence diagram for the inner mechanism of the FO emissioncccceeviiieeeccieeccciee e, 70
Figure 34 - Sequence diagram for the creation of ExecuteActuation threads..........ccccceviiieiiiniieniiciiiennenns 71
Figure 35 - Sequence diagram for the ActuationExecution threadcccccveeeeiiiii e 72
Figure 36 - Class diagram fOr FHIMWoiii ettt et e s e e e et e e e enta e e e satveeeenataeeennsaaeesnnneaeans 74
Figure 37 - Schema for the database in the MiddIeWare........c.ceoeeeriiiiiiie e 75
Figure 38- Sequence diagram fOr UC 1ccoiiii oottt ettt eetee e e stte e e e ttae s eetaee e etb e e e e ataeeeeasaaeessreaaans 77
Figure 39 - Sequence diagram fOr UC 2oooiiii ittt ettt eetee e e st e e e e eat e e e e eabaaeestbeeeentaeseeasaaeesnsrenaans 78
Figure 40 -Sequence diagram fOr UC 3c.uii ittt ettt ettt sttt e st e sb e e st esabeesaneesabeesaneens 78
Figure 41- Sequence diagram fOr UC 4ooiiii ittt et e st e e e et e e e e tae e e stb e e e e ataeeeeasaeeessreeaans 79
Figure 42 - Sequence diagram fOr UC D ...ttt ettt e e st e e e et a e e e eaaee e stbeeesentaeeeeasaaeessreeaans 80
Figure 43- Sequence diagram fOr UC Bc.c.uiiiiiriiiiiieniee ettt sttt sttt st st s e st esaneesbeesanee s 81
Figure 44- Sequence diagram fOr UC 7coouii ettt ettt ettt st st sb e st e sabeesaneesabeesanee s 81
Figure 45 - Chart for the projected implementation of UC 8...........coocuiiiiiiiiiieiiies et 82
Figure 46 - Component Diagram of the FIEXHOUSING SYStEM...cccccuiiiiiiiiiiiiiie et e e 83
FIGUre 47 — FleXOffer INTITACEcii ettt et e e e e et e e s eae e e e sbaeeessntaeeeensaeaessseaanan 88
Figure 48 - Sequence diagram for getAIIFIEXOTfars.......c.ui i et 93
Figure 49 - Sequence diagram for getAllACtiVEFIEXOTFErsooivciii i 94
Figure 50 - Sequence diagram for GetFIEXOTTErc.uii i 94
Figure 51 - Sequence diagram for 8etSChEAUIEcoouiiii i et e e e are e 95
Figure 52 - Sequence diagram for EetFODYDAYciiicuiiieiiiiie ettt e et e e e see e sere e e e sta e e e snaeeesnreaeens 96
Figure 53 - Sequence diagram for getSchedulesBYDay........c.ceeeeiiiiieieiee et e e e see e s eveeeeas 97
Figure 54 - Sequence diagram for posting a fleXoffer.......ccco i 97
Figure 55 - Sequence diagram for deleting @ fleXoffer ... e 98
Figure 56 - Sequence diagram for retrieving the statistics of the house........ccccvvvvvcii i, 102
Figure 57 - Sequence diagram for deleting @ FOOMceiii ittt e e e e e e eraaaeee s 103
Figure 58 - Sequence diagram for registering @ rOOMcccuieieiciiieeeiiee e cee e esee e e sae e e et re e e e eneaeeeenneeas 103
Figure 59 - Sequence diagram for retrieving all the devices in @ rooMcccceeeiiiiecee e, 104
Figure 60 - Sequence diagram for retrieving the details for a roomcccceeiieiiiiiec e, 104
Figure 61 - Sequence diagram for the 10gin in the SYStEMcccciiii i 105
=V N Y A U (o i (=T gl [=Y o =T < SRR 105
Figure 63 - Sequence diagram for retrieving all the devices in the systemccccovieiiieiciiiiee e, 111
Figure 64 - Sequence diagram for retrieving all the actuable devices........cccceieeiiiiiiiiee e, 111
Figure 65 - Sequence diagram for retrieving the details for a specific device........cccovvivviveeeriiieecciee e, 112

XV

file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145501
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145502
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145503
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145504
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145505
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145506
file:///C:/Users/JossSantos/Dropbox/Arrowhead/Joss/PESTI/Report%20Final%20Version.docx%23_Toc464145507

Figure 66 - Sequence diagram for requesting an actuation on a devicCecccccuvveeecieeeecieee e, 112

Figure 67 - Sequence diagram for deleting @ SENSONuuiiiiiiiieciie et e et e e ere e e earaeas 113
Figure 68 - Sequence diagram for registering @ deVICe.......cocueieiiiiiiiiiiie e 113
Figure 69 - Sequence diagram for adding a sensor in the systemccccocveeiiciie e, 114
Figure 70 - Sequence diagram for obtaining the details for a SENSOr.........ccoevecciieiecie e, 114
Figure 71 - Sequence diagram for retrieving the types of sensors from the system.......cccccovvieiiiniininnns 115
Figure 72 - Measurements INTEITACEcccuiii ittt e e et e e e e tae e e s tbe e e e s abaeeeearaeaeenranas 115
Figure 73 - Sequence diagram for retrieving the measurements collect between 2 dates............ccvveeenneee. 117
Figure 74- Sequence diagram for deleting the measurements from a sensorc.cecveeeveeriieeieenieceneenne 118

XVi

Xvii

TABLE INDEX

Table 1 - Gantt diagram for the INTErNSNIPcoiciiie e e are e e s aa e e e eaees 15
Table 2 - Meetings during INTEIrNSNIP ...ttt et s s e e s 17
Table 3 - Milestones fOr the PrOJECEcuuii it e e e e e e e st e e e e nee e e ssbaeeessaeeeeanns 17
Table 4 - List of technologies and libraries used and WhEere...........coccuuveeiiiieicciiie e 18
Table 5 Concepts related to the flexoffer Plot........iiviir e 27
Table 6 - Pointers to the description of @aCh SYSTEMccuviiiiiiiii e 28
Table 7 - Use Case 1 @XECULION FIOW. ..ooiiiiiiiiiieieeeeee ettt st st st sbe e b e eae 32
Table 8 - Use Case 2 @XeCULION FIOW. ...cc.iiiiiiiiiiiicic e 33
Table 9 - Use Case 3 @XECULION FIOW. ...oouiiiiiieiieiieeee ettt st st st sbe e b e 34
Table 10 - Use Case 4 eXeCULION fIOW.ooiiriiiieiieieeiecese ettt st s st sbe e e 35
Table 11 - Use Case 5 eXeCULION fIOW.cocuiiiiiiiiiiiiiiiiiiie e e e 36
Table 12 - Use Case 6 eXeCULION fIOW.cocuiriiiiiiiiiiiiiiienee e s 37
Table 13 - Use Case 7 XECULION fIOW.oiiiiiiiieiieieeieee ettt ettt st s e sbe e b e b e 38
Table 14 - Use Case 8 eXeCULION fIOW.cocuiriiiiiiiiiiieiereere ettt 39
Table 15 - Pointers for the systems iN Playceeciiiiicie e e e ee e s sare e e e s raeeeeanes 48
Table 16 - Workflow execution for the handling of reqUESESccccuiiiiiiiii e 57
Table 17 - Example for a valid request for @ tOKENoeiiiiiiiece e e 62
Table 18 - Code sample for the XIMPP CredentialS.......ccuuiiiieeieiiiii e see et see et e e saee e e svee e e s aaee e 62
Table 19 - Class for the Models COMPONENT.......cc.uiiiiiiiee ettt e et e eerre e e eetee e e etreeeeeabeeeesabaeeeesseaeeanns 64
Table 20 - Class for the Arrowhead COMPONENT.......cccuiiiiiiee et see e ree e eree e st e e e eee e e e snseeeesnaeeeeanns 64
Table 21 - Class for the Controller COMPONENTcciciiiiiiiie et e e e e sre e e s eee e e e snaaeeessaeeeeanes 64
Table 22 - Class for the EXecution COMPONENT..........cciiiiiiiiiie et e e ettt e eeette e e ettt e e e etre e e e ateeeeearaeaeesseeeeenes 65
Table 23 - Class for the DAO COMPONENTuuiiieiiiieccieee e rieeeestee e eeee e e st e e e e srte e e seaeeeesntreeessnsneesssseeeesnsseenannns 65
Table 24 - Class for the VPS_Servlet COMPONENTcccuiiiiiiiieieiie ettt eeee e sre e e st e e esnaaeeesnaeeeeanes 65
Table 25 - Class for the DTO COMPONENT........uiiieiiieeeciieeecieeeeeete e e eetee e e et e e eeetbeeeeeaeeaeebreeeeessseeesssaeaeessseaeennns 66
Table 26 - Class for the FH_API COMPONENTcccccuuiiiiiiieeeciiieeeiieeeeetee e e st eessete e e eeeeeesstaeeessnsesesssseeeesnsseesannes 66
Table 27 - Table description for the FIEXOFfer. ... e e e 75
Table 28 - Sample of code representing the controller method Actuatecccceevviieiiiiiiieiniiie e 83
Table 29 - Code sample for a View in the FrONtENG.........coocuiiiieiiiie e e e e 84
Table 30 - The representation of the FleXxoffer 0bjeCt ... 85
Table 31 - Code for the GetAllDeviceList function of the device handler...........cccoeeieiiiniiniiiiineeeeeee 85

Xviii

Table 32 - Code for the appendSIice FUNCLIONc..uviiiiiiee e e e e rarae e e s b e e eeanes 86

Table 33 - Example of a request to get all fleXOffers ... 88
Table 34 - Example of a request to retrieve all active flexoffers ..., 88
Table 35 - Example of a request to retrieve the latest flexoffer attached to a devicecccccoveeeviveeeicieeens 89
Table 36 - Example of a request to retrieve a schedule attached to a specific devicecccoceveeevcieeeniieeennns 90
Table 37 - Example of a request to retrieve the flexoffers on a certain dayccoccceevevcieeinicie i 90
Table 38 - Example of a request to retrieve the schedules for a specific daycccceeeviiieeeciei e, 91
Table 39 - Example of a request to store @ fleXOffer..... ..o e e 91
Table 40 - Example of a request to delete @ flexoffer.......coui i 92
Table 41 - Example of a request to get the statistics 0f @ NOUSEcccuvivieiiiiiicc e 99
Table 42 - Example of a request to delete @ FOOMc..uii it e et e et e e e ba e e e e taeeeeanns 99
Table 43 - Example of a request tO register @ FOOMc..cociiiiieiiiierieeee et 100
Table 44 - Example of a request to retrieve a SPECIfiC FOOMccuiiiieiiii i 100
Table 45 - Example of a request to get all the rOOMScuviiieiiiii e 101
Table 46 - Example of a request to execute the [OZiNcc.eevviiiiiieiiie e 102
Table 47- Example of a request to retrieving all the devices from the systemccccceoveveeviiivcciee e, 106
Table 48- Example of a request to retrieve all the actuable devices.........ccceeevieiicciie i 106
Table 49- Example of a request to retrieve a Specific deViCeccvvvveiieiiiiieecee e 107
Table 50 - Example of a request to request an actuation 0N @ deVICe.......ccevvviieeeeciere v 108
Table 51 - Example of @ reqUEest t0 delEte @ SENSONeiiiiiieeeciiee ettt ettt e et e e e tae e e e taae e eareeeeas 108
Table 52 - Example of @ request t0 register @ dEVICE.......ciiiiiiieiiiie e e e seaee e 109
Table 53 - Example of @ reqUest tO reZiSTEr @ SENSON......ciiiiiiieeriieeceree e ccee et e e e srae e e et ae e s eraeeesnaeeeens 109
Table 54 - Example of a request to retrieve the details of @ SENSOrvvviiiiiiiiiii e, 110
Table 55 - Example of a request to retrieve the sensor types in the system.......cccccccveviiieeevcieeccciee e, 110
Table 56 - - Example of a request to retrieve the data collected by a sensor between dates 116
Table 57- Example of a request to delete the data collected by @ SENSOr.......ccocciviiiiiiiiiiieeee e, 116
Table 58 - Description of the parameters used in the flexoffer interfacecccccoeeevevevieeeccee e 118
Table 59 - Description of the parameters used in the house interfacecccccvveveceee e, 119
Table 60 - Description of the parameters used in the device interfaceccccccoeeeiieiiiiiccciiee e, 119
Table 61 - Description of the parameters used in the measurement interfacecccocoveeeveieevecieeevcieenn, 119
Table 62 - ACCEPLaNCE TSt FOr UC L...ii i iiiiee ettt ettt e e s te e e et e e s et e e e s raeeeentaeesensaaeesnneeaans 120
Table 63 - ACCEPLANCE tESE FOr UC 2.ttt et e e e e e e et a e e e e e e e e s antaaeeeaeeeesnsaaaeeaeas 121
Table 64 - AcCeptance tESt FOr UC 3. ittt e et e e e e e e et ta e e e e e e e esantaeeeeaeeeesntsaaeeaens 121
Table 65 - ACCEPLANCE TSt FOr UC A.......eeiiieiiieeeecee ettt e e e et e e s tte e e e st e e s e et e e e srae e e e nsaeesenneaeesnreeenns 121

Xix

Table 66 - ACCEPLANCE TESE FOr UC S...iiniiiie i iiiiee et ettt e e e e e re e e s tae e e e ate e e s eaaaeeesbbeeeesraeesenseaeesnneeenns 122

Table 67 - ACCEPLANCE TESE FOr UC B...oineeiiiiiiiiee ettt ettt e sttt e e s tte e e et e e e e aaae e e staeeeeataeesenssaessnneeeans 122
Table 68 - ACCEPLANCE tEST FOr UC 7. oottt ettt st et sae e s ne e e saneenneas 122
Table 69 - Table describing the goals for the Projectccueeeeciie e e 125

XX

PESTI Report- Flexoffer Pilot

1. INTRODUCTION

This section will introduce the reader regarding the framework of this project, its goal and
proponent.

1.1 FRAMEWORK

CISTER Research Centre has one great work and academic environment: it allows for
challenging state of the art problems, dealing with international partners and means to expand
yourself as an academic student. If the work is appreciated by any international partner, it the first
step for an internship abroad, where you may experience new challenges and new situations, not
available if you were to stay in your country. Furthermore, the Internet of Things research and
application area is about to expand [1]: by being in such an early approach, one is able to be ahead
of the curve and be part of the creation of new paradigm, similar to the web based and mobile
services behaved in the last decade.

Arrowhead is project focused on “reinventing” efficiency and flexibility by using
collaborative automation. By using networks of embedded devices, it is enabling interoperability
and integration of nearly any device. Arrowhead’s goal is to implement and evaluate pilots for
different application fields (Smart building, industrial production, energy production); Enable
integration with older/legacy systems; Provide a framework for the said purposes.

The Arrowhead Framework builds and transforms the local cloud to meet automation system
requirements regarding: Real time properties; Security and safety; Engineering of automation
functionalities. A local cloud is defined a collection of devices or 10T in a relative proximity. The local
cloud always provides a number of basic core services enabling fundamental Service Oriented
Architectures(SOA) properties like service registration, service discovery, authentication and
authorization plus orchestration of system of systems (see Figure 1).

The ServiceRegistry System -Allows a service that is producing to expose itself to the cloud and
allows consumer services to discover producer services they wish to consume from.

The Authorization System-Is responsible to control which service can consume a certain producer.

The Orchestration System-Allows coordination (orchestration) of which producer will a certain
consumer be able to employ/use.

PESTI Report- Flexoffer Pilot

Orchestration
System

R]

!

_atelke L Information Exchange
Application Application |
v " service
Provider
System

I
I
1
1
\

Figure 1- Arrowhead Framework System of System [2]
A device is defined “Arrowhead-compliant” when with its features respects 3 items:

e design according to Arrowhead Framework Templates- It must be described using
a System of system template document.

e Adapt legacy system or implement new system according to Arrowhead
Framework principles/patterns

e Perform interoperability tests- A compliance test tool is available to test the
interoperability.

PESTI Report- Flexoffer Pilot

1.2 PROJECT GOAL

This project’s goal is to twofold:

e Validate the flexoffer concept in a new environment

e Validate the application of the Arrowhead Framework with non-Arrowhead compliant
devices.

This proof of concept revolves around creating a pilot for a home system that can use Flexoffers to
maximize the energetic efficiency of home appliances using a hub for the communication with the
different devices like the in-house terminals (electrical sockets, light bulbs) and an external
Aggregator. Flexoffers (FO) are a new concept which aims to balance energy demand and response
by synchronizing consumption with production. The FO concept, which works by scheduling when
energy is consumed, has the advantage of reducing the energy costs of industrial or domestic
installations. In order for the FO to be relevant for the Energetic Market (EM) it has to be combined
or aggregated with other FO’s on the same energetic grid. The Aggregator receives the FO from all
the house-holds and combine them and send it as a unique FO. When the EM reply arrives, his
responsibility is to redistribute the energy between the house-holds it supervises. For this project,
the external technologies that are in use are smart plugs provided by a Portuguese energy solution
company. The employment of these plugs allows us to enforce the schedule sent back from the AG.

1.3 ORGANIZATION OVERVIEW AND PRESENTATION

CISTER is one of the leading international research centres in real-time and embedded computing
systems. In both the 2003 and 2007 evaluation processes, the Unit was granted the classification
of ‘Excellent’ (the highest possible mark at that time) [3].

CISTER has been focusing its activity in the analysis, design and implementation of Real-Time and
Embedded Computing Systems. Particularly, CISTER has provided advances in architectures for
distributed embedded real-time systems, real-time wireless sensor networks, cyber-physical
systems, middlewares for embedded systems and on the usage of multicore processors on real-
time systems. CISTER is consistently involved in several collaborative European, national RTD
projects and initiatives. Relevant to this project, the unit was a core partner in the ArtistDesign and
CONET (Cooperating Objects) European NoE, EMMON (EMbeddedMONitoring) projects, lead the
International SENODs project (together with Portugal Telecom and the Carnegie Mellon University),
on energy-efficient data centres and has recently finalized the ENCOURAGE (Embedded iNtelligent
COntrols for bUildings with Renewable generation and storage) project. Currently CISTER is
involved in several European projects, particularly relevant to this project is the participation, in

PESTI Report- Flexoffer Pilot

multiple workpackages of the Arrowhead project, the participation in DEWI, CISTER is also
participating in the MANTIS project, which is just about to start.

1.4 CONTRIBUTIONS

This project represents the only solution that integrates the sole implementation of the
Arrowhead concept of flexoffers with technology to manage appliances, given in this case by a
national company. This platform, in its current stage is, easily deployable, only needing a device to
run the jar and internet connection, as long as the user has an installation of the external
technologies (A Cloggy gateway and compliant devices such as plugs or sensors) approached further
is this paper. FlexHousing, marketing/code name given to this application, empowers the user with
the full control of his devices. This platform allows monitoring, flexoffer application, actuation on-
the-go and even energy control/planning. The user has the information to understand and know
what is going on in his facility, this being either his house or industrial site. The existence of the web
interface also makes this platform the only one for an energy manager, in regards of the flexoffer.
The existing ones only target the user and from an energy point of view, not in energy or device
manager one. There already implementations that manage flexoffers but FlexHousing is the first to
manage energy and flexoffer compliant devices.

1.5 REPORT STRUCTURE

This report is divided in four main chapters, Context, Work Environment, Technical Description, Testing and
Conclusions.

Chapter Erro! A origem da referéncia nao foi encontrada., Context, starts by describing the problems in
question. It gives an insight on the various areas that had to be studied in order to create a valid solution. It
also gives a description of the solution that was developed.

Chapter 3, Working Environment, depicts the how the work was planned and what were the technologies
that were used to create the end product.

Chapter 4, Technical Description, how the name implies, describes the implementation of the solution from
a technical point of view. The 1% sections explains how the description is documented. In this case, it’s made
by using the Arrowhead project documentation.

Chapter Erro! A origem da referéncia ndo foi encontrada., Tests Description, focus on software testing, in
which we have the description of each test..

Chapter 6, Conclusion, describes the conclusions regarding all aspects of the project, both technical and
management. It approaches the limitations, future work, goals achieved and gives a final overview of the
internship and project

PESTI Report- Flexoffer Pilot

2. CONTEXT

This section will allow the reader to understand the origin and theoretical stand-point of the
project, how solution will be tackled and its design.

2.1 PRESENTED PROBLEM

Flexoffer is the idea that has been developed within the EU FP7 project MIRABEL [2]. It
permits exposing demand and supply loads with associated flexibilities in time and quantity for
energy commerce, load levelling, and different use-cases. Flexoffers are generic entities, and may
accommodate numerous varieties of consumers (e.g., electrical vehicles, heat, pumps, home
equipment, industry) and producers (discharging electrical vehicles, solar panels). it's presently
undergoing an EU standardization process through CEN/CENELEC CWA. In its simplest form, a
flexoffer specifies a quantity of energy, a duration, an earliest begin time, a latest finish time, and
a price, e.g., "l want ten KWh over two hours between one AM and five AM, for a value of 0.35
DKK/kWh". An additional complete example is shown in Fig. 1 [4].

; — F?jlﬂe of flexc-offer [0 Seart time fexibikty
kW [Minimum required energy Physically consurmed/
— Energy flexibility scheduled enesgy

2h

-------- t
:
1AM, T 3AM, 5AM,
earliest time letest latest
start fime start time endtime

Figure 2 — Typical Flexoffer example [4]

Flexoffer are built by supplying information about the earliest start time, latest star time
and the time slice with their respective high and low load of energy. This information is needed to
better meet the energetic needs: during a time-slot, the energy usage may vary, thus, we may find
a better solution if we work between values. Flexoffers can be applied to low producing/consuming
entity such has households but can also be applied to larger ones such as factories. Flex-offers will
be aggregated and disaggregated irrespectively to a kind of consumption or production they
represent. Each collective and non-aggregated flex-offers may be mixed and dealt uniformly. A flex-
offer may be seen as a sort of "option" that a user wants put out on an energy market. The flex-
offer may be rejected, for instance if the price isn't right. If the choice is accepted, the flex-offer is

PESTI Report- Flexoffer Pilot

given a schedule, e.g., the flex-offer is scheduled at two AM, and the consumer system is notified.
On the best case, the schedule is applied as specified. However, one of perks of using flex offer may
only be put in play once things don't go as expected, for example as a result of an abrupt drop in
wind energy. In this case, the flex-offer will be rescheduled, shifted to three AM, once the wind has
come back. [4]

Request service
from regator

v

Flex-offer Agent (FOA)

Service Registry

keeps track of the

QOrchestration
module

connenction rules

~ 0
Module

Communicates with
the System

Operator to get

Authorization

FOA communicates wit!
Authorization Module to
be authenticated and

FOA gets connectlon rules

Figure 3- High level design for the Virtual Market of energy Flex-offer Agents [4]

The planned architecture is structured upon 5 modules, where 3 belong to the core
arrowhead framework — Service registry, Authorization, and Orchestration, and the other 2
modules exchange business logic information — the aggregator and the Flex-offer Agent (FOA). [4]
Its design already provides functionalities for obtaining info regarding the creation of flex-offers,
the power consumption profile of specific devices, and control the execution of a scheduled flex-
offer. Flex-offer Agents are very versatile, its design permits for its total implementation to be
running on one device or distributed through many devices. As an example, the company providing
the flex-offer service may offer the user a specific hardware device, solely for the FOA. The
Aggregators receives flex-offers from FOAs, combines them with flex-offers from other sources,
into larger macro flex-offers and then puts them to the Virtual Market of Energy. Note that
Flexoffers need a specific dimension before being able to be bided on at the Energy Market
Afterwards, the aggregator receives a response from the Virtual market of Energy, disaggregates
the response and sends the FOA its consumption schedule. Many types of Aggregators may exist,

PESTI Report- Flexoffer Pilot

and a few Aggregators may be more specific for the management of electrical motors whereas
others may be more adequate for the management of heating systems. In addition, selecting the
most adequate aggregator additionally depends on the geographic region. To get the information
of a specific aggregator, a FOA uses the Service registry module, to register itself, and the
Orchestration module to find the aggregator that matches the needs. Has stated before, both
modules can be reach using the arrowhead system. The Service Discovery service has already 2
implementations, one uses DNS Service Discovery (DNSSD) [5] and another uses Berkeley internet
Name Domain (BIND) [6] [7]. The security issues are dealt by the Authorization module. This module
is by different entity, most often the electrical company, with whom the prosumer is supposed an
agreement to profit from flex-offers. By using a combination of Public Key Infrastructure (PKI) and
X.509 certificates over REpresentational State Transfer (REST) protocol the Authorization module
was built [8]. All communications may be encrypted by using Extensible Messaging and Presence
Protocol (XMPP) [9] over Transport Layer Security (TLS) [10]. After that, the FOA and therefore the
aggregator should first obtain its security certificates through the Authorization module. Only after,
are the modules able to connect. The FOA obtains the address of the Orchestration module using
the Service registry module that stores info concerning all of the accessible service producers, their
location and characteristics. As to being discovered, an arrowhead compliant module will begin by
communicating with the Service registry module and then register itself by providing info
concerning its address and its offered services. The Orchestration module contains info regarding
connection rules and system configuration, so permitting the FOA to get the address of the most
adequate aggregator for the devices controlled by it. The aggregator or a system administrator
ought to antecedently have configured the connection rules for the aggregator considering its
geographical location and therefore the kind of devices that it's enabled to receive flex-offers from.
This feature allows FOAs to connect to Aggregators that implement specialized algorithms capable
of optimizing the results for specific styles of devices. The Orchestration module has been
implemented using REST. The aggregator and the FOA communicate using XMPP, and exploits the
present arrowhead to establish connections by using their services and protocols. The main
advantage of XMPP is that it supports the Publish/Subscribe communication paradigm, that
provides an asynchronous and extremely scalable many to-many communication model. In
addition, XMPP is additionally in the process of being standardized.

2.2 BUISNESS AREA AND TECHNICAL CONTEXT

The internet was created to help research by connecting various universities [11]. It started
as an exchange of packets with a speed of 56 kb/s and as evolved into the World Wide Web we
know today. Today’s society uses the internet for various purposes such has net browsing, using
Mozilla Firefox or Google Chrome, communication with emails or Instant Messaging and to share
various media, videos, photos or music. More and more devices are now able to connect
themselves onto the internet: Cell phones, Cars, Appliances. If any object has some integrated
electronics capable of running some basic software, it can be connected too. This allows it to send
or and receive data and act depending on it. An electrical socket can be turned off after a server
sent it a shutdown signal or an oven can be turned on after the user used an App on his cell phone

PESTI Report- Flexoffer Pilot

to send a message to do so. The number of these “Things” that are currently connected and active
is increasing [12]. The next step is to diminish the interactions between man and things and have
exclusive thing to thing communication. Such evolution will be accompanied by various solutions
in terms of devices, technologies and performance. New technologies have been invested in, in
order to have a better performance while old ones have been refurbished. 10T can have big impact
on our society and on our economy. The transport industry can be heavily impacted too: having an
accurate reading of passengers can have an impact on which route of a sub way grid reinforce,
therefore reducing the waiting of the travelers and attaining a better response time. There also
place for loT in medical care: A little microchip implanted in a patient can track its movements
around the hospital and have an on-the-go reading of the medication he has already been
prescribed. The solutions are limited by our imagination and by our current technology.

loT has various methods to apply itself to the real world: If you must act as a response to a certain
event then you can use a loT solution to make it happen. Some solutions are already in place around
us: newborn babies in most modern hospitals have a small tracker either under their skin or in a
snug-fitted bracelet. This allows to track their locations and act with the utmost quickness, either
to avoid a serious condition or to avoid theft. Sensors and devices are all around us.

2.2.1 ENERGY SOLUTIONS

Most energy companies bill you for the power you rent: even you don’t consume has much as you
are given, you will still be billed. By having a sensor directly connected to main power line going
inside your house, which is normally the cable that goes into the meter, you can have an accurate
reading off how much you are actually consuming. The electrical grid is intelligent, hence its new
name: smart grid (see figure 4).

PESTI Report- Flexoffer Pilot

Control .
B Aorkonces Virtual Power
Plant

Figure 4- Real Time Energy Management in a smart grid [13]

Instrumented
home

There are some solutions for outside public lighting employing smart grids [14]: Having sensors on
street lamps that will receive that on the luminosity so that the intensity of the light that the lamp
is giving can be related to current natural lighting. You could also relate the luminosity emanating
from the street lamp with the time and day of the week: On week days, people are less active during
the earlier hours of the day in contrast with the night life during the weekends: More people equals
more need for lighting. These kinds of problem lead to a new paradigm: the old hierarch
unidirectional grid isn’t built correctly: the smart grid needs more connectivity, bi directionality and
is more complex. The end users are now able to be relevant to the grid in consumption and also
production. These users are known as prosumers. With the number of prosumers increasing every
year, the last mile of the grid needs to be structured as it will behave differently from before this
surge [15]. A common trait of the entities or end points in the last mile of the smart grid is the
usage of sensors and actuators that will manage the energy and handle the schedules. The ones
currently available in the market don’t have the computing power to handle complex or heavy
protocols: the sensors normally act as relays, sending their data to a gateway installed inside the
building. The gateway is connected to internet, bridging the interaction between the user, the
sensors/actuators and the grid [16].

PESTI Report- Flexoffer Pilot

2.2.2 SMART HOUSING / SMART BUILDING

Having sensors installed on appliances can enable us to receive information about them and
make them do actions in consequence. When you leave your work place, you can, with your
cellphone, make you AC turn on so that when you arrive home, the room temperature is as you
like. Studies have revealed that each appliance has a unique energetic signature. A freezer has a big
spike in consumption has it starts it’s cooling cycle, then going to a more moderate one finally
shutting off completely when the desired temperature is reached. Controlling which appliances are
consuming the most energy can allow the user to react to any kind of unnecessary spending and
actually do some savings. It can have a big impact on security: Closed Circuit TV (CCTV) cameras can
be connected directly to the internet and allow instant viewing of the exterior or interior of your
house. Door control over the internet can enable you to open the doors even if you’re not home.
Monitor the movement inside your house be connecting the sensors to a database. This
redundancy can be used in case of a break in. This can also save lives: if the routine of a family is to
wake up around 7 in the morning to start their day, if no movement is picked up in the living room
or kitchen at around 8, it can make the phone ring or even send a text or email to someone to check
if that situation is normal. As long has it has some kind of connectivity any device can be “smart”
(see figure 5)

There are already products using loT for smart housing:

e Neurio — By installing a Wi-Fi enable device with the power/electrical panel,
through the use of sensors, Neurio can monitor the usage of each device,
identifying them by their energetic signature [17];

e Canary — A single hub contains sensor for air quality, sound, motion, temperature
and motion. By using machine learning it can establish the regular behaviour of
your house hold. Any data capture by those sensors outside of the standard
behaviour triggers the emission of an email or an alert on their mobile app [18];

e |vee Sleek- An alarm looking device, enabling you to talk with the house. It connects

to various other smart devices, allowing you to speak commands to them. Also able
to report the weather and other news through the usage of internet [19];

10

PESTI Report- Flexoffer Pilot

Wifi Router
Speakers TV

Aircon Smoke Alarm

Window Shades

Lights

Exterior Lighting
Video Surveillance

Garage Door
Power meter

Sprinkler
System

~ﬁefrigerator

Computers e . Door Locks

Figure 5- loT house-hold fields of application [20]

2.2.3 ENERGY MARKETS

The energy markets consist of producers, transmitters, distributors and consumers. The producers
create the energy from power plants. They can be from either fossil or green origins. The
transmitters are responsible for the supply of energy, taking it from its origin to the demand points
(eg: from the dam to the city) and the distributors for the local distribution within the city (the
overhead cables in the streets). Society is, nowadays, becoming a low consumption economy,
driven to use more competitive prices and greener energy. A European agreements of
commitments known as “20/20/20” has set goals, regarding energy for 2020: A minimum of 20%
reduction in GHG emissions, 20% of energy production coming from renewable resources and a
20% reduction in energy usage, by upping energy efficiency. In order to stimulate international
development of renewable energies, Renewable Energy Certificates System were implemented,
relating the power being sold and its impact in the environment. By 2020, under EU legislation, 80%
of consumers will have smart meters, allowing a greater efficiency, more competitive prices and a
better demand-response management. The nationwide is responsible, fed by power plants,

11

PESTI Report- Flexoffer Pilot

transport the energy through the country, normally with 400 and 100kV. Then we have regional
grids, relaying the national grid to the local one, with energy, typically, within 130 and 5kV. Small
energy producers (large wind farms or decentralized power plants) and large consumers (large
industrial complexes) can be connected to the regional grid. The local grid provides the consumers
with 400V energy. Domestic wind and sun power plants are connected to the local grid. Upon
obtaining the obligatory licenses and agreements, generation and consequent supply of electricity,
plus the administration of electricity retail markers are fully open to competition. Still, public
concessions are needed for the assignment of the transmission and distribution of components of
the electricity industry.

Generation of electricity can be divided into the ordinary regime and special regime.

The ordinary regime refers to the majority of electricity production. In Portugal, the rights to
manage the 26 large hydropower plants are retained by EDP (Energias de Portugal) and the
transmissions are managed by the National transmission grid, currently credited to REN Rede
Eléctrica.

The electricity market is opened since 2006, with all consumers in the mainland being able to
choose their electricity supplier, without additional charges for switching companies. On the other
side, suppliers can openly buy and sell electricity, and can access the national transmission and
distribution networks upon payment of the required fees, set by the Regulatory Authority. In 2001,
the Portuguese Government presented several energy efficiency measure, with the aim to “support
the progressive implementation of telemetering for electricity, water and gas as a strategy for
distribution network and quality service improvement”. Later that year, together with the Spanish
Government, approved the Electricity Iberian Liberalized Market (MIBEL), stating that citizens from
the Iberian Peninsula could purchase electricity freely from any agent in the market. Compulsory
installation of digital meter for new facilities and the replacement of all traditional meters by smart
meters are some of the agreements stipulated for MIBEL. In 2011, Portugal started a wide
implementation of Smart Electricity Grid (Smart Grid), with the final goal to cover six million of all
customers until 2017.

The special regime is associated with the production of electricity, via renewable sources.
Generation of electricity under the special regime is subject to different legal requirements, but on
the other hand benefits from special pricelists. Portugal is one of the countries in the European
Union (EU) most dependent of fuel importation (77% in 2010). Hydropower in the most significant
renewable energy source, with the total share of renewable energy consumed of 22,9% in 2010
[21].

12

PESTI Report- Flexoffer Pilot

2.4 SOLUTION OVERVIEW

By using external technologies, in this case provided by VPS [22], a Portuguese energy
solutions company, we are able to apply the Flex-Offer(FO) concept to a real-life situation. By using
smart-plugs as our actuators and sensors we can control the energy usage of appliances in order to
make them work, respecting the Flex-Offer created on them. FlexHousing is a middle-ware
application that communicates with the flexoffer cloud through its components, such as the
FlexOfferInterface and FlexOfferAgent, and with VPS API, that provides the necessary
services to operate with the smart-plugs. The application runs in a device, inside the building, and
provides services through an API so that the WEB-Service, we also implemented, allows the user to
configure FlexHousing to his needs. The application also allows the user to check the energy
consumption of any plugs he has installed, regardless if a Flex-Offer has been applied or not. This
also helps the user get to know his appliances better and make informed decisions about whether
or not to apply a certain Flex-Offer to a device. Once a FO has been applied to a device/plug, the
application maintains the energy usage of the said device linked to that FO until the user chooses
otherwise, by either establishing a new FO or just remove the device from the FO interface of the
application. The WEB-Service server is running externally and provides an easy-to-use graphical-
interface for the user to input all the information, regarding the house, FO’s and devices.

From the user’s point-of-view, FlexHousing will allow the user to:

e Manage his devices- The user is able to register new ones, edit the configuration of old
ones (either name or location). We are currently only using smart plugs but the application
will allow to use any device provided by VPS (Water temperature sensors, gas sensors, etc.)
[23]. If the user wants he can also turn off and on any device. Every plug has the capability
to cut the flow of electricity (The execution of the command is what allows us to apply the
FO concept);

e Check the Consumption — Because we are using ISA technology and devices, we provide
the user the possibility of checking the current consumption of any appliance/plug you
have installed. You have the possibility of monitoring a device for a given period of time,
resulting in a graph of energy consumption throughout that period;

e View and manage his Energetic Profile- The aggregation of every FO the user has in his
building will give us his Energetic Profile. With this option, we allow the user to create the
FO for his appliances. The user inputs the information needed for the FO creation such as
start time, end time, latest start or finish and more importantly the energy for each time-
slice. If available, the consumption graph of the device he is trying to setup will display in
order to help the user build a correct FO. Nonetheless, the user is able to setup any kind
of energy configuration he wants;

e Manage the house — Create new rooms in order to have devices be placed there. This also
allow the user to have an overview of the house and check the relationship between the
rooms and devices;

13

PESTI Report- Flexoffer Pilot

3. WORK ENVIRONMENT

The work developed for the internship differs from a traditional software development: new
products are services are being created in order to create a proof of concept demonstrator. This
work will be a staple for the Arrowhead European Project.

3.1 WORK METHODS

For the accomplishment of the initial proposed project objectives, an iterative work
method was adopted, using the Rational Unified Process technique.

According to the 4 phases of RUP [24], the project was distributed in the following way:

1. Inception — Research and code analysis. It was studied the best technologies to
put in practice for the project.

2. Elaboration — Code design, such as functional and non-functional requirements
were documented.

3. Construction — All the use cases were implemented.

4. Transition — Some prototypes were made and posted on practice, resulting on
code tests and improvements.

Business value is delivered incrementally in
time-boxed cross-discipline iterations.

Inception | Elaboration Construction Transition
I1 El | E2 (o} § c2 c3 ca T1 | T2

Business Modeling

Requirements
Analysis & Design D e
Implemeantation | e
Test
— fo——
Time >

Figure 6- Typical RUP Chart [25]

Because this project was being worked on in a research centre, it has various partners with different
responsibilities. This work is to be seen as a demonstrator of concepts and solutions, in this case
developed beforehand. The demonstrator has the responsibility of showing the reliability of the
Flexoffer for the real world. That was the only requirement for this project therefore any sub
adjacent analysis and design were directed to features and use-cases created by myself. The
analysis & design step took longer because of the high load of theoretical concepts and by the fact
that most of the code directly linked to this project was created by partners in Aalborg, Denmark.

14

PESTI Report- Flexoffer Pilot

During the project, various milestones were implemented (see Table 3).

3.2 PROJECT PLANNING

A considerable amount of new technologies was introduced therefore a large amount of
time was allocated for their adaptation and introduction. Several small tasks were necessary
before actually tackling the project, such as installing the AH server, testing the technologies
developed, testing the devices received from the partners. Table 1 represents the Gantt diagram
with the deadlines for each task approached in this project.

Table 1 - Gantt diagram for the internship

Task Duration Begin End
Kickoff 1d 25/02/16 25/02/16
Studying Framework Arrowhead 232d 25/02/16 14/10/16
REST e XMPP in Java 7d 25/02/16 04/03/16
Dummy application using grizzly 3d 25/02/16 29/02/16
Isnes\;czllation and maintenance of Openfire ad 29/02/16 03/03/16
Testing of Dummy application 5d 29/02/16 04/03/16
Local installation of Arrowhead Core Services 6d 04/03/16 11/03/16
Studying of documentation 4d 04/03/16 09/03/16
Installation on physical machine 3d 07/03/16 09/03/16
Service configuration 3d 09/03/16 11/03/16
Bzggly;naepnilication using local Arrowhead 6d 11/03/16 18/03/16
Design and implementation 4d 11/03/16 16/03/16
Testing 3d 16/03/16 18/03/16
Pilot for flexoffer concept 100d 21/03/16 05/08/16
Design 90d 21/03/16 22/07/16

15

PESTI Report- Flexoffer Pilot

Investigation of previous Arrowhead and flexoffer applications. Try-outs for various
architectures
using the smart plugs. Each new design was introduced using UML then they were submitted to
the supervisors for acceptance. All the Use-Case were also accepted by the project supervisors.

Implementation 80d 11/04/16 29/07/16

The implementation had 2 phases: the middleware, hosting the services and the business logic,
and the web-server, serving as a front end “renderer” for the user to manage his devices. The
front end was only started after the middleware was in an advanced stage of development.

Testing 65d 09/05/16 05/08/16

Unit, integration, deployment and performance tests

Final Report 100d 21/03/16 05/08/16
Structure and Content 85d 21/03/16 15/07/16
Result Gathering 50d 09/05/16 15/07/16
Result analysis 6d 18/07/16 25/07/16
Revision and Proofreading 10d 25/07/16 05/08/16
End of internship Tasks 51d 05/08/16 14/10/16

Writing of an article about FlexHousing for INForum 2016. Preparing a presentation and video
for the presentation at INForum 2016.

Nearly every milestone and deadlines were met, even though some new tasks were introduced that
might have delayed the project. Quick reaction and effective planning allowed us not to be delayed.
At the end of the project, due to some delay and due to time constraints the implementation of the
FrontEnd had some setbacks and some the deadlines in the original planning were crossed. One of
the features wasn’t implemented.

3.3 MEETINGS & MILESTONES

For each major decision or event, we had a meeting informal meetings, either to decide
to employ a solution or approach or to check if a decision was correct. The meetings took place
either in the supervisor’s offices or at the work station. Milestones were establishing to control
the workflow and to have palpable results, in a gradual and incremental way.

16

PESTI Report- Flexoffer Pilot

Table 2 - Meetings during internship

Date Presences Description
25/02/16 Joss Santos, Luis Ferreira, Michele Albano, Discussion about each project and
Paulo Barbosa, Renato Ayres e Pedro Moura projected results
Joss Santos, Luis Ferreira, Michele Albano, Meeting between ISEP and external
10/03/16 . . .
Constantino Martins supervisors
11/03/16 | Joss Santos, Luis Ferreira, Michele Albano Discussion for code design
06/04/16 | Joss Santos, Luis Ferreira, Michele Albano Project status
Proj i f
02/05/16 | Joss Santos, Luis Ferreira, Michele Albano roject status and demonstration o
prototype
09/06/16 Joss Santos, Luis Ferreira Demonstration of features
19/07/16 Joss Santos, Michele Albano Discussion for possible publishing of
paper
31/08/16 | Joss Santos, Luis Ferreira, Michele Albano Demonstration of FrontEnd prototype
15/09/16 | Joss Santos, Luis Ferreira, Michele Albano Final Demonstration

The millstones were decided by the supervisors, except when it was required for an event such as an event

at CISTER or an external one. Such is figured in Table 3.

Date Description of milestone Df?:iisth\;v;s
01/05/16 Prototype of Middleware capable of connecting to all the services 01/05/16
06/06/16 Final implementation of Middleware 07/06/16
31/08/16 Prototype of FrontEnd capable of communicating with middleware 29/08/16
15/09/16 FlexHousing as a complete system 15/09/16

Table 3 - Milestones for the project

17

PESTI Report- Flexoffer Pilot

3.4 USED TECHNOLOGIES

This section will briefly approach every technology used, at some time, along the project.

Beneath, you will find Table 4 containing information about the technology and regarding where

it was used.

Name

Table 4 - List of technologies and libraries used and where

Where it was Used

JAVA

Jersey & Grizzly

Apache Derby

XMPP

Linux

C#

MVC

.NET

Each technology usage wa
possible but these were th
written in JAVA, therefore

S,
8

Java

All the code used in the middleware was written using JAVA. The code
received from the Arrowhead platform and from the partners was also
written in JAVA.

These JAVA libraries enable the usage of services hosted by an API. These
are used in the middleware in order to consume service hosted by API but
also to host them.

The data stored in the middleware. The persistence is guaranteed by an
Apache Derby database.

XMPP is used for communication between some of the modules in
FlexHousing. It allows for secure message exchange.

A local server of the Arrowhead core services was installed at CISTER. The
ISO installed used a CentOS distribution.

The web client code is written in C#. The FrontEnd system is going to run
on a ISS server.

The web client will mostly do CRUD operations. MVC allows an easy
interaction between app and user.

This framework provides several components, essential for web clients.

s heavily discussed. Several approaches with other technologies were
e ones that were either chosen or continued (The WP5 modules were
a JAVA written Middleware was the obvious choice)

Java is an object-oriented
fast, secure, and reliable. F

programming language first released by Sun Microsystems in 1995. It is
rom laptops to datacentres, game consoles to scientific supercomputers,

cell phones to the Internet, Java is widely used. Java language is very based on C and C++ languages,

many of Java’s defining characteristics come from this two predecessors, which are refinements

and responses to the predecessor’s limitations. [26]

18

PESTI Report- Flexoffer Pilot

What really defines Java is its portability, because to make C and C++ work in different CPUs it is
needed a compiler for each type of CPU, and compilers are expensive and time-consuming to
create. Therefore, back then Java founders decided to work on a portable, platform independent
language that could be run every type of CPUs, leading to the creation of Java.

Currently the latest Java version is Java SE 8 and represents another very significant upgrade with
the introduction of lambda expression. The purpose of lambda expressions is to simplify and reduce
the amount of source code needed to create any functions. [27]

i Apache

Derby

Apache Derby is simple but powerful: easily deployable, as it is seen as Java class library, but from
a relational database point of view it has various features like crash recovery, rollback on
transactions, query injection, views and even constraints for the primary and foreign keys.

Installing it is as simple as copying a jar file to your project. It can be embedded to a project or used
as a stand-alone package. Because of this you can use the same package for various platforms and
operating systems simply by copying a few files.

You can employ Apache derby in 2 ways: when its embed its part of the application. It’s part of the
Java Virtual Machine, launched and stopped at the same time as the project. The jar contains both
the database engine and JDBC driver; In the network mode it can service application from different
VM, or in other words, from different application in different coding languages such as php, python
or even C. All you have to do is use the specific communication modules and you’re good to go.

! XMPP

Extensible rﬁessaging and Presence Protocol (XMPP) is an open XML technology for real-time

communication, that powers a large range of applications as well as instant electronic
communication, presence and collaboration. XMPP is a protocol; a collection of standards that
enables systems to speak to each other. XMPP is employed wide across the net, however is
commonly unadvertised. The presence indicator tells the servers what is your current availability.
In technical terms, presence determines the state of an XMPP entity; in common man terms,
whether or not you're there and prepared to receive messages or not. The ‘messaging’ a part of
XMPP is the ‘piece’ you see; the instant message sent to the users. XMPP has been designed to
send all messages in real-time employing a very efficient push mechanism. whereas existing net
primarily based mechanisms usually build many unneeded requests introducing network load, and
are consequently not real-time. Defined in an open standard and exploiting an open systems

19

PESTI Report- Flexoffer Pilot

approach of development and application, XMPP is meant to be extensible. In different words, it's
been designed to grow and accommodate changes. [9]

BIND
3IND

BIND is open source package that implements the domain name System (DNS) protocols for the
web. it's a reference implementation of these protocols, however it's also production-grade
software, appropriate to be used in high-volume and high-reliability applications. The name BIND
stands for “Berkeley internet Name Domain”, as a result of the code originated within the early
Eighties at the University of California at Berkeley. [6]

BIND is out and away the most widely used DNS software on the web, providing a sturdy and stable
platform on top of which organizations will build distributed computing systems with the
knowledge that those systems are absolutely compliant with published DNS standards.

C# I C-Sharp

C# syntax is very expressive, nonetheless it's also straightforward and simple to learn. The curly-
brace syntax of C# is instantly recognizable to anyone acquainted with C, C++ or Java. Developers
who understand any of those languages are usually ready to begin to work profitably in C# inside a
really short time. C# syntax simplifies several of the complexities of C++ and provides powerful
options like nullable value types, enumerations, delegates, lambda expressions and direct memory
access, that don't seem to be found in Java. C# supports generic methods and types, which give
enhanced type safety and performance, and iterators, that alter implementers of collection classes
to define custom iteration behaviours that are straightforward to use by client code. Language-
Integrated query (LINQ) expressions build the strongly-typed query a first-class language construct.

As an object-oriented language, C# supports the ideas of encapsulation, inheritance, and
polymorphism. All variables and methods, together with the main method, the application's entry
point, are encapsulated among class definitions. A class could inherit directly from one parent class;
however, it may implement any variety of interfaces. methods that override virtual methods in a
parent class need the override keyword as a way to avoid accidental definition. In C#, a struct is
sort of a light-weight class; it's a stack-allocated type which will implement interfaces however
doesn't support inheritance.

In addition to those basic object-oriented principles, C# makes it simple to develop software
elements through many innovative language constructs [28].

20

PESTI Report- Flexoffer Pilot

v ®

AL APS.NET MVC

APS.NET MVC is a framework for building internet applications employing a MVC (Model view
Controller) design. The MVC model defines internet applications with three logic layers:

e The business layer (Model logic)
e The display layer (View logic)
e The logic layer (Controller logic)

The Model is the part of the application that handles the logic for the application information. Often
model objects retrieve information (and store data) from a database. The view is the elements of
the application that handles the display of the information. Most often the views are created from
the model information. Interaction is handled by the Controller. The Controller will receive the
input from the view and act accordingly. Typically, controllers read data from a view, manage user
input and send input data to the model. The MVC separation helps you manage advanced
applications, as a result of you'll focus on one side a time. as an example, you'll target the view
without depending on the business logic. It additionally makes it easier to test an application. The
MVC separation additionally simplifies cluster development. different developers will work on the
view, the controller logic, and also the business logic in parallel [29].

21

PESTI Report- Flexoffer Pilot

4. TECHNICAL DESCRIPTION

As partner of Arrowhead Framework, the developer is obliged to write the technical documentation
following the Arrowhead templates and guidelines. Since most of this documentation approaches
both project analysis and implementation, it was decided to put in this chapter all written

documents

4.1 ARROWHEAD DOCUMENT METHODOLOGY

Every Arrowhead partner must document and describe its developed solutions according to the
Arrowhead compliant documentation. This has the purpose of accomplishing a common
understanding of every Arrowhead partner. The Arrowhead compliant methodology includes
design patterns, documentation templates and guidelines that aim at helping systems to conform
to Arrowhead framework specifications.

The Arrowhead compliant documents consist in three levels: System-of-Systems, System and

Service levels Figure 7 depicts.

System 2 RElan

of 5050 S0s0D
Systems

S?S[J o Aafen S'QISD[:I
System Black bow White box
e e TR v bk L ELTTEEEST L4, T T 3
) | o R

Service — 50 [:

Figure 7 -The Arrowhead documentation relationships [30].

The approach is to apply terms “black-box” and “white-box” only in the System Level, in sense of
writing an abstract high-level description of a system approaching only its behaviour, and on the
other case in the sense of writing with detail the implementation done.

22

PESTI Report- Flexoffer Pilot

4.1.1 SYSTEM-OF-SYSTEMS LEVEL
At the System-Of-Systems (SoS) there are two types of documentation, System-of-Systems
Description (SoSD) document and System-of-System Design Description (SoSDD).

SYSTEM-OF-SYSTEMS DESCRIPTION (SOSD) TEMPLATE

This document should contain an abstract high level view, describing the main functionalities and
generic architecture, without referring any specific technology. Such document must include use-
cases to help understanding the expected behaviour. Bases on these use-cases, the document
should include behaviour diagrams. It is also recommended the support of UML diagrams, mainly
component and activity diagrams [30].

In this document, it is also important to include information about non-functional requirements,
which the security must be treated separately. This includes the definition of security principles
that SoS needs to follow on a non-technical generic level, the security objectives and the assets
which need to be protected.

SYSTEM-OF-SYSTEMS DESIGN DESCRIPTION (SOSDD) TEMPLATE

This document describes how a “System-of-System Design Description” has been implemented on
a specific scenario, describing the technologies used and its setup. The document starts with an
abstract high-level view of the SoS realization, describing how its main functionalities can be
logically implemented. Specific use-cases are described next, supported by structure and behaviour
diagram.

The non-functional requirements implemented by this realization must be listed along with its
security features. To support the validation of the security attributes of this SoS realization, it is also
necessary to include information identifying the data flows in the system as well as its threads and
vulnerabilities [30].

4.1.2 SYSTEM LEVEL
At the system level there are two different representations, the “SysD Template” consists in a
“black-box” design, while the “SysDD Template” consists in a “white-box” design.

SYSTEM DESCRIPTION (SYSD) TEMPLATE

This document provides the main template for the System Description of Arrowhead compliant
systems. As a “black-box”, there should be a description of the main services and interfaces of a
system without describing its internal implementation where all the system produced/consumed
services are listed. It is recommended the use of component diagrams to represent the
interoperability of different systems. This structural view can be complemented with a high-level
behavioral view such as sequence diagrams [30].

SYSTEM DESIGN DESCRIPTION (SYSDD) TEMPLATE

23

PESTI Report- Flexoffer Pilot

This document provides the main template for the description of Arrowhead Systems, technological
implementations, describing in detail the proposed solution. Here it is encouraged the usage of
formal or semi-formal models in order to enable the automation generation of code from the
specifications as much as possible. When automation is not possible, the document should be
precise enough to guide developers towards an implementation that matches these specifications
[30].

4.1.3 SERVICE LEVEL

The service level consists of four documents: the SD Template, the IDD Template, the CP Template
and the SP Template.

SERVICE DESCRIPTION (SD) TEMPLATE

A service description document provides an abstract description of what is needed for systems to
provide and/or consume a specific service. SD’s for Application Service are created (specified) by
the developers of any Arrowhead compliant system and by the developers of the Core Arrowhead
Framework services. The SD shall make it possible for an engineer to achieve an Arrowhead
compliant realization of a provider and/or consumer of description of how the service is
implemented by using the Communication Profile and the chosen technologies [30].

The document starts by describing the main objectives and functionalities of the service and follows
on defining the Abstract Interfaces and an Abstract Information Model. On Abstract Interfaces
section all interfaces should be detailed using a UML sequence diagram. The Abstract Information
Model section must provide a high level description of the information model with types, attributes
and relationships, bases on UML Class diagram. Finally, non-functional requirements must be
described for each service.

INTERFACE DESIGN DESCRIPTION (IDD) TEMPLATE

An IDD provides a detailed description of how a service is implemented by using a specific
Communication Profile and specific technologies. This document describes each of the interfaces
in a separate sub-section, and the functions included in each interface. To support the descriptions,
it is recommended the use of UML sequence, class and components diagrams. There must be an
Information Model section present in the document, containing detailed information about the
data formats used by the interface along with metadata information. [30]

COMMUNICATION PROFILE (CP) TEMPLATE

The CP document describes the types of message exchange patterns, defining in detail how the CP
handles security issues, regarding authentication and encryption based on the protocol
specifications. For instance, in the use of CoAP, DTLS is enabled. This document can be identified
by three characteristics: transfer protocol (e.g. CoAP); security mechanism (e.g. DTLS); data format
(e.g. XML).

24

PESTI Report- Flexoffer Pilot

SEMANTIC PROFILE (SP) TEMPLATE

The SP describes the data format by pointing out what its type (e.g. JSON; XML) and how specific
a piece of data is encoded.

25

PESTI Report- Flexoffer Pilot

4.2 SYSTEM DESCRIPTION AND DESIGN

This section approaches each document written for the project. It presents the System of System
Design and Design Description of the Pilot, followed by the Design and Design Description for each
system implemented. Finally, it describes the services of the middleware using a mix of SD and IDD
documents

4.2.1 SYSTEM-OF-SYSTEMS DESIGN

This document provides a high level overview of the FlexHousing system. It will approach the use
case for the system as well as the system that are in play.

1. SYSTEM DESCRIPTION OVERVIEW

The pilot named FlexHousing aims to apply flex-offer concepts to a real life situation from the
domotics area.

In particular, the FlexHousing System of Systems (FHSoS) was created to demonstrate the real life
management of appliances based on flexoffers. FHSoS acts as a proof of concept, allows a user to
create flexoffers upon devices, and lets the power usage of the device be dictated by the
aforementioned flexoffer. In order to be made more user friendly, FHSoS provides graphical
frontends and allows for the abstraction of devices: the user can organize his devices into rooms
(Kitchen, living, room, garage...) that pertain to buildings/houses. The devices are equipped with
different sensors to collect data from the environment and the appliances, and actuators to manage
energy consumption of the appliances.

This pilot considers that most devices are smart plugs equipped with both sensors and actuators.
The actuator of the smart plug allows to remotely switch on and off the appliance it is installed
onto. Moreover, through its sensors, the smart plug can collect data regarding energy consumption,
and the user can then create flexoffers based on past consumption. FHSoS is articulated into the
FlexHousing middleware (FHMW), responsible for the flexoffers and devices management, and the
FlexHousing fronted (FHFE), which is a graphical interface for the setup of user configurations and
all-around managing of the building/house. The FlexHousing frontend is hosted by a web server
and interacts with the FlexHousing middleware through the services it provides.

A context diagram of the systems is depicted in Figure 8.

26

PESTI Report- Flexoffer Pilot

FH FrontEnd

Flexoffer
Services

Services

Figure 8 — Overview of the all the systems

The FlexHousing SoS communicates with the VPS API, which is exposed by an external service
provider and communicates with the Cloogy gateway (the device with the infinity symbol in Figure
1) to interact with the appliances equipped with the smart plugs. Table 1 reports a summary of the
concepts described in this section.

Table 5 Concepts related to the flexoffer pilot

Name Description Contains
Building/house A location pertaining to a user Rooms, Cloogy
Room A physical place in a building/house Devices
Device A smart plug, usually connected to an | Sensors and Actuators
appliance
Sensor Collect data from environment, and from
the appliance it is connected to
Actuator It provides remote control of the energy
feed to the appliance it is connected to
Appliance An electrical machine that uses electricity.
E.g.: HVAC systems, lights, washing
machines
FHSoS The System of Systems supporting the | FHMW, FHFE
FlexHousing pilot
FHME The FlexHousing Middleware, which is
controlled by the FHFE, and interacts with
the flexoffer system and the VPS API
FHFE The graphical FlexHousing FrontEnd

27

PESTI Report- Flexoffer Pilot

Flexoffer system A set of Arrowhead services to interact
with energy market to sell energy
flexibility and buy energy

VPS API A service to drive the operations of the
Actuators present in the Devices

Cloogy A gateway that connects the house to the
internet, and thus to the Flexoffer system
and the VPS API

1.1 INTERACTION BETWEEN SYSTEMS

As already presented in Section 1, FlexHousing SoS is composed by 2 systems: the FlexHousing
middleware (FHMW) and the FlexHousing front end (FHFE). The FHMW interacts with 2 other
services, the Flexoffer service and the VPS service.

For the interaction with the Flexoffer service, the FHMW instantiates a session of communication
using the Arrowhead Framework, which remains valid for future interactions with the Flexoffer
service. With regards to the VPS service, the FHMW has to authorize itself against the VPS service,
and future service fruition will be authorized by caching the result of the authorization step.

Both FHMW system and FHFE system have 2 states: logged and non-logged, and they ideally transit
together between the two states.

When the user starts the interaction with the front end, he is immediately prompted to do the
login. The user inputs his credentials and the FHFE requests the FHMW for authorization. When the
FHMW transits to the logged state, as described in the next paragraph, it will also make the FHFE
switch to the logged state. When it is in the logged state, the user is able to interact with the whole
system, and all the features are now executable.

Regarding the FHMW, when it is in the non-logged state, it cannot perform any operation that
involves devices of external services: actuation on devices, application of flexoffer or the retrieval
of measurements. Anyway, the FHMW is still allowed for the management of the house (operations
on the Rooms). When the FHMW executes the login operation against the VPS service, it is then
able to do any FlexHousing operation, and it stores the authorization results received from the VPS
service to authorize automatically all other operations it wants to perform. Table 6 depicts the
location of the description of the systems. Figure 9 depicts the components that were developed
for this pilot.

Table 6 - Pointers to the description of each system

System name Path

Middleware ..\SysDD FlexHousing-MiddleWare.docx

FrontEnd ..\SysDD FlexHousing-FrontEnd.docx

Flexoffer Services .\Arrowhead\Meetings\Multi WP Workshops \2013-

11-05\ Porto\Documenting\Examples
\SysDD\Arrowhead SysDD Aggregator v0.l.docx

VPS Services [Legacy System]

28

PESTI Report- Flexoffer Pilot

Yisual Pargdigm Standard Edition(Instituto & ior de Engenharia do Porto
A icdomponents> Er N ’

FlexHousing_MiddleWare

<<component>> gl
FlexHousing_FrontEnd

Device 40

House 40
Flexoffer 40
Measurements 40

Flexoffer Services 4(
VPS Services 4(

L] HTTP Server

Figure 9- Component diagram for the systems

As figure 2 describes, the middleware provides 4 interface that will be consumed by the FrontEnd. In the
other hand, the middleware consumes for 2 interfaces, one for the Flexoffer Services and another for the VPS
ones.

2. USE-CASES

FlexHousing SoS offers the possibility to manage (create, categorize, etc) flexoffers, devices and the
house. It also allows for operations on those entities (application of flexoffers on devices, etc).

2.1 FUNCTIONAL REQUIREMENTS

FlexHousing SoS has 8 major functional requirements:

- Send Flexoffer: the user selects a device to apply a flexoffer on. He will input the earliest
and latest time the energy consumption profile can begin. Then he will form the pattern of
consumption by indicating the minimum energy and the flexibility window. The flexoffer is
created and it is ready to be sent to the Flex-offer services. The execution flow of this use
case is presented in Table 3, and its message flow chart is represented in Figure 4.

- Receive Schedule: This feature consists of 3 parts: the emission of the flexoffer, the
reception of the schedule and the creation of the time triggered emissions of actuation to
enforce the received schedule. From then on the user is able to check the schedule that is
active on any given device. The execution flow of this use case is presented in Table 4, and
its message flow chart is represented in Figure 5.

29

PESTI Report- Flexoffer Pilot

- Login: The user has to login to be able to manage and interact with his devices. The
login/password combination is received by FHMW and sent to the VPS services. From there
on, the FHMW has the authorization to interact with the devices attached the VPS account
the user used. When the user wants to interact, FlexHousing will execute the needed
operations. The execution flow of this use case is presented in Table 5, and its message flow
chart is represented in Figure 6.

- Manage House: This allows to do CRUD (Create, Read, Update and Delete) operations on
the house, more specifically to the rooms. The execution flow of this use case is presented
in Table 6, and its message flow chart is represented in Figure 7.

- Manage Devices: The managing of the device allows for CRUD operations on device but
also on the sensors attached to said devices. When a device is registered, it has to be both
at FHMW and at VPS. Although, devices may be already registered at VPS are passible to
be registered in the FHMW, just by supplying the physical ID of the device, normally found
on the device itself. The execution flow of this use case is presented in Table 7, and its
message flow chart is represented in Figure 8.

- Check Measurements: Because the devices are equipped with power and tension sensors,
the user can check the values for those readings. Those readings are stored at VPS servers
and FHMW is able to collect them. The execution flow of this use case is presented in Table
8, and its message flow chart is represented in Figure 9.

- Actuate on Device: To apply flexoffers on to devices, they need the Actuator sensor to
present on them but that doesn’t mean you can’t have non flexoffer compliant appliances
(Lamps and TV for example) with those plugs. The user is able to control their power flow:
he can turn them on and off remotely The execution flow of this use case is presented in
Table 9, and its message flow chart is represented in Figure 10.

- Verify if Flexoffer was respected: After a schedule of a flexoffer was executed, the user can
check if the energy values of the flexoffer were respected. That is, if the measurements in
power of a device for a specific period of time corresponds to the power level established.
The execution flow of this use case is presented in Table 10, and its message flow chart is
represented in Figure 11.

The previous list of features can be found depicted in the Use Case diagram in figure 3.

30

PESTI Report- Flexoffer Pilot

uc4
UC5: Manage Devices
UC6:Check Measurements

UC1: Send Flexoffer

UC2: Receive Schedule

User System

Figure 10- Use Case diagram for FlexHousing

2.2 NON-FUNCTIONAL REQUIREMENTS

Regarding the non-functional requirements, there are five that must be respected:

Availability: The system must be online and accessible as long as possible, 24 hours per day
and 365 days per year.

Integrity: Dealing with sensible industrial requests the system must always report any
execution error. Some errors may have deep impact if a flexoffer malfunctioned when it
was attached to an important machine.

Interoperability: The systems must be able to communicate independently of their
implementation: they just need to use the technologies used by their corresponding
services.

Performance: The system and its requests must have the shortest execution time therefore
an advanced hardware, fast internet, and good programming code should be adopted.

Scalability: The System must support new features. Those features must be added

seamlessly and must not hinder the previous ones. For a bigger management of energy, the
system must be able to scale in hardware and, in repercussion, scale in performance.

31

PESTI Report- Flexoffer Pilot

2.3 USE-CASES EXECUTION FLOW

This section will approach each Use-case describing them in their execution workflow. The following section

will contain sequence diagrams for each of the UC described.

Table 7 - Use Case 1 execution flow.

UC 1 - Send Flexoffer

ID: 1

Brief description:

The user selects a device in order to apply a flexoffer on.

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:

-User

Preconditions:

- None

Main flow:

1- The user selects the option

2- FlexHousing Middleware returns the list with the devices that are actuatable.

3- The user selects the device and inputs the information about the flexoffers

4- FlexHousing Middleware receives the information, stores it in the database and
attaches the flexoffer to the device.

Post conditions:

- The flexoffer was stored in the database and is now eligible to be converted to a
schedule.

Alternative flows:

2*- The system may not have actuatable devices registered, returning an error stating so.

32

PESTI Report- Flexoffer Pilot

Table 8 - Use Case 2 execution flow.

UC 2 - Receive Schedule

ID: 2

Brief description:

The system will execute the Flexoffer emissions towards the Aggregator. FlexHousing will then
convert that Flexoffer schedule into a time triggered Actuation schedule

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:
-User

-FlexofferAgent

Preconditions:

- The database has flexoffers that will be applied the next day

Main flow:

1- FlexHousing Middleware starts the Flexoffer Emission process.

2- FlexHousing Middleware gathers all the Flexoffer and contacts the FlexofferAgent
3- The FlexofferAgent sends each Flexoffer to the FOServices.

4- The FOServices will attach a Flexoffer schedule to the Flexoffer.

5- The Schedule is inserted in the database.

6- An Actuation Thread is created using the information for the Schedule.

7- The User can check the Schedule attached to a certain Flexoffer

Post conditions:

- The schedules are stored in the database
- Actuation thread are created to control the device, based on the Flexoffer

Alternative flows:

4*- Flexoffers aren’t valid. The FOServices sends back an error

33

PESTI Report- Flexoffer Pilot

Table 9 - Use Case 3 execution flow.

UC 3 - Login

ID: 3

Brief description:

The user logins into FlexHousing which consequently logins in the VPS services

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:
-User

-VPS Services

Preconditions:

- The user must have an account registered at the VPS Services with the same credentials

Main flow:

1- User inputs the credentials

2- FlexHousing Middleware receives them and sends them to the VPS Services
3- The VPS Services send back the authorization.

4- FlexHousing Middleware stores the authorization

5- FlexHousing Front End confirms the login to the user

Post conditions:
-The authorization is now stored in the system.

-Any operation that involves the VPS Services will have the authorization attached to them.

Alternative flows:

3*- If the credentials aren’t correct for the VPS Services, an error will be sent back instead of
the authorization.

34

PESTI Report- Flexoffer Pilot

Table 10 - Use Case 4 execution flow.

UC 4 - Manage House

ID: 4

Brief description:

Allows the user to do CRUD operations on the House, more specifically on the rooms.

Primary actors:

FlexHousing Middleware, FlexHousing Front End

Secondary actors:

User

Preconditions:

- None

Main flow:

1- The user inputs the name for a new Room

2- FlexHousing Middleware receives the name, creates a new Room and stores it in the
database

3- The User selects a Room

4- FlexHousing Front End shows the details of the Room, including name, House and the
Devices attached to that Room

5- The User selects another Room and inputs the new information to change.

6- FlexHousing Middleware receives the information, retrieves the Room from the
database, changes the details and stores it back.

7- The User selects a Room to be deleted

8- FlexHousing Middleware deletes that Room from the database.

Post conditions:

From this Use Case a room can be created, deleted, updated and read.

Alternative flows:

-None

35

PESTI Report- Flexoffer Pilot

Table 11 - Use Case 5 execution flow.

UC5 - Manage Devices

ID: 5

Brief description:

This allows the user to do CRUD operations on the Devices.

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:

- User

-VPS Services

Preconditions:

- User is logged in at VPS

Main flow:

1- The user inputs the details for a new Device

2- FlexHousing Middleware receives the date, creates a new Device, stores it in the
database and relays the information to the VPS Services

3- The User selects a Device

4- FlexHousing Front End shows the details of the Device, including name and the
Flexoffers and Schedules attached to that Device

5- The User selects another Device and inputs the new information to change.

6- FlexHousing receives the information, retrieves the Devices from the database,
changes the details and stores it back.

7- The User selects a device to be deleted

8- FlexHousing deletes that device from the database.

Post conditions:

-The Device can be created, registered, updated, read and deleted

Alternative flows:

2*- If the device is already registered at VPS Services then the User only needs to input the
physical ID of the Device.

36

PESTI Report- Flexoffer Pilot

Table 12 - Use Case 6 execution flow.

UC 6 - Check Measurements

ID: 6

Brief description:

The user obtains the data collected by the Sensors attached to a Device.

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:
-User

-VPS Services

Preconditions:
- Login done at VPS Services

- Device registered in both systems

Main flow:

1- User selects a Device

2- User selects the Sensor to collect data from, as well as the period of time of the
collection

3- FlexHousing Middleware sends a request to the VPS Services

4- VPS Services sends back the data

5- FlexHousing Middleware stores the data

6- FlexHousing Front End presents the data to the User

Post conditions:

-The measurements are stored in the local database.

Alternative flows:

37

PESTI Report- Flexoffer Pilot

Table 13 - Use Case 7 execution flow.

UC 7 - Actuate on Device

ID: 7

Brief description:

The user can turn on and off a specific device remotely.

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:
-User

-VPS Services

Preconditions:
- The device has to be registered.
- The device has to have an Actuator sensor

- The Login at the VPS has to be valid

Main flow:

1- The User selects the Device.
2- The User selects the Actuation option.

3- FlexHousing Middleware receives the request and send the request to the VPS Services.
4- VPS Services receive the request and act accordingly to the command issued.

Post conditions:

- The state of the Device was changed.

Alternative flows:

already at.

4*- The command issued may not change the state of the device if it is changed to state it was

38

PESTI Report- Flexoffer Pilot

Table 14 - Use Case 8 execution flow.

UC 8 - Verify if Flexoffer was respected

ID: 8

Brief description:

This allows to check if the flexoffer was respected: see if the consumption of the device
corresponds to energy allocated by the Flexoffer

Primary actors:

-FlexHousing Middleware, FlexHousing Front End

Secondary actors:
-User
-Flexoffer Services

-VPS Services

Preconditions:

- The Schedule that is being verified needs to have been executed.

Main flow:

1- The User selects the Device

2- The User selects the Flexoffer

3- The information is sent by FlexHousing Front End to FlexHousing Middleware

4- FlexHousing Middleware selects the corresponding schedule

5- FlexHousing Middleware request the measurements for the device for the same period
of time as the schedule

6- FlexHousing Front End presents the data from both origins to the user, flagging any
records that violated the flexoffer.

Post conditions:

Alternative flows:

39

PESTI Report- Flexoffer Pilot

3. DIAGRAMS

This sections contains the diagrams sequence for the Use Case presented in section 2.

3.1 SEND FLEXOFFER

\ :-mu%ﬁw Standard Edition(Instituto Superior de Engenharia do[Fef@rant End

1: Selects create flexoffer

Middleware

1.3: Shows List

2: Selects Device

< ______________________

1.1: getDevices()

1.2: returns List

3: inputs information about flexoffer

3.5: confirms the creation of the flexoffer

3.1: createFlexoffer(start,end,Slices)

DataBase

1.1.1: getDevices()

1.1.2: returnsList

3.2: returns Flexoffer

3.3: addFOToDevice(fo)

3.4: confirms

Figure 11 - Sequence Diagram of UC1.

3.3.1: addFo(fo,device)

3.3.2: confirms

The diagram in Figure 11, represents the workflow execution for UC 1 in which the user wants to
apply a flexoffer to a specific device. The user initiates the process and the FrontEnd retrieves the
device list from the Middleware. The user then picks the device he wants to apply the flexoffer on.
From there, the information of the flexoffer is introduced and is sent back to the middleware.

There, it is stored in the database.

40

PESTI Report- Flexoffer Pilot

3.2 RECEIVE SCHEDULE

\ .u%g 1 Standard Edition(Instituto SurfOiEpERREREa0Y ~ortc Middleware

DataBase

Flexoffer
Services

User

T
|
j 4 1: StartFOEmissio

2: getFlexoffers()

n()

2.1: returns List

< ,,,,,,,,,,,,

1

Loop For each Flexoffer)

3: generateFlexoffer(FlexOffer)

3.1: confirms
| S

6: new actuationSch

€ Lo e e o
|
|
|
| T
| |
4: getFlexofferSchedule() I
} ’j_
1
4.1: send schedule
e e == ——————
5. insertSchedule :
5.1: confirms
e ——_——
edule()

3.2: creates schedule

7: selects to view Schedules

> 7.1: getSchedules()

7.1.1: getSchedules()

7.3: shows Schedules

7.1.2: Returns schedule list

Figure 12- Sequence Diagram of UC2.

——————— e e

Figure 12 depicts the workflow for UC2. The diagram also depicts the execution of the pre
conditions, which is the emission of the flexoffer and retrieval of its schedule. In order to retrieve
the schedule, the flexoffer has to be sent. That is accomplished by contacting the flexoffer agent
with the information about the flexoffer. The agent will communicate with the Flexoffers Services
and proceed to the emission. The schedule is then sent back by the services and stored in the
database. An actuation schedule is also created in order to automate the energy usage of the

device.

41

PESTI Report- Flexoffer Pilot

3.3 LOGIN

Visual %(;_w Standard Edition(Instituto Superior {ié EWH{EHI&POH) Middleware VPS Controller

[[[

Heor | | |

| | |

1: sendsLogin Information | | |

N | |

1.1: login(email,pass) JI_ :

1.1.1: login{(email pass
gin(pass) ’l
1.1.2: returns authentication
i 1.1.3: isLogged()

1.1.4: returns ok .

_______________ I |

1.1.5: shows user he is logged in : :

e L] I I

Figure 13 - Sequence Diagram of UC3.

Figure 13 evidences the steps required for the user to login into the system. The login is handled by
the middleware and then is sent to the VPS services. When the response is retrieved, the user is
officially logged in.

42

PESTI Report- Flexoffer Pilot

3.4 MANAGE HOUSE

Middleware

Database

1.1: addRoom(Name)

1.2: returns ok

2.1: getAllRooms()

1.

1.1: addRoom(Name)

2.2: returns room list

3.1: getRoom(Name)

1.1.2: returns ok

2.1.1: getAllRooms()

2.1.2: returns room list

3.2: returns room

4.1: updateRoom(info)

|
3.1.1: getRoom(Name)
< ____________

P 5.1: deleteRoom(Name)

4.

3.1.2: returns room

1.1: updateRoom(info)

[
4.1

4.2: returns update room

E}.\llil aradigm Stz Edition(Instituto Superior de Enger a do Porto)
% FlexHousing
User !

i I
1: register room |
’J_
1.3: shows user the room was added
2: see room list b
2.3: shows room list
3: selects room to edit >
< 3.3: shows room detail
4: inputs information change >
4.3: shows updated room
5: selects room to be deleted
< 5.3: confirms room deletion

5.2: returns ok

< ____________

5.1.1: deleteRoom(Name)

.2: returns updated room

Figure 14 - Sequence Diagram of UC4.

5.1.2: returns ok

Figure 14 describes all the possible operations the user is able to do related to his house/building.

Each operation is handled by the middleware has repercussions on the database.

43

PESTI Report- Flexoffer Pilot

3.5 MANAGE DEVICES

Database

VPS Services

Vist .H%ﬂ.-im'l::wuul dtion(institato Superior e En PSR IOUSTG Middleware
| |
| |
1: register device | |
") :
1.1: getAllRooms
s 0 > 1.1.1: getAllRooms()
1.1.2: returns room list
1.2: room list
1.3: shows user the room list I L
__________________ |
2: inputs device information :
b 2.1: addDevice(information) Jl_
2.1.1: registerAtVPS()
1
2.1.2: addDevice(info)
2.1.3: returns responseMessage
2.2: returns ok
e
2.3: confirms device registration T
,,,,,,,,,,,,,,,,,, i
|
I
3: get device List :
> i
3.1: getAllDevices
g Yicast) | 3.1.1: getAlDevices()
3.1.2: returns device list
3.2: device list
3.3: shows user the device list I 1
__________________ I
|
4: selects device to edit |
> 4.1: getDevice(Name) :
4.1.1: getDevice(Name)
4.1.2: returns device
4.2: returns device
& ———
4.3: shows device details |
Satpetet o e e |
5: inputs information change > :
5.1: updateDevice(info) |
5.1.1: updateDevice(info)
5.1.2: returns updated device
5.2: returns updated device
S
5.3: shows updated device |
mmmmmmmmmmmmmmmmmm !
|
6: selects device to be deleted |
| g 6.1: deleteDevice(Name) :
6.1.1: deleteDevice(Name)
6.1.2: returns ok
6.2: returns ok
6.3: confirms room deletion & s smEEm ST
oo |
T I
I

Figure 15 - Sequence Diagram of UC5

"

Similar to Figure 15, the diagram in Figure 8 describes the possible operations but in this case

towards the devices. Again, the requests are handled by the middleware and the operation are

persisted in the database

44

PESTI Report- Flexoffer Pilot

3.6 CHECK MEASUREMENTS
% FlexHousing Database | | VPS |
T T
o | I I |
| : | |
|
1: starts measurement verification M | | |
1.1: getAliDevices() ! ! !
1.1.1: getAllDevices() | :
|
1.1.2: returns device list |
________________ 1
1.2: returns device list | :
S e e T | |
1.3: shows device list ! !
o i | | |
| | I
| | |
| | |
2: selects device | | |
| | |
2.1: getSensors|

] 0 ! : :
2.1.1: getSensors(dev) | |
I
2.1.2: returns sensors J :
_________________ !
2.2: returns sensors | |
e | |
| |
2.3: shows sensors | | |
S I I I
3: selects sensor and inputs period of measure : : :
31 Sensor,from,to) | . 1
4: getMeasurements(Sensor,from,to) |
£ [

T

4.1: returns measurements
i
€ - e

|
5: add Measurements() | |
- |
|
3.2: returns measurements | |
777777777777777777777 | |
3.3: shows measurments for that period for that senssor L] | 1
———————————————————————————— | | |
- | | 1
I | | I
L 1 | | [

Figure 16 - Sequence Diagram of UC6.

Figure 16 depicts the steps the system goes through for the retrieval of measurements. Again the

systems retrieves the device list to allow the user to choose the device to query. The User inputs

the parameters for the search. The request is received by the middleware which proceeds to

query the VPS services for the info the user wants to obtain. When the response is received, the

measurements are presented to the user.

3.7 ACTUATE ON DEVICES

"',ml%\:u;m::‘.cnnl'c:': dition(Instituto Superior de Enger{iNRERESIREES
User :
|
|
1: selects "Actuation” for a Device :
< 1.3: shows response

Middleware

1.1: getDevice()

VPS Services

1.2: returns response

1.1.1: actuate(command)

1.1.2: returns response

Figure 17 - Sequence Diagram of UC7.

45

PESTI Report- Flexoffer Pilot

In Figure 17 is depicted the sequence diagram for the actuation on a device. The middleware,
once again, handles the request. The middleware will then execute a request to actuate on the
device the user selected towards the VPS services. When the request is processed by them, the
actuation will occur.

3.8 VERIFY IF FLEXOFFER WAS RESPECTED

% Standard Edton(nstivto Sueror FigXHOUSING Middleware DataBase VPS Controller

User

I
|
|
1: Selects to verify FO |
oby

1.1: getFlexoffer()

1.1.1: getSchedules()

1.2: returns Schedules

< _________________

1.3: Shows Schedules

2: Selects schedule

A 4
-

I
|
|
|
|
|
|
|
|
|
1.1.2: returns Schedules |
|
|
|
|
|
|
|
|
|
|

N

.1: getMeasurements(from,to) |

>

2.2: compareScheduleToMeasures()
|

|

2.3: Shows result |
———————————————— L |
|

I

Figure 18 - Sequence Diagram of UC8.

Figure 18 shows the steps for the verification to whether a flexoffer was respected. The schedule is
cross checked with the measurements that were gathered in that same period. With that
information, this system is able to detect any violation of the pattern the flexoffer had.

4. SECURITY

This section defines high-level security principles the system needs to follow on a non-technical,
generic level.

4.1 SECURITY OBJECTIVES

FlexHousing will have two states on both its systems: logged and non-logged. The transition is done
when the login is done at the VPS Services.

For the communication between FlexHousing Middleware and the Flexoffer services, the
Middleware has the credentials in order to create a session for the exchanges of messages. When
the link is established, every request is exchange in that session.

Any operation or exchange with the VPS services will fail if they aren’t accompanied with a valid
token, the same for the authentication between the Middleware and FrontEnd.

46

PESTI Report- Flexoffer Pilot

4.2.2 SYSTEM-OF-SYSTEMS DESIGN DESCRIPTION

This document defines the System-of-Systems Design Description of the FlexHousing Pilot. It
essentially complements the System-of-Systems Description with implementation details

1. OVERVIEW

The implementation of the FlexHousing pilot is built around 3 main components, as shown in
Figure 1:

e A local environment with both FlexHousing systems (FlexHousing Front end FHFE and
FlexHousing Middleware FHMW), the gateway(“Cloogy”) and a smart plug

e The Flexoffer services running on a server in Denmark

e The VPS services

FH FrontEnd

Flexoffer
Services

Services

Figure 19 - FlexHousing System overview

The Middleware FHME is being executed on a Windows environment as well as the front end
FHFE. In the same local installation, there is the Cloogy (the gateway from VPS) and a VPS smart
plug. The FHFE receives the inputs from the user, which translate in to the emission of request
towards the FHMW. From there on, it can lead to 3 execution paths:

- The FHMW communicates with VPS services in order to interact with devices
- The FHMW connects with Flexoffer Services for operations related with flexoffers

- The FHMW receives a request that is related to the data structures local to the FHMW, such
as the rooms

47

PESTI Report- Flexoffer Pilot

2. SYSTEMS
Table 15 - Pointers for the systems in play

System name Path

Middleware SysDD FlexHousing-Middleware

FrontEnd SysDD FlexHousing-FrontEnd

Flexoffer Services Arrowhead\Meetings\Multi WP Workshops \2013-11-
05\ Porto\Documenting\Examples \SysDD\Arrowhead
SysDD Aggregator v0.l.docx

VPS Services [Legacy System]

2.1 MIDDLEWARE

The FlexHousing Middleware (FHMW) is responsible for the major connectivity of the pilot: it sends
the flexoffers to the Flexoffer services, sends the requests for the operations on the VPS devices,
exposes its services for the FlexHousing FrontEnd (FHFE) and manages the Database. The FHMW
also does its own implementation of a DER object (see [1]) for the emission of flexoffer and
reception of schedules.

2.2 FRONTEND

It acts as a layer between the user and the middleware FHMW. It allows for all the operations the
middleware is capable of. It also provides user friendly graphs for the representation of more
complex or abstract objects such as the flexoffers, schedules or collections of measurements.

2.3 FLEXOFFER SERVICES

The FHMW interacts with an instance of the Flexoffer system, through the Flexoffer services it
exposes. The instance of this Arrowhead system is currently the one deployed in Alborg, Denmark.
The system was developed by other partners of the Arrowhead project. It is responsible for the
reception of flexoffers, compilation of schedules and their respective delivery to the Flexoffer
Agents. The communication with the Flexoffer system is done over a XMPP server hosted by the
system.

2.4 VPS SERVICES

The details of these services are protected by a Non-Disclosure Agreement. These services bridge
the FHMW and the devices. The FHMW sends requests to the VPS Services, which exposes an API.
From there on, the server hosting the VPS services communicates with the Cloogy gateway through
the internet. The Cloogy gateway is located in the house/building of the user, and it sends requests
to the devices to drive their operations.

48

PESTI Report- Flexoffer Pilot

stitfa Sgperior de Enante
<<compon

Flexoffer Services <<component>> {l
FlexHousing_WebServer

\fé) <<component>> @ <<component>> g
XMPP Controllers ViewModels
1 (L
Ly

o pone 8]
Q@ —©

FlexHousing_MiddleWare
<<component>> Ej

<<component>> E <<component>> E <<component>> El 4 <<component>> E:l !
org.arrowhead.WP5 Models FH_API L ()7)[]— Handlers A

L; @ ; FH API

<<component>> E <<component>> E CO_ <<component>> El

Execution Controllers DTO

Q -0

<<component>> g <<component>> El <<component>> E
DAO VPS_Serviet %f O_ VPS Services

VPS APIREST

Figure 20- Components Diagram for the FlexHousing Pilot

In Figure 20 is depicted the components diagram for FlexHousing. The Middleware will be hosting
most of the services and logic of the system. It will be connected to the VPS and Flexoffer services.
Finally, the FrontEnd system will consume the services provided by the FH_API interface provided
by the Middleware

3. NON-FUNCTIONAL REQUIREMENTS REALIZATION
-Availability: The system is available 24/7. The FHMW feeds the flexoffers for the following day at
23h00 each day, to receive the corresponding schedules. Thus, flexoffers received between 23h00
and 24h00 of each day cannot be applied for the energy schedule of the following day.
-Integrity: The system handles all information the same way; Any action or change on any object or
instance is automatically persisted in the database owned by the FHMW.
-Interoperability: All systems communicate using protocols that are implementable on virtually any
platform or coding language. Any FlexHousing system can be replaced with a different
implementation and still be able to communicate with the other system as long as it respects the
protocols in use.
-The Flexoffer services can handle over 100 000 flexoffers per day. It was not possible to perform
any other stress test, since the available hardware was limited to just one Cloogy gateway and one
VPS smart plug.

4. SECURITY OBJECTIVES
FlexHousing has two states on both its systems: logged and non-logged. The transition is done when
the login is done at the VPS Services. Most operations for the FHMW aren’t feasible if the login isn’t
done previously. Through that operation, an authorization token is generated. The FHMW holds on
to the token and attaches it to any operations involving the VPS services, to authorize them.

49

PESTI Report- Flexoffer Pilot

Regarding the communication between FlexHousing and the Flexoffer services, the FHMW is
configured with Arrowhead credentials in order to create a session using XMPP. In the XMPP
terminology, the FHMW enters a room that is created by the Flexoffer services, and every exchange
is done inside the room, creating a secure environment.

5. WORKFLOW OF USAGE
The user logs in, using the credentials related to the VPS services, to connect to the devices, located
in the user house/building and already registered in the VPS services. Then the user is presented
with the list of devices he can use. From there on, he can collect the measurements from the “Active
Power” sensor that all devices have, which will be referred later as “the energetic profile of the
devices”. With that information, the user can have an idea of what the regular consumption of each
devices is. Then the user can apply a flexoffer to that specific device in two ways:

e The measurements taken earlier can be employed in order to create a flexoffer whose

pattern of energy usage corresponds to the energetic profile of that device.

e the user can create the flexoffer from scratch:
Then the user inputs remaining information for the setup of the flexoffer (name, start time, end
time). From there on, the FHMW will receive and store the information of the flexoffer. At a specific
time (Currently, at 11pm), the middleware initiates the flexoffer emission process: it gathers all the
flexoffers that are active for all the devices, starts a XMPP connection with the Flexoffer Services
and sends them. Each time a schedule is received, it is put in the database. Before midnight, the
FHMW retrieves all the schedules for each device and executes a threadpool of actuation schedules,
which will drive the execution of the energy schedules. Every 15m, the actuation schedule verifies
if an appliance should consume energy, and it will switch it on/off accordingly. Such is accomplished
by executing a request at the VPS services. Figure 21 depicts the steps described previously.

50

PESTI Report- Flexoffer Pilot

ndard Edition(Instituto Superior de Engenharia do

1: User Logs In

| 1.1: Logs inllhe API

2: Verifies his devices at a certain location

1.2: Returns session token
______________________ e

1.3 GetAII?evices

1.4.1: Shows the devices retrieved

3: Asks for Energetic Profile

1.4: Retums all the devices that belong to that user

3.1: Retrieve consumption

3.3: Shows Energetic Profile

4 Inputs Information for Flex-Offer
4.1. Sends Flex Offer based on input

4.1.2: Returns confirmation of Aggregation

4.1.3: Shows confirmation

3.2 Returés Chart

4.1.1: Aggregation of Flex-Offer

loop

Periodic Loop]

6: Returns schedule

6.1: Shows schedule for the Flex-Offer

5: Computation of all schedules

6.2: Actuate Upon a specific device

6.3: Logs the actuation

Figure 21- Sequence diagram for the typical usage of the system

51

PESTI Report- Flexoffer Pilot

6. USE CASE IMPLEMENTATION
The following figures depicts the implementation of some of the UC described in the SoSD.
This particular page (Figure 22) allows for the creation of the flexoffer. The user inputs the name,
start and end time, and the pattern of the consumption. The user also as the possibility of exporting
a pattern from the measurements of energy.

FlexHousing Rooms Devices About Contact

Flexoffer

Device

Name test

FlexOffer Name:

Select the earliest hour
the pattern can begin.

dd/mm/aaaa --I--

Select the latest time
the pattern can begin

dd/mm/aaaa - -
Remeber that the pattern can BEGIN at the lastest time. You may have a schedule outside of the period you selected above
Add Pattern
Remove Pattern
You can also pick the floxoffer pattern from the measurements of the device

From : y
dd/mm/aaaa --:-

I dd/mm/aaaa -

Get measurements

Export pattern to flexoffer

Send Flexoffer || Back to List

© 2016 - FlexHousing

Figure 22- Creation of flexoffer screenshot

52

PESTI Report- Flexoffer Pilot

The following figure (figure23) regards the index view for the Room. It allows for the creation of
new rooms and the inspection of the details.

FlexHousing Rooms Devices About Contact

Create New
Room Name
Sala Details
Quarto Principal Details
Garagem Details
Cozinha Details

Sala de Estar

m
w
@

Teste Details

© 2016 - FlexHousing

Figure 23- Managing the rooms screenshot

The following screen shot (Figure24) depicts the list of devices with the various options for each.

FlexHousing Rooms Devices About Contact

Index
Device ID Name Room Name
3ZU-VGC-N3J-NWK-9P test Details uate | Measurements

© 2016 - FlexHousing

Figure 24- Device list screenshot

53

PESTI Report- Flexoffer Pilot

This figure shows the options of receiving measurements for a certain device

Pick the time and date from when you want to search

krom dd/mm/aaaa ——

To dd/mm/aaaa --:--

Figure 25- Screenshot of the 1 step to retrieve measurements

54

PESTI Report- Flexoffer Pilot

4.2.3 SYSTEM DESIGN — MIDDLEWARE

This document provides the System Description for the for the FlexHousing Middleware (FHMW)
system. It provides a high level overview of the FHMW module

1. SYSTEM OVERVIEW

is created from

VPS Services
| _Aggregator | 1 - sendsback Meas urements S
N T
N
| Login
) 1 grants
communicates !
collects N <<deriva>>
1 1 1.2 is an operation
FlexofferAgent | 1 - Schedule Sensor Operation has 4 Authorization

1 T
uses [
|
|

isa sends has has | <<derive>>

0. : is an operation
0. :
FlexHous Flexoffer 0.° Device 0.1 : Actuator

is applied to has :

1.* : ”
4. executes \
N 1

manages has receives
|
0.* AV 1
House/Building Actuation T Actuation Schedule
0:? contains Rooms %
sends

Figure 26 - Domain Model of the FlexHousing system.

In figure 26 is the domain model for FlexHousing system. The core of the system revolves
around the Device, which is an abstraction for the smart plugs that can be deployed in a house
to control and measure the energy consumption of appliances. In order to allow for sorting and
traceability, the devices are encapsulated in Rooms. FlexHousing middleware is responsible to
bridge the house, rooms and devices, with the FlexofferAgent, who is responsible to
generate and send the Flexoffers to the Aggregator. In response, the Aggregator will
send back Schedules. Each device has Sensors to collect Measurements, which get
stored in the VPS Services, and Actuators, which can switch on/off the appliances
connected to the Device and are controlled through the VPS Services. FlexHousing
middleware executes Operations to either gather the Measurements or to feed
Actuations tothe VPS Services.Actuations will triggerthe Actuator ofthe Device
into turning off and on the appliance connected to the Device. But to do the said Operations,
a Login is required at the VPS Services which will grants an Authorization that is
attached to the Operations in order for them to be executed. All of this allows for the creation
of Actuation Schedules from the flexoffer Schedules. From there on, the system will
execute Actuations for the respect of the times and energy values. In order to make the

55

PESTI Report- Flexoffer Pilot

Flexoffer close to reality as possible, the Flexoffer may use Measurements to correctly
establish its energy values for each period of time.

2.USE CASES
The FHMW system is part of the FHSoS (see SoSD document) and it aims to satisfy the requests it
receives from the FHFE. As such, the Use cases of the FHMW correspond to the ones described
regarding the System of Systems.

2.1 FUNCTIONAL REQUIREMENTS

This system provides 4 interfaces: each manages or deals with a major type of objects or instances:
Flexoffer, Device, House and Measurements. Every service offered by FHMW is Arrowhead
compliant.

2.2 NON-FUNCTIONAL REQUIREMENTS

Regarding the non-functional requirements, the following are needed:
- Availability: The system must be online and accessible as long as possible, 24 hours per day
and 365 days per year.

- Integrity: This system is dealing with sensitive information that may in jeopardize the user’s
home/building

- Interoperability: New systems have to be able to communicate with the middleware. This
means the technology it uses has to be widespread and adaptable.

- Performance: The system and its requests must have the shortest execution time therefore
an advanced hardware, fast internet, and good programming code should be adopted.

- Scalability: The System must support new features. Those features must be added

seamlessly and must not hinder the previous ones. For a bigger management of energy, the
system must be able to scale in hardware and, in repercussion, scale in performance.

2.3 USE-CASE EXECUTION FLOW

The middleware is driven by means of requests. Each request leads to a response. If the request
aims to retrieve data, then it will be met with the communication of the data requested. On the
other hand, if the request is to register or to alter an item, if no exception was raised, the request
will be met with a code 200 response. Most operations will require that the user is logged onto the
system. Every change of state, object or stored data is automatically persisted in the database.
Figure 27 depicts the workflow described.

56

PESTI Report- Flexoffer Pilot

Table 16 - Workflow execution for the handling of requests

UC 1 - Respond to request

ID: 1

Brief description:

The system will respond accordingly to the request received

Primary actors:

-FlexHousing Middleware

Secondary actors:

-Requesting system

Preconditions:

- It most case, requires the system to be in a logged state.

Main flow:

5- The Middleware receives a request

6- The request is handle by the appropriate controller
7- The controller executes the logic for the operation

8- The controller retrieves the data from database

9- ADTO is built to send back the information

10- The service replies with the requested information

Post conditions:

Alternative flows:

4*- The system inserts the sent data into database.

5*- A response with a code is built and sent, accordingly to the result of the operation

1.1.1: persistOperation()

DataBase

3l @Pdigm Standard Edition{Instituto Superior de E ““-‘“"Fléi‘(‘l‘-{jd’ﬁﬁlng Controller
Middleware
System : :
| |
1: sends request | |
P !
1.1: controllerMethod() |
1.1.4: returns DTO
€
1.1.5: sends back the data
< ___________________ T
L L) I

Figure 27- Normal execution of a request response

1.1.2: returns response

i 1.1.3: buildDTO()

i

57

PESTI Report- Flexoffer Pilot

3. APLICATION SE

RVICES

Being a distributed system and also being a middleware, FHMW exists between other systems: it
consumes services offered by other system and offers services of its own. In this case, as Figure 28
depicts, FHMW offers 4 interfaces while consuming from 2.

Yisual Param&g Standard Etdllmntlnstrturo ior de Engenharia do Porto
<<component>>

FlexHousing_MiddleWare

Device

House

Flexoffer

—0
—0
—0O
—C
—C

Flexoffer Services

VPS Services

Figu

2.1 PRODUCED SERVICES

re 28 — Component diagram for the FHMW interfaces

The middleware provides 4 interfaces, each with its own functions. The Semantic profile and
Interface Design Description are both included in the IDD for the middleware. These interfaces are
used when an external entity needs to interact with FHMW. More details are provided in section

4.2.3.

FlexHousing Interface

SP-IDD FlexHousing Middleware

2.2 CONSUMED SERVICES

As the name suggests, the FlexHousing middleware bridges 2 major systems: Flexoffer services and

VPS services.

Flexoffer Services

.\Arrowhead\Meetings\Multi WP Workshops \2013-11-05\
Porto\Documenting\Examples \SysDD\Arrowhead SysDD
Aggregator v0.1l.docx

VPS Services

[Legacy System]

58

PESTI Report- Flexoffer Pilot

4.2.4 SYSTEM DESIGN — FRONTEND

This document provides a high level overview of the FlexHousing FrontEnd system. It will approach
the domain model for the FHFE as well as the usage of services by it employed.

1. SYSTEM OVERVIEW
The FlexHousing FrontEnd (FHFE) system allows the user to configure the settings and manage his
house using services hosted on the middleware FHMW. FHFE offers the option of organizing his
appliances and devices into buildings/houses and rooms. Using the FrontEnd, the user can manage
his house, checks on the various flexoffers and corresponding schedules he has on his devices, and
analyze the data collected from the sensors located on his devices.

The goal of this system is to offer a user friendly graphical interface that connects the user to its
devices and offers a simple way to exploit the flexoffer capabilities. Through the usage of charts,
the flexoffer are depicted and information is conveyed to the user.

On the first approach, the user might get overwhelmed by the customization options, but after a
short learning curve, the system will feel rather easy and intuitive.

1.1 DOMAIN MODEL

b \suﬁmlé‘tand ard Edition(Instituto Superior de Engenharia do Porto)

1
0.:*
Flexoffer 1 Device 0.* Room Login

0.* 8 1
1.7 1 0.1
1 1
Actuation <<is>> Sensor House
““““ T

1 0.*
0.* L
AT Measurements

1

Figure 29 - Domain Model of FlexHousing FrontEnd system.

The main building block of the system is the Device. The device is connected to an energy-
consuming appliance, and the device belongs in a Room and that room to a House. Each device
has Sensors, which are the generic sensor/actuator elements. In the model, the Sensor is
further refined (sub classed) into an Actuator when it has the capability to actuate. Each sensor
is able to collect Measurements. The actuator sensor will produce Actuations who are

59

PESTI Report- Flexoffer Pilot

responsible for toggling the energy state of the device. A Flexoffer is applied to a device. Many
flexoffers can be applied to a device and every single flexoffer will lead to the creation of a
Schedule. Figure 29 depicts the domain model for the FHFE.

2. USE-CASES
This FHFE Systems shares the same UC as the System of System it is inserted into. For further
description, please refer to the SoS Description and SoS Design Description documents.
Similar to the FHMW, the FHFE has 2 states: Logged and Non-Logged.
The FHFE starts as Non-Logged, and it has very limited available features. All the FHFE features can
be used when the system is in the Logged state. The transition between states occurs when the
user logs in within the FHFE.

3. APPLICATION SERVICES

FHFE doesn’t provide any services but, in order to interact with the FlexHousing Middleware,
consumes the services it provides. Figure 30 the previous description.

Yisual Paradigm Standard Etcy\on{\nsl\lu!o ior de Engenharia do Porto)
<<component>> <<component>>
FlexHousing_MiddleWare FlexHousing_FrontEnd
FlexHousing O_/ HTTP Server

Figure 30 - Component diagram for the FHFE interface

3.1. PRODUCED SERVICES

FHFE doesn’t provide any services in the Arrowhead sense, due to the fact that it is a front end used
only in conjunction with an instance of the FHMW.

3.2. CONSUMED SERVICES

The FHFE only consumes services provided by the FHMW.
System name Path
Middleware SysDD FlexHousing-Middleware

4. SECURITY OBJECTIVES

The communication between FHFE and FHMW is not encrypted, but most operations will fail if the
FHFE doesn’t provide valid login information.

60

PESTI Report- Flexoffer Pilot

4.2.5 SYSTEM DESIGN DESCRIPTION — MIDDLEWARE

This document defines the System Design Description of the FlexHousing System. FlexHousing
Middleware, as the name describes, is a middleware connecting the Flexoffers Services and the VPS
Services while still providing an interface for user interaction. The focus of this document is to
describe the implementation of the system architecture, the used components, and the use-cases
supported by UML diagram.

1. SYSTEM DESIGN DESCRIPTION OVERVIEW

Name FlexHousing Middleware

Owner ISEP

The FlexHousing Middleware system has been developed by CISTER/ISEP. The system is part of the
Flexoffer Pilot implement as part of the Work Package 5 of the Arrowhead Project. The middleware
is the central part of pilot, bridging the Flexoffer Services and the Virtual Power Solutions Services.
Virtual Power Solutions, or VPS, provide devices smart plugs and smart meters, allowing for remote
access through the emission of request at their external server.

The middleware consumes services provides by the VPS Services and communicates with the
Flexoffer Services using dedicated XMPP rooms. This system also provides an APl for the
configuration and usage of the services hosted.

System name Path
FlexHousing Middleware Arrowhead/SysD FlexHousing Middleware

This system is implemented using Java, in order to stay similar to the implementation of the
Flexoffer Services and to minimize communication conflicts.

This documents lacks the Use Case section due to the fact that most of the services this system
provides aren’t Use Cases themselves, but are actually an essential part of the Use Case of the SoS
(System of Systems) Pilot. The description of each services can found in the SD/IDD document
System name Path
FlexHousing Middleware | Arrowhead/SD-IDD FlexHousing Middleware
SD-IDD

This document (found later in this chapter) provides the sequence diagram and description of each
service as well as an example for each request.

61

PESTI Report- Flexoffer Pilot

2. DECOMPOSITION OF THE SYSTEM
The system is comprised of 3 communication modules:
- The VPS Services: Request sent towards the VPS Servers need to be authenticated by using
a header containing a token, obtained by login in with valid credentials. Table 17 depicts an
example of response to a successful login

Table 17 - Example for a valid request for a token

<Session
xmlns="http://schemas.datacontract.org/2004/07/VPS.iEnergy.Entities.Sessions"
xmins:i="http://www.w3.0rg/2001/XMLSchema-instance">

<RefreshToken>6V5xjGuoESLO6jKOCul6d/xbN25DRSANIMrOTA1BMLbFI7sZnCyQPVJ+BO

7/5Ju25qgNGJDudcasNkGpggwDsgaRQ+FxYPXAqtGuhORelsej20/ekclerzcg</RefreshTo
ken>

<Timeout>7200</Timeout>

<Token>wR1tD9G7QexviwwKZEqeADY+0H1astb5nESqx2NuXgz064HUebPzuzmtrquPDx
JaloONESHhzFgr5VQCH9gnxzRkwnkoUkGYc2UMmDQZ2G3CiywGa2QVHQO</Token>
</Session>

- The Flexoffers services: The exchange of messages is done inside a XMPP room which is
hosted by the services. The Middleware has the correct credentials for the joining of the
room. Table 18 depicts part of the configuration of the middleware in regard to the FO
services

Table 18 - Code sample for the XMPP credentials

/**
* The id of this flexoffer manager. Used both for the XMPP network and the
* uniqueness of flex offers

*/

private String id = "isepagg";

/** The id of the aggregator found by using Arrowhead service discovery **/
private String aggld = "aggregator-test-tool";

- The FlexHousing APl: The communication is not encrypted but the middleware system has
2 states: Logged and Non-Logged. The Non-Logged state will make most operations fail.
Once The middleware executes the VPS login then it transits to the logged state and enables
the full usage of the services.

62

PESTI Report- Flexoffer Pilot

3. SOLUTION DESCRIPTION
The purpose of this section is to describe the implementation of the solution. Along this section, an
overview of the system architecture is described with the support of a component diagram, in
which each component is explained along with a class diagram of the core classes. One of the core
functions of the middleware is the automatic emission of flexoffers and creation of actuation
schedules. Finally, the database which the system works with, are explained with the support of a
database model diagram.

3.1. COMPONENT DIAGRAM

Figure 31 depicts the organization of this system for a logical point of view. Also provides a
representation of the communication between components. The Controller employ most of the
other components and are only used by the services hosted by the API. The DAO controls all the
operations for the data while the Execution has the logic for the automated mechanism. The
or.arrowhead.wp5 and VPS_Servlet are responsible for the communication with the external
services.

Paradigm Standard Edi titutpe éJéog)ﬁi]LFx_)h‘enb> do Py
Flexoffer Services
XMPP
[}
<<component>> El
FlexHousing_MiddleWare
<<component>> El <<component>> <<component>> El 5
org.arrowhead.WP5 Models FH_API ()
I; é ; FH API
<<component>> El <<component>> <<component>> El
Execution Controllers DTO
<<component>> <<component>> [C <<component>>
DAO g VPS_Servlet a :l VPS Services a
VPS API REST

Figure 31 - Component Diagram of the FlexHousing Middleware system.

3.2 COMPONENT DESCRIPTION

This section describes each component, providing an enumeration of each Class belonging to it.

3.2.1 MODELS
The Models component contains the information about the domain objects. It supplies the

controller with the entities used within the system. A description of each class can be found in table
19.

63

PESTI Report- Flexoffer Pilot

Table 19 - Class for the Models Component

Class Name Description

Device Represents the smart plugs. Always linked to a Room
Schedule Abstract class for the actuation schedule
InfraDaySchedule Implementation of the Schedule for same day flexoffers
NextDaySchedule Implementation of the Schedule for periodic flexoffers
Room Represents the rooms of the House

Sensor Representation of the sensors attached to a Device
Measurements Entity representing the data collected from the Sensors

3.2.2 ORG.ARROWHEAD.WP5

The WP5 package, short for org.arrowhead.wp5, has the implementation of DER for this system.
WP5’s responsibilities are the emission of flexoffers, retrieval of schedules and the connection to
the Flexoffer Services. MyFlexibleResource is a singleton in order to make sure that the emission of
the flexoffer originates for the same agent. A description of each class can be found in table 20.

Table 20 - Class for the Arrowhead Component

Class Name Description

HouseDER The House DER is an implementation of the Abstract DER. It
contains implementation of the generateFlexoffer ()
functions, tailored to this system.

MyFlexibleResource Entity responsible for the connection to the Flexoffer Services. Has
methods for the XMPP connection and the Service Discovery for
the Aggregator.

3.2.3 CONTROLLERS

The Controller component contains the definition of every controller of the system. The controllers
are responsible for the usage of the other components of the system in order to implement the
logic. The House Controller contains a cached version for the objects with the most usage. When
an object suffers a change, both the cache and the database are altered. The HouseController is
therefore a Singleton, to avoid multiple instances of the same objects. A description of each class
can be found in table 21.

Table 21 - Class for the Controller Component

Class Name Description

DeviceController Responsible for every action on a Device object.

HouseController Contains a list of every Room and Device. Allows for the managing
of the house. Has the method to login at the VPS Services

64

PESTI Report- Flexoffer Pilot

3.2.4 EXECUTION

The Execution component contains all the implementation of every automatic process of system.
Also responsible for the setup of every communication component (FH API, org.arrowhead.wp5
and VPS servlet). Both timer apply the Threadpool pattern. A description of each class can be found
in table 22.

Table 22 - Class for the Execution Component

Class Name Description

Main Class executed when initiating the system. Starting point for every
component

FlexofferTimer Class responsible for keep track of the time of day for the emission
of flexoffers.

ExecuteFOEmission A runnable thread created for every flexoffer. Responsible for

emitting the flexoffer, retrieve the schedules and their respective
persistence.

ActuationTimer Class responsible for keep track of the time of day for creation of
the actuations schedules.
ExecuteActuations A runnable thread for the creation of the actuation schedules.

Retrieves the schedule for the flexoffers and monitors the energy
usage programed for the device

3.2.5 DAO

The DAO component allows for a layer between the database and the system. Responsible for
interacting with database, by executing queries. The DAQ is a singleton in order insure concurrence
and that there’s only one connection to the data at any given moment. A description of each class
can be found in table 23.

Table 23 - Class for the DAO Component

Class Name Description

DAO Has every operation related to database. Responsible for receiving
objects and store them in the database. Also retrieves objects
from database.

3.2.6 VPS SERVLET

This component is responsible for the communication between this system and the VPS Services.
For the connection to be valid an authorization token is attached to every request. As such this
implements the Singleton pattern, thus enforcing that there’s only one valid connection to the VPS
Services, at any given time. A description of each class can be found in table 24.

Table 24 - Class for the VPS_Servlet Component

Class Name Description
VPSController Contains the definition for every VPS related request. Builds http
request aiming for the VPS APl and also handles the responses.

65

PESTI Report- Flexoffer Pilot

3.2.7 DTO

This component acts a layer between the domain objects and the API. It creates representational
objects, originating from the ones in the Models Component, but only containing relevant
information for the operation it was requested for. A description of each class can be found in table

25.
Table 25 - Class for the DTO Component
Class Name Description
ActuationFH Used to demand the actuation on a given device
ActuationVPS Object used by the VPS services for the actuations on devices
FlexofferDTO Representation of the flexoffer only containing the fields

configurable by the end user

LoginSession

Object used by the VPS Services in order to execute the login

MeasurementsDTO Represents the relevant information gathered from the
Measurements received after a request for such at the VPS
Services

NewDeviceDTO Object containing the physical ID of the VPS device

ScheduleDTO

Contains the fields of the schedules that are relevant to the end
user

SensorDTO Used when a request evolving the sensor is received. Contains the
sensor name and ID
Statistics Object containing the statistical information of the system.
3.2.8 FH API

The FH APl component contains the definition of the services hosted by system. Used by the http
server that FlexHousing Middleware creates. Helps creates the routing of the API. A description of
each class can be found in table 26.

Table 26 - Class for the FH_API Component

Class Name Description

DevicePath Definition of the services attached to the Device interface
FlexofferPath Definition of the services attached to the Flexoffer interface
HousePath Definition of the services attached to the House interface
MeasurementsPath Definition of the services attached to the Measurement interface

3.3 EMISSION OF FLEXOFFERS AND ACTUATION SCHEDULES CREATION

The whole system centers around enforcing the flexoffers applied to the devices. In order to
simplify and automatize the process, 2 mechanisms were implemented:
- Oneresponsible for the emission of flexoffers and reception of the corresponding schedule
- Another for creating a mechanism to retrieve the schedules from data base and enforce
the devices to operate depending on them

66

PESTI Report- Flexoffer Pilot

As such we have 2 threads running, one for each mechanism. As soon as the system is stated 2
methods will load those threads into a Timer. Each Timer is configured to execute the thread when
a certain time is met.

3.3.1 FLEXOFFER EMISSION

When the system is 11pm then the timer Task executes the FlexofferTimer(FT). Ft will gather all the
devices that have active Flexoffers from the database. From there it will build a ExecutorService
with a thread pool size equals to the number of devices. From there for each device, every active
Flexoffer is retrieved form the database. For each flexoffer a ExecuteFOEmission thread is built and
by the ExecutorService. This description can be found Figure 32.

67

PESTI Report- Flexoffer Pilot

.1 Paradiom Standard Editiontinsttuto Superior de Engenharia do Porlo)

MainExecution

|
1: StartFOEmission() :
..a.

1.1: TimerTask = new FlexofferTimer() ElexofferTimer
____________________ e S S s e
|

1.4: timer.schsduleAtFixéd Rate()

Alt When the time hits the target)

: 2: run() :
—p

|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
t
|
|
|
|
|

2.1: retreiveDevicesWithFO()

2.2: returns device list

Loop For each device J

2.4: new DeviceController(device)
____________________ (L
|

|
2.5: returnsActiveFlexoffers()

2.6: returns FO list |

1
op For each FO] l I

This section is detailed in the ExecuteFOEmisson
sequence diagram

B

T
I
|
|
I
I
|
|
|
|
I
|
|
|
I
I
|
I
: e e P —————
i
|
I
I
|
|
I
|
I
|
|
I
|
i
:
I
i

———
———

Figure 32 - Diagram sequence for the FlexofferTimer

68

PESTI Report- Flexoffer Pilot

The ExecuteFOEmission thread is built using a Flexoffer and a Device. The thread retrieves the
instance of the FlexofferAgent and executes the generateFlexoffer method and the flexoffer is then
sent to the Flexoffer Services. The thread then waits for the schedule to be attached to the flexoffer.
When the schedule is delivered the WP5 ID of the Flexoffer is updated in the database. The thread
also retrieves the schedule that was sent back and adds to the database. Figure 33 is an UML
diagram depicting this description.

3.3.2 ACTUATION SCHEDULE

Similar to the emission of flexoffers, when the system is started a thread runs to monitor the time
of the system. When the time hits the target then it executes the ActuationTimer thread. Again
similar to the flexoffer emission the thread builds an ExecutorService in order to execute a pool of
threads. The size of the poll is, again, again determined by the number of devices with schedules
that was previously retrieved from the database. Then the schedules for each device is retrieved.
ActuationTimer then builds a ExecuteActuation thread for each schedule. This description is also
depicted in Figure 34.

When a ExecuteActuation is created, it receives, as parameters, a flexoffer schedule and a device.
From there the schedule in converted into a NextDaySchedule. The NextDaySchedule contains an
array of integers with 96 positions, one for every quarter hours in a day, called commutations. The
first position corresponds to 00h00 while the 5™ one corresponds to 01h15 and so on. When
created, the NextDaySchedule will fill all the slots of the commutation array with 0. Then will fill the
array with 1’s on the positions corresponding to the time that the flexoffer schedule was allocated
consumption. For example, if a schedule has consumption moments at 00h15,00h30 and 01h00 it
will to the 5 first positions of the array to look like this: [0, 1, 1,0, 1, ...]. The ExecuteActuation thread
retrieves the commutation array and executes a cycle for all the positions. For each iteration it will
verify if the state changes from the previous state. If the states differ, then the thread will invoke
the actuate method of the device in order to toggle the state. This description is depicted in figure
35.

69

PESTI Report- Flexoffer Pilot

islﬁé’mﬂ"marc Edition{Instituto Superior de Engenharia do Porto)

| 1: new DeviceController(device)

i e s e o D e >

DeviceController

2: returnsActiveFlexoffers()

2.1: returns FO list

< ,,,,,,,,,,,,,,,,,,,,,,,,,,

HouseDER

MyFlexibleResource

Loop For each flexoffer)

3: worker = new ExecuteFOEmission(flexoffer,device)

e >

ExecuteFO
Emission

% 4: setDevice(dev)
5: setFlexoffer(flex)

6: execute(worker)

Alt When runnable is executed J

6.1: flexibleResource = MyFlexibleResource.getinstance
L

6.2: returns FlexibleResource instance

6.3: flexibleResource.generateFlexoffer(flex) |

6.4: returns flexoffer external ID

6.5: updateFlexoffer(flexoffer,dev)
L

|
Alt When the schedule is returned) |

6.6: insertSchedule(flexibleResource.getFO(flex).getSchedule())
1 1

1
6.7: returns responseMessage

E—

————

PESTI Project

Figure 33 - Sequence diagram for the inner mechanism of the FO emission

70

PESTI Report- Flexoffer Pilot

PESTI Project

ard Edition{Instituto Superi]

1: StartActuations()

1.2: calendar = getinstance()

1.3: new Timer()

.

1.4: limer.scheduleAtFixngate()

<<Singleton>> <<Singleton>>
HouseController DAO
I T
| |
| |
| |
| |
| |
| |
| |
I |
| | |
[| |
[| |
| I |
| | |
| | |
| : |
| |
.;}'rl | \ |
| | |
Alt When the time hits the target) ; :
| | I |
| 2: run() | } :
2.1: getDevices | |
. |
i |
2.2: returns device list |
o——mm I
I
2.3: new ExcecutorService. NewFixedThreadPool(deviceList.size)
____________________ e e
| |
| |
| |
Loop For each device] } :
| |
2.4: retumFOSchedulesByDewoe(] -_:

T
2.5: returns FOSchedu_lta List t|-|
_________________ e

|
| |
Loop For each Schedule] }

This section is detailed in the ExecuteAct
sequence diagram

tions

_——em e —————— e e e o]

B e 1 S B

Figure 34 - Sequence diagram for the creation of ExecuteActuation threads

71

PESTI Report- Flexoffer Pilot

ExecuteActuations MextDaySchedula VRS Confroller

| 1z return FOSchedulesByDavice() I

.70 retims FOScheadulbe List

Loap For each Schadule J

2z worker = new Executedctuations(new MextDaySchedule(schedule) device, interval)

4 exacute{worker)

B

2.2: retums schadule

AltWhen worker s e}cer:lnerj)

A getCommutation]}

4.1: returns list of commutations

|
I
|
I S
I
|

alt,

|
|
]
|
IF the commulation lead o changs ol stale] :
6: actuatal) !

6.1: Bctuate
i 5.1.1: POST : JAcluale

h

1.2 retumns respansel essag

|
|
|
|
|
|
|
|
|
I .2: returns responselessage |
|

|

|

T sleeplinterval x 1000)

g e e e e S R T e e e A i e R R e ST e

Figure 35 - Sequence diagram for the ActuationExecution thread

PESTI Project

PESTI Report- Flexoffer Pilot

3.4 CLASSES AND PATTERNS

This section describes the core class in the FlexHousing Middleware system, as well as, enumerating
the pattern in use. The Class diagram of the core class can be found in figure 36.

The classes are distributed into layers. The DAO class is in the Persistence layer and is only accessed
by the controller which are in the Application layer, accompanied by the internal mechanism class.
The models are in the in the Business layer. Every other class is in the External Services layer.

The controllers are only invoked by the business or external services. The DAO is only invoked by the
Controllers. An instance of a Model class can only be created, updated, read or deleted by a controller.
Each request sent to services hosted by the middleware is met the invocation of a controller method.
Further description and evidence of this can be found in the SD/IDD description of the FlexHousing
Middleware system.

System name Path
FlexHousing Middleware | Arrowhead/SD-IDD FlexHousing Middleware.docx
SD-IDD

73
PESTI Project

PESTI Report- Flexoffer Pilot

PESTI Project

% FlexafferController

& Sensor

- ntid
- Sting Narne

©+Bensor(Sting DevicelD, String Name)
+intgetid

5+ 8tring getName ()

& ExecuteFOEmission

5 +void setid(ntic)
+yoid s etharme (Sting Narm el
5+5ting toString0
3 +int hashCoded)

) +FlexOffer fo
) -Device dev

+boolean equals (Object obj)

& ~ExecuteF OEmission(FlexOer fo, Device Dey)
+id rung

- stalic FlexofferConyoller instance sengors se
o+ FlscfferController e Lol onrched
3+ ArtayListeFlexOffe DTO= convertListToDTOListArrayList<FlexOffer> lish & -eing D 1 - tatic AnayList<Room> Rooms
©+ stalc FlexofferController getinstance(, & +Room room -static Araylist<Device= Devices
oD Qcanven [ODIOG s 0Ter) % -Btring Name %1 -static HouseContraller instance
+ArayList<SchedulsDTO> convertListToDTOListForSchedule(ArayList<F lexOfferSchedule= list) B o e e soheas ?L_/_/_/Dmﬁ——/—/—/c e
- ArrayList<Sensor- sensors 0 -static vPEConollerIA
- static ArravList<Sting> sensoriames
\‘\1 4 +Device(Btring ID, String Name, Room roorm) -
\) +¥0id setame(String Name) o+HouseController)
& NextDaySchedule § +Siring gethlame() -String Name +Room gelRoomEyIDntID)
| +vald setSchedule(FlexOferSchedul schedulz)) -intID +Device getDeviceByID(String 10)
- ArayListeInteger~ comutations
it \ 2+Siring geliDg @ +static HouseConrollet gellnstancen
\ +Room getRoom) P o)+ ArrayList=Device= geDevices)
\ +FlerOfferSchetule getSchedule) ; +AniayList<Room> getRoomsQ
&+ NextDayScheduleFIexOferschedule fos) \ O +ArtayList=Gensor getSensors) it oeiDg . © +void addNewRoom(String Name)
+int] getCommutations) \ 2 +Biring toBting0 Q/H°°W/lj_) :Vsn‘:‘“"i:ﬂ!‘mfg RODME | 6 +ygid addNewDevioe(Sting ID, Siring Narme, String roorr)
S+ Sting tosting) \)+vold atoNewSensarSensor senson)+void populateHouseq
\ +boolean hasActuator) sl etiametoting Name) +hoolean saToken(Sting user, Sting pass)
\ b £5Tng stingy +AnayList<Devites getD evit eSBYRooM(Sting mag)
i 1.4 o +Anraylist<Device= getD evicesByRoomID(int i)
Y d)+ Artaylist<Devive> getDevisesWithAstuatar(
& o +static vaid isteString>
- ArayLists nteger= comutations i & Schedule B O +slalic AnaiList<Sting> gelSensorlames)
& -Room getRoomByName(Stiing raorm)
+Statstics bulldSiats)
D e R B pmem——
J+ i) geiCommutations0
 DeviceControlier

™

@1- Device Device

fos 1-DAO database
\ 1-YPSCantraller 194
£ Executehctuations +DeviceController(String DevicelD)

lr—database—]

©Dao

) -Siring host
) -String user

8 -Siring pass

) - sfatic Cannestion con
5 - static DAO instance

0+DROD
o +static DAQ geflnstance ()
) +void papulateHouseq
+ArayList=Device> relumAlDevices)
+ArrayList<Device » retumDevices ByR norn(String roor)
0 +Armaylist<Device > retumbDevicesWithActuatarsg)
+Deice retumDeviseByID (Sting D)
+yold insenDevice(Device device)
) +yoid UpdateDevice(Device Device)
+AayList<Sring= refreiveDevicesiithActiveF 00
+yoid deleteDevice(Device Delete)
) +ArrayList<Room> returnAlIRo0ms()
+void inserlRaom (Ream room)
o +void deleteRoom(int roomiD}
+yoid updateRoom(Raom room)
+ArrayList<Sensor- retumAliSensors()
) +maylist<Sensor> retumsensarsByDevice (Sting devicelD)
+yoid insert3ensor(Sensar sensor, String DevicelD)
+yoid deleteSensargint sensorD)
) +yold updateSensar(Sensor sensor)
+ArtayList<Measurement= returnhle asurements ByD eviseAn dBy Tyne(String DevicelD:, String measureTyne)
0 +5iting insertieasurementrieasurement measurement, String DevicelD)
) +void deleteMeasurement(String DevicelD, String measureType)
o +ArrayList<FlexOffer> retumAllFOQ
+FlexOffer retumF OByDevicelD(String DevicelD)
+ArtayList=FlexOTerDTO> retumF OByDevicelDByDay(Stting DevicelD, Date date)
+String inserFO(FlexOffer fo, String deviceld, String narme)
) +v0id deleteFO(String devicelD)

O +ArrayList<Gt heduleDTO returnFOSBYDayByDevice(String dev, Diate date)

- Behedule fos

)+ int currentstate

B3 intinterval

- DeviceController dev

»+v0id addSensorTaDevice(String Name)

»+v0ld addMeasurement(Sting Measuring, double Value, Date Date)

158
+FlexOfferSchedule retumFOSByDevicelD (Sting dev)
3)+Siring fferS chedule fo, Device dev)
&) +vaid deleteScheduleiFlexOfierSchedule fos, Siring devicelD)
e +AtrayListsFleiOMer> retumAIACtvEFOQ

o+ Sensor getsensorByName(String name)
»+v0id getheasurements(int sensorlD, lang from, long ta)
o, »+v0id actuateqint command)

T4y 6 +v0id addFO(Flexoer o, String Name)

) gtalic String Token
@+ finalint TURN_ON

©+ExecuteActuations(Schedule fos, int interval, Device dev
©+void rung,

+final boolean logzed
©-+vaid removeSensor(int sensariD)

) - static CloseableHitpClient hipClient

) - static VPSGontroller instance

+5ensor getsensorByiD(nt sensoriD)

)+ ArtayList<Sensor retumSensors)

++ Object reumP owerMe asure ments(long parseLong, long parseLongt) ©+VPSController)

O+ FlexOffer gelF 00 ©+static VPSControlier gefinstance(.

*boalean getTaken(Siring emall, Sting passward)

+void actuate(int actuationTag, int operation)

+Anaylist<Measurement- gethieasurement(Sensar Tag, long from, long to)
+int gefTag(String device D, Siring Tagame)

Figure 36 - Class diagram for FHMW

) +uoid upd ateF OID (F lexOffer fo, String id)
+void deactivateFO(String id)

) «String Measuring
B -double Value
=5) -Date Date

~.4 | ©+Measurement(string Measuring, double Value, Date Date)
> 0 +Biring geteasuringi)

) +doulle getvalue)

+Date geiDateq

+yoid etz asuting (Sting Measuringy

) +yoid setvalue(double Valug)

+yoid sefDate (Date Date)

+String tostringo)

74

PESTI Report- Flexoffer Pilot

3.5. DATABASE

When an object is altered or added to the system, it is also persisted in the database. The current
database is an Apache Derby DB. This section will describe the schema for the database. The full

schema can be found depicted in figure 37.

fsual Paradigm Standard Ed "Sﬁﬂé uto Superior de Eng
/D integer(10) T 0 o y (Sl)
| Sequence integer(10) - 2om L integer(10) U
T double(10) D integer(10) L) =] || Sequence integer(10)
HighLoad double(10) NameRearer222) EnergyValue double(10))]
T Flex-OfferlD integer(10) : "= SchedulelD integer(10)
™ Flex-OfferName varchar(255) [\] e
- ¥ : 0
| |
Q s s
Flex-Offer \ { Device) C Schedule)
D integer(10) VR /D integer(10) U ¥) integer(10)
'/ Name varchar(255) U ™ RoomID integer(10) ™ DevicelD integer(10)
StartTime tme(7) [2 -~~~ 7° |1 Name varchar(255) G StartTime time(7)
EndTime time(7) [; "‘3', Flex-OfferName varchar(255)
Active integer(1) Dﬂ T 1
WP5ID integer(10) 1] i : X
\?-stﬁcsm integer(10) """"""""""}' """"""""""" g
: i
| |
| 1
: |
(System Parameters (== R nents \ (g Sensors \
D integer(10) U D integer(10) D integer(10) U
BISMEVAIChan2a5) Time timestamp Name varchar(255)
Nl AT Name varchar(255) * DevicelD integer(10)
= DevicelD integer(10)
Value varchar(255)

Figure 37 - Schema for the database in the middleware

The most tables in the schema are easy to perceive and only the more complex ones need explaining,
which a corresponding table can found in this section, contain the name of each field and a brief
description. The schema represents the various object that needs to persist in this system. The way
the system saves the data for the flexoffers and for schedules is that we have 2 tables: one for the
description (table 28) and another for the slices. The flexoffer has a name, a generated ID, start and
end time, the id of device it is attached to and an integer representing the ID of the Flexoffer in the
Flexoffer services. When storing the slices, it needs to store the upper and lower bound for the
corresponding Flexoffer. To do so, each entry tin the Slice table has 6 columns: the value for both
bounds, the name and ID of the flexoffer it belongs to and the ID and sequence number, Sequence
number gives us the order of the slice. A similar process is applied to the Schedule and its slices

Column Name Type

ID Integer
Name Varchar
StartTime Time
EndTime Time
Active Boolean
WP5ID Integer
DevicelD Integer

Description

Auto generated number for the
identification

Name of the Flexoffer

Date and time of the earliest start of the
Flexoffer

Date and time of the latest start of the
Flexoffer

Determines if the flexoffer is still active
The ID of the Flexoffer in the Flexoffer
Services

ID of the Device it is applied on.

local

Table 27 - Table description for the Flexoffer

PESTI Project

75

PESTI Report- Flexoffer Pilot

4.2.6 SYSTEM DESIGN DESCRIPTION — FRONTEND

This document defines the System Design Description of the FlexHousing FrontEnd system.
FlexHousing FrontEnd, bridging the flexoffer concept and external technologies with the common
user. The focus of this document is to describe the implementation of the system architecture, the
used components, and the use-cases supported by UML diagram.

1. SYSTEM DESIGN DESCRIPTION OVERVIEW

Name FlexHousing FrontEnd
Owner ISEP

The FlexHousing FrontEnd system has been developed by CISTER/ISEP, in the context of the Work
Package 5 of the Arrowhead project. The goal of the project was to build a pilot that constituted a
proof of concept for the usage of flexoffers as integrated with external technologies. FlexHousing is a
system comprised of a middleware (FHMW) and a front-end type Webserver for user interaction
(FHFE). FlexHousing Front End (FHFE) is a C# project hosted on a webserver, allowing the user to
configure and use the FlexHousing Middleware (FHMW) within his building.

FlexHousing is a system comprised of a middleware (FHMW) and a front-end type Webserver for user
interaction (FHFE).

A more abstract description of the FHFE system can be found on the document referenced in Table 2.
System name Path

FlexHousing Arrowhead/ SysD FlexHousing FrontEnd.docx

The web-based front-end FHFE was implemented as a showcase prototype. Its goal is to provide a
basic graphical interface to demonstrate the capabilities of the middleware, and as such has been
changed with each version of the middleware FHMW. Thus, the FHFE is intended to be an added value
to the FHMW, and as such it covers all the services of FHMW itself; on the other hand, the FHFE cannot
be considered a mature product by itself and does not cover all possible operations unrelated to
FHMW. Incomplete use cases comprise missing CRUD operations over Rooms and Devices, and FHFE
to consume data from Use Case 8 (see Section 4.2.1) . Regarding this latter limitation, the FHFE is
already able to provide a representation of the data from other Use Cases, and the only missing graphs
regards showing a unique graph reporting the Flexoffer schedule and measurements for the same
period of time.

2. USE CASES

2.1 NON FUNCTIONAL REQUIREMENTS

To guarantee the non-functional requirements described in the document referenced in Table 2, this
section lists the proposed solutions to its corresponding requirement:
- Availability: Deployment on a dedicated server.
- Interoperability & Extensibility: Usage of SOLID software principles, developing a high
cohesion and low coupling code.
- Performance: Usage of high performance technologies.

2.2 USE CASES

Each implementation of a Use-case is accompanied by a SSD depicting the workflow, a reference to
the implementation of the services the front end uses and an explanation of how it was implemented

76
PESTI Project

PESTI Report- Flexoffer Pilot

and any decisions taken. The SSD will depict the interaction between the different objects within the
front end web server and the calls it makes to the FlexHousing middleware.

2.2.1 SEND FLEXOFFER
The workflow of the sending of flexoffers is depicted in Figure 38.

a <<View>> Flexoffer Controller FlexofferHandler HttpServer FlexHousing
View Middleware
User

T 1
I I | | |
1: Selects device option "Apply Flexoffer" ! : : : :
I | | |
1.1: shows Create Flexoffer | | | |
R I | | |
0 I 1 | |
2: inputs information about flexoffer | | | |
I | | |
2.1: createFlexoffer(flexoffer) 1 | | |
| | |
2.1.1: createFlexoffer(flexoffer) | | |
& | |
2.1.1.1: getinstance() | |
»l |
2.1.1.2: returns httpServer :
e e e |
|
| |
| |
| |
2.1.1.3: setContent(flexoffer) |
| |
2.1.1.4: setUrl(/FlexHousing/Flexoffer/DevicelD) :
| |
2.1.1.5: httpServer.postAsync() k:

T

2.1.1.6: returns responseMessage
2.1.2: returns response R e e e : ___________

_________________ | |
2.2: redirects to Device Details }— : :
_______________ L 1 | 1
2.3: redirects to Device Details I | | |
K- —————————————————— —] I | | |

Figure 38- Sequence diagram for UC 1

The user is presented with the list of the devices in the part of the System of Systems that he owns/has
access to. The user selects “Apply Flexoffer”. The page is redirected to the View and the user is
prompted to fill input information on the name of the flexoffer, start and end time, and the pattern
for the consumption. The info is collected and sent to the Flexoffer Controller. From there,
the controller invokes the Flexoffer Handler, responsible for the communication with the
FHMW, more specifically for the Flexoffer interface. The handler executes the request, posting the
flexoffer. The handler receives the response from the server and sends it back to controller. If the
request was responded with any errors, the user is notified of the success of the operation.

77
PESTI Project

PESTI Report- Flexoffer Pilot

2.2.2 RECEIVE SCHEDULES

The following figure, Figure 2, shows the step the system does to receives schedules.

Visus adigm Standard Edition(Institule Superior de Engenharia do BEEUR S =
iew

User

1: Selects device option "Details"

Flexoffer.js | |

HighCharts

< 1.1: shows Device Details

2: inputs the day of the search

3: selects a button

2.3: shows different button for each schedule

2.1: getSchedulesByDay()

2.2: rebuilds page with charts

3.3: chart for schedule presented to user

3.1: buildScheduleChart()

[ram=—m]

3.2: add chart to view

< ________________

H
|
|
|
I

2.1.1: GET: /FlexHousing/Flexoffer/Day/Scehdule
|

FlexHousing
Middleware

.

1
2.1.2: returns the Schedules for that day

<_ _________

3.1.1: new Highcharts()

Py

3.1.2: Returns Chart

Figure 39 - Sequence diagram for UC 2

The previous figure, Figure 39, shows the step the system does to receives schedules. The user selects
the “Details” option of the device. The View is loaded and the user is presented with a date chooser
html object. When a date is selected, a JavaScript function is executed, retrieving the schedules for
that specific date from the FlexHousing Middleware. The data is stored and for each object a
html button is created, using the name of the flexoffer the schedule originated from as a title. When
a button is pressed, a second JS function is invoked, building a Highchart object [31], depicting the
data from that specific schedule. The chart is put in view for the user to see.

2.2.3 LOGIN

Figure 40 depicts the sequence of steps executed when the user logs into the system.

;

1 FEaViews>
View

User |
1: Selects login option 1
L
1.1: shows Login
¥y S —
2: inputs credentials
»
2.3: shows homepage
L

PESTI Project

AccountController

|
|
1
|
|
|
|
I
|
2.1: login{email pass) |

2.1.1: login(email pass)

AccountHandler

| HttpServer I ‘

FlexHousing

2.1.1.1: getinstance()

.

2.2: disables partial view and redirects

2.1.2: returns responseMessage

Figure 40 -Sequence diagram for UC 3

2.1.1.2; returns htipServer

=

2.1.1.5: hitpServer. postAsync()
L

2.1.1.3: setContent(login}
I

Middleware
I

2.1.1.4: setUrl(/FlexHousing/House/Login)

2.1.1.6: returns responséMessage “

78

PESTI Report- Flexoffer Pilot

The user selects the “Login” option. The user then inputs the email and password. The controller is
invoked, capturing the information. The AccountController then uses the AccountHandler
for the execution of the request. The login is sent to FHMW. When the FHMW replies back and if the
response was successful, then the user is redirected back to homepage and is now able to perform
the rest of the FHFE features.

2.2.4 MANAGE HOUSE

The figure below (Figure 41) depicts the sequence diagrams of the various steps and interactions
between the various components, enabling the managing of Rooms.

£ . 0 Miifigw HouseController HouseHandler FlexHousing Http Server
Middleware
User

I
I
I
1: selects Room option 1

1.1: getAllRooms()
1.1.1: getAllRooms()
1.1.1.1: getinstance()
; »
1.1.1.2: returns hitpServer
Sttty -

|
| I
| I
1.1.1.3: setUrl{/FlexHousing/Room) : :
1 1
1 1
1.1.1.4: httpServer.getAsyna() | .
I
I
|
1
1
1
1.1.1.5: retumns device list :
. 1.1.2: retums device list et — - — — |
1.2: redirects to Room Index T i
”””””””” T 1 1
1.3: shows room list T : I :
(S S [1 | 1
I | | I
I | | 1
I 1 | 1
I 1 1 1
2: register room ! ! ! 1
b I 1 1 I
2.1: addRoom(Name) ! : : :
2.1.1: postRoom(Name) ! i i
| I
2.1.1.1: setUrl{/FlexHousing/House/Login) :

I
| I
3: setContent({room) | 1
1
2.1.1.2: htpServer.getAsync() :
L I
1

2.1.1.3: returns responseMessage

2.1.2: returns responseMessage ||~ p,,,,,,g,,, :
_________________ 1 1
| I
2.2 redirects to Room Index ! | !
2.3: shows user the room was added T : I :
<- - 1 1 1 1
I I | I
I 1 | I
4: selects Room Details : : : :
4.1: getRoom(ID) 1 1 i 1
1 1 1
4.1.1: getRoomDetails(ID) 1 | 1
| I
2.1.3: setUrl(/FlexHousing/Room/ID) :
4.1.1.1: hitpServer.getAsynci) H
1
I
4.1.1.2: returns details I
,,,,,,,,,,,,,,,,,,,, |
1
1
1
I
4.1.2: retums details [
,,,,,,,,,,,,,,,,, I
| I
4.2: redirects to Room Details : : :
”””””””” 1 1 1
4.3: shows room payload and devices r : : :
= L I 1 | I
1 1 1 1
i i i P

Figure 41- Sequence diagram for UC 4

When selecting the “Room” tab the user can check every room currently registered in system. When
the tab is pressed, the HouseController isissued the getAl11Rooms () request. The controller
proceeds to request execute the function with the same name located in the HouseHandler. Its
objective is to contact the middleware and request the list of rooms. When the response is sent back,
the controller receives the list from and handler a new View is built using the list of rooms as Model.

79
PESTI Project

PESTI Report- Flexoffer Pilot

The option within that View, “Create Room”, allows the user to add a new room to the system. The
user is redirected to a new View, where he has to input the name of the new room. When the
information has been provided and the user confirms the creation, the HouseController captures
that action. It will execute the postRoom () function of the HouseHandler providing as a
parameter the name of the room. The handler will contact the middleware and execute a POST
function. The room is added. If no exception was raised, the page is redirected to the Index of rooms
and the new room is now amongst the list.

2.2.5 MANAGE DEVICES
The following figure (Figure 42) shows a UML representation of the UC 5.

View DeviceController DeviceHandler FlexHousing Hitp Server
Middleware
T

User

1: selects Device option

1.1: getAliDevices()

1.1.1: getAliDevices() 1

1.1.1.1: gatinstanca()
T
1.1.1.2: returns httpServer
NN g i i S SO
I

[
1.1.1.3 selUrI(IF\exHouswng‘Dewcre)

1.1.1.4: httpServer.getAsync()

1.1.1.5: retumns device list

1.1.2: returns device list

1.2: redirects to Device Index

1.3: shows device list

2: selects Device Details

2.1: getDeviceDetails(ID)

o
I
i
|
I
I
1
i
I
2.1.1: gelDeviceDetalls(iD) |

1.1.3: setUrl(/FlexHousing/Device/ID)
[

2.1.1.1: httpServer.getAsync()
2.1.1.2 returns details

2.1.2: returns details

2.2: redirects to Room Details

2.3: shows device payload and allows for selection of FO

U T
1 |
1 |
!]

Figure 42 - Sequence diagram for UC5

The “Device” tab on the main Menu leads to the list of devices currently registered in system. When
the option is selected, the DeviceController invokes the getAllDevices () of the
DeviceHandler. From there the handler executes a request targeting the middleware. The
middleware responds with the list of devices. When the handler sends back the information to the
controller. A new View is redirected to user, depicting the list of devices received. When the user is
presented with the list of devices one of the option for device is the “Details” option. When selecting
that option, the DeviceController’s getDetails () function is invoked. This triggers the
function with the same name in DeviceHandler. The handler will execute a request aiming for the
middleware, using the ID of the device whose option was clicked as a parameter. The middleware
responds with the details of the device. The controller receives that data from the handler and creates
a View with the details. The View is then presented to the user.

80
PESTI Project

PESTI

2.2.6

Report- Flexoffer Pilot

CHECK MEASUREMENTS

Figure 43 represents the sequence diagram for the check measurements use-case.
When presented with list of devices, one of the options for each device is “Check Measurements”.

2.1: getSchedulesByDay()

ual i@hdigm Standard Edition{Instituto St o P Views> Measurements.js

View

User : 1‘

1: Selects device option "Measurements" | |

> |

|

< 1.1: shows Measurment popup j

2: inputs the period of search j

> |

|

2.5: chart for measurements presented to user

HighCharts

2.1.1: GET: /FlexHousing/Measurments
}

FlexHousing
Middleware

2.2: returns measurements

.
2.3: buildMeasurementsChart() !
’L

2.4: add chart to view

===

Figure 43- Sequence diagram for UC 6

2.3.1: new Highcharts()

1
2.1.2: returns measurements for that period

2.3.2: Returns Chart

When the user selects that option, a modal pops up. The modal has 2 fields for input, the start date
and end date of the period you want to check the measurements for. The dates are collected and sent
as parameters to the getSchedulesByDay () function in the Measurements. js JavaScript.
The function communicates with the middleware requesting the measurements for the period the
user has selected. When the response is sent, the function will then create a Highchart chart,
graphically depicting the data collected. The chart is then added to the View for the user to observe.

2.2.7

ACTUATE ON DEVICES

The following figure (Figure 44) depicts the steps taken by the system when the features for UC 6 are
employed.

X

User

1: selects Device option "Actuate”

PESTI

DeviceController

1.1: actuate(DevicelD)

2.1.1.1: reloads the same View

2.1.1: refreshes live View

1.1.1: actuate(DevicelD)

DeviceHandler

| Hiip Server] |

FlexHousing
Middleware

1.1.1.1: gelinstance()

2 1: retums responseMessage

Figure 44- Sequence diagram for UC 7

Project

1.1.1.2: returns httpServer

1.1.1.3: se|Contenl(aclualion}l

I
1.1.1.4: setUr{/FlexHousing/Device/Actuate)
1

1.1.1.5: hitpServer. DOE[F\ISWC(}

o]

2: retumns responseMessage
D e e e e i s i i g | | SR

S I

81

PESTI Report- Flexoffer Pilot

The device in the device list View have the “Actuate” option. The selection of this option leads to the
invocation of the Actuate () function in the DeviceController. The controller requests the
DeviceHandler to execute the function with the same name. The handler emits a request towards
the middleware with the ID of device in question. When the response is received, it forwarded to the
controller, who refreshes the current View. The device who had the option executed on had its state
toggled.

2.2.8 VERIFY IF FLEXOFFER WAS RESPECTED

Due to time constraints, the implementation of UC8 is an ongoing work, and still has to be completed.
The implementation would revolve around the same procedure done for other UC: The user selected
the option and a View permitting the selection of the flexoffers the device had had applied. The list
would only contain flexoffers with attached schedules: invalid or unscheduled flexoffers wouldn’t
appear. From there the user would select a flexoffer. The system would collect the information of that
flexoffer and schedule and would request the middleware for the measurements of the same time
period, similar to how UC 6 functions. The system would then build a chart, using Highcharts like it
did previously, and show the user the bar chart of the flexoffer with a different colored plot line
depicting the consumption for each quarter hour within that period of time. The end result would look
similar to Figure 45

Verify Flexoffer

Flexoffer name here

40
Actual consumption
30 @ Flexoffer projection
20
]O | ‘ ‘ |
0 I I I
0 2 4 6] 8 10

Figure 45 - Chart for the projected implementation of UC 8

82
PESTI Project

PESTI Report- Flexoffer Pilot

3. SOLUTION DESCRIPTION
The purpose of this chapter is to describe the implementation of the solution. Initially, an overview of
the system architecture is described with the support of a component diagram, then all the core
classes used on the code implementation are explained along with a class diagram.

3.1 COMPONENT DIAGRAM

Typical to web design, a MVC pattern was adopted in the FHFE. More specifically we have ViewModels,
Views and Controllers. In order to enforce an even better development methodology, a Handler layer
is responsible for the communication with other components. In this particular cases, no DTO are
involved because the objects that are exchanged are the same as the Models. This description is
depicted in Figure 46.

<<component>> El
FlexHousing_FrontEnd

<<component>> El <<component>> El
Controllers ViewModels

Q@ —Q

<<component>> gl <<component>> <<component>> El
FlexHousing_MiddleWare O-\} D RRd i
FH API

Figure 46 - Component Diagram of the FlexHousing system.

3.2 CLASSES STRUCTURE, AND DESIGN PATTERNS UNDER USE

The MVC pattern is employed in order to facilitated the incremental development. In case it’s
implemented using ASP.NET MVC. This means the Views use the Models for the building of the Web
forms, for each controller method there can a View associated to it and for each major model there’s
a controller used to execute the operations regarding those models. In this case the Models are
actually ViewModels due to the fact they represent the information the system shows the User.

This system has 5 major building blocks:

e The Controllers
e The Views

e The ViewModels
e The Handlers

e The Scripts

3.2.1 CONTROLLERS

Responsible for the logic of any operation. Normally linked to button or option in the view. There is
the Device, House and Flexoffer Controller. The controllers are used when the action involved leads
to a new View. Figure 29 depicts the Actuate() method.

Table 28 - Sample of code representing the controller method Actuate

public async Task<ActionResult> Actuate(string id)
{
Actuation act = new Actuation();
act.ID = id;
act.command = 3;

83
PESTI Project

PESTI Report- Flexoffer Pilot

await DeviceHandler.Actuate(act);
return RedirectToAction("Index", "Device");

3.2.2 VIEWS

Using Html, Css and Razor, the system is able to create web pages integrated with WebForms. These
forms allow to easily represent the Models of the system. The” @” annotation starts a razor statement
orline of code. That line of code is processed before the page is rendered on the server side. Employing
razor enables us to embed controller methods in our options.

Table 29 - Code sample for a View in the FrontEnd

@foreach (var item in Model)
{
string id = item.ID;
<tr>
<td>
@Html.DisplayFor(modelItem => item.ID)
</td>
<td>
@Html.DisplayFor(modelItem => item.Name)
</td>
<td>
@Html.DisplayFor(modelItem => item.deviceRoom.Name)
</td>
<td>
@Html.ActionLink("Details", "Details", new { id = item.ID }) |
@Html.ActionLink("Actuate", "Actuate", "Device", new { id = id },
null) |
<a id="@Html.Raw(id)" , href="#myModal"
onclick="getLine(this.id)" data-toggle="modal">Measurements

@Html.ActionLink("Apply Flexoffer", "Flexoffer", new { id =
item.ID })
</td>
</tr>
}

The code represented in table 30 shows the usage of razor and html elements. For each object in the
Model list this method will create a new row in the table and add those option, which are connected
to controller methods.

3.2.3 VIEWMODELS

These classes represent the objects will we operate with. They are normally called Models but in case,
because they are also exactly what the system shows the user, they can be called ViewModels. They
are used by the razor for the creation of WebForms in the rendering/building of the Views.

84
PESTI Project

PESTI Report- Flexoffer Pilot

Table 30 - The representation of the Flexoffer object

public class Flexoffer

{
public long startTime { get; set; }
public long endTime { get; set; }
public List<double> upperEnergyValues { get; set; }
public List<double> lowerEnergyValues { get; set; }
public string name { get; set; }

}

Table 31 depicts the code for the representation of the Flexoffer object. The name of each field is
built in order to correctly match the name of the JSON string is received by the handlers. Doing so
enables the system to deserialize the string and returns the matching objects.

3.2.4 HANDLERS

These objects have the responsibility of sending the request towards the middleware. They use a
HttpServer, whose default URL is the abstract interface of the middleware. From there they build their
content, add the correct header and concatenate the rest of the URL in order to reach the service.
Then depending on the request they will execute the operation (GET, POST, DELETE, ...). When the
response is received they will return it to the controller who invoked the handler in the first place.

Table 31 - Code for the GetAllDevicelist function of the device handler

public static async Task<ICollection<Device>> GetAllDevicelList(string url)

{

ICollection<Device> devicelList = new List<Device>();
var client = WebClient.GetClient();

HttpResponseMessage response = await client.GetAsync(url);
if (response.IsSuccessStatusCode)

{
string jsonString = await response.Content.ReadAsStringAsync();
devicelist =
JsonConvert.DeserializeObject<List<Device>>(jsonString);

}

return devicelist;
}
The implementation of the function in table 32 is responsible for the retrieval of the devices in the
middleware. Using the HttpClient, that Handler executes the GET request for the list of devices in
FHMW.

3.2.5 SCRIPTS

Some of the operations, in order to be more responsive and user friendly, are done on client side,
directly using the web browser. Such operations are stored in .js Javascript files. Those functions will
retrieve information from the user, execute requests towards the middleware and alter the web page
depending to the results.

85
PESTI Project

PESTI Report- Flexoffer Pilot

Table 32 - Code for the appendSlice function

function appendSlice() {
var from = document.getElementById("inputLower").value;
lower.push(from);
console.log(lower);
var to = document.getElementById("inputUpper").value;
upper.push(to);
console.log(upper);
var dl1 = document.getElementById('Pattern');
dl.innerHTML += "<1i>From "+from+"kW to "+to +"kW.</1li>";
$('.modal-backdrop').remove();
$('#myModal').modal('hide");

}
The script depicted in table 33 is used when the user is building the pattern for a flexoffer. The

function retrieves the info from a modal, puts in the internal object and also adds it to a html object
list for the user to keep track of his work.

86
PESTI Project

PESTI Report- Flexoffer Pilot

4.2.7 SERVICE DESCRIPTION AND INTERFACE DESCRIPTION —
MIDDLEWARE

This document describes the services hosted by the FlexHousing Middleware. Each service is
described, has a sequence diagram of it implementation and an example for a request.

1. OVERVIEW

This document describes the services hosted by the FlexHousing middleware that supports the
flexoffer pilot, including its interfaces and its information model. The purpose of the FlexHousing
Middleware is to allow the user to perform CRUD (create, read, update and delete) operations on
devices and rooms representations, flexoffer creation, measurement verification and automated
actuations driven by received schedules.

The service integrates the flexoffer services implemented by Work Package 5 of the Arrowhead Project
with external technologies, in this case represented by a smart plug service provided by Virtual Power
Solutions.

Visual Paradigm Standard Edition(Institute Superior de Engenharia do Pofig) FlexHousing
SEexmosesz <<exposes>>
; | ! |
: <<exposes>> <<exposes=>> :
| 1 1 1
A\ AV vV AV
Flexoffer House M ents Device
+allFlexoffers() +getStats() +deleteMeasurements() +getAllDevices()
+allActiveFlexoffers() +deleteRoom() +getMeasurementsFromDateAndType() +getAllActuatableDevices()
+getFlexoffers(DevicelD) +registerRoom() +operation() +getDevice()
+getSchedules(DevicelD) +getAllRooms() +getDevicesByRoom()
+getFlexoffersByDay() +getAllDevicesByRoom() +actuate()
+getScheduleByDay() +Login() +removeSensor()
+postFlexoffer(Flexoffer) +registerDevice()
+deleteFlexOffer(Flexoffer) +addSensor()
+getSensorByDevice()
+getSensorTypes()

Figure 1 — FlexHousing FlexHousing interface Overview

The FlexHousing service is an application service. It is attached to an Arrowhead cloud containing an
Aggregator as such multiple instances can be instantiated on the same network.

2. INTERFACES
The FlexHousing service exposes four interfaces, namely Flexoffer, House, Device and Measurements.
In the following, the function names are preceded by the type of request it handles, with its name in
capital letters (GET, DELETE, POST, PUT).
This section reports the definition of the functions related to each interface, and examples regarding
the messages used in the context of the functions. Section 3 reports information regarding the
Information Model, and it documents each field of the messages.

2.1 FLEXOFFER

This interface is used for CRUD operations upon flexoffers, namely creating flexoffers, retrieving
flexoffers, with or without filters, and retrieving schedule.

87
PESTI Project

PESTI Report- Flexoffer Pilot

visual Pamdigm Standasd Edmoniinsitun Supe
+alFlexcffers()
+getSchedules(DevicelD)
ey
+deleteFlexOffer(Flexoffer)

Figure 47 - Flexoffer Interface
Figure 47 depicts the methods attached to the interface.

2.1.1 GET GETALLFLEXOFFERS

The GetAllFlexoffers function is used to retrieve all the flexoffers created by the user. It returns all
existing flexoffers, independently of their state, active, deleted or pending scheduling. This function is
mainly used for debugging purposes.

Table 33 - Example of a request to get all flexoffers

/FlexHousing/Flexoffer/GetAllFlexoffers

Path Parameters: Body
None [
Query Parameters { "name": "Testl",
None "startTime": 1638912,
Body "endTime": 1638912,
None "upperEnergyValues": [25],
"lowerEnergyValues": [50]
} 4

{ "name": "Test2",
"startTime": 1639008,
"endTime": 1639008,
"upperEnergyValues":

(12,127,
“lowerEnergyValues":
(10,101},
{on)

2.1.2 GET GETALLACTIVEFLEXOFFERS
It retrieves all the active flexoffers, namely the ones with an active schedule.

Table 34 - Example of a request to retrieve all active flexoffers

88
PESTI Project

PESTI Report- Flexoffer Pilot

/FlexHousing /Flexoffer/GetAllActiveFlexoffers

Path Parameters Body

None [

Query Parameters { "name": "Testl",

None "startTime": 1638912,
Body "endTime": 1638912,

None "upperEnergyValues": [25],

"lowerEnergyValues": [50]},
{ "name": "Test2",

"startTime": 1639008,

"endTime": 1639008,

"upperEnergyValues":
(12,127,

“lowerEnergyValues":
[10,101},

{ine o}

2.1.3 GET {PARAM}

This function retrieves the flexoffer that is currently attached to a device, and whose device ID
corresponds to the parameter added to the path.

Table 35 - Example of a request to retrieve the latest flexoffer attached to a device

/FlexHousing/Flexoffer/3ZU-VGC-N3J-NWK-9P

Path Parameters Body

Device ID — “3ZU-VGC-N3J-NWK-9P” ["name": "Testl",

Query Parameters {"startTime": 1638912,

None "endTime": 1638912,

Body "upperEnergyValues": [25],
None "lowerEnergyValues": [50]},

{"startTime": 1639008,
"endTime": 1639008,
"upperEnergyValues":

(12,127,
“lowerEnergyValues":
[10,101},
{ine o}

2.1.4 GET SCHEDULE {PARAM}

Similar to the function in section 2.1.1.3., it allows for the retrieval of the schedules bound to the
device whose ID corresponds to the function path.

89
PESTI Project

PESTI Report- Flexoffer Pilot

Table 36 - Example of a request to retrieve a schedule attached to a specific device

/FlexHousing/Flexoffer/Schedule/3ZU-VGC-N3J-NWK-9P

Path Parameters Body
Device ID — “3ZU-VGC-N3J-NWK-9P” [
Query Parameters {
None "name": "Lamp",
Body "Start": "Sep 24, 2016
None 7:00:00 pM",
"energyAmounts": [
15
]
}
]

2.1.5 GET DAY {PARAM}

This function is used to access all the flexoffers created in a day specified by a query param attribute,
for the device represented by the ID in the path. Normally requested when the user desires to check
the flexoffer history of a given device.

Table 37 - Example of a request to retrieve the flexoffers on a certain day

/FlexHousing/Flexoffer/Day/3ZU-VGC-N3J-NWK-9P?Day=2016-09-21

Path Parameters Body
Device ID — “3ZU-VGC-N3J-NWK-9P” [
Query Parameters {
Day - “2016-09-24" "name": "Testl",
Body "startTime": 1474452000000,
None "endTime": 1474459200000,
"upperEnergyValues": [
15
] 4
"lowerEnergyValues": [
12
]
} 4
{
"name": "Test2",
"startTime": 1474452000000,
"endTime": 1474459200000,
"upperEnergyValues": [
80
] 4
"lowerEnergyValues": [

90
PESTI Project

PESTI Report- Flexoffer Pilot

50

2.1.6 GET SCHEDULE DAY {PARAM}

Similar to the function in section 2.1.1.5., this function returns all the schedules applied to the device
specified by the path, in a day specified as the query parameter param.

Table 38 - Example of a request to retrieve the schedules for a specific day

/FlexHousing/Flexoffer/Schedule/Day/3ZU-VGC-N3J-NWK-9P?Day=2016-09-24

Path Parameters Body
Device ID — “3ZU-VGC-N3J-NWK-9P” [
Query Parameters {
Day — “2016-09-24" "name": "Testl",
Body "Start": "Sep 21, 2016
None 11:00:00 AM",
"energyAmounts": [
13
]
} 4
{
"name": "Test2",
"Start": "Sep 21, 2016
11:00:00 aM",
"energyAmounts": [
65
]
}
]

2.1.6 POST {PARAM}

Even though this function shared the same name as the one in 2.1.1.3,, it allows the user to create a
flexoffer through the POST operation. The body of the request contains a string representing the name
of the flexoffer, its startTime and endTime in milliseconds, and two arrays of doubles representing the
upper and lower energy values for each slice of the flexoffer.

Table 39 - Example of a request to store a flexoffer

/FlexHousing/Flexoffer/3ZU-VGC-N3J-NWK-9P

91

PESTI Project

PESTI Report- Flexoffer Pilot

Device ID — “3ZU-VGC-N3J-NWK-9P”

ResponseCode (200)

{
"startTime":1474452000000.0,

"endTime":1474459200000.0,
"upperEnergyValues":[25.0],
"lowerEnergyValues":[12.0]

}II

2.1.7 DELETE

As the name implies, this function allows the deletion of a flexoffer. It is not supposed to be used often
since, when a new flexoffer is created as a replacement for a previous one, the older one will be

deactivated.

Table 40 - Example of a request to delete a flexoffer

/ FlexHousing/Flexoffer?DevicelD=3ZU-VGC-N3J-NWK-9P

ResponseCode (200)

DevicelD — “3ZU-VGC-N3J-NWK-9P”

None

PESTI Project

92

PESTI Report- Flexoffer Pilot

2.2 DIAGRAMS

2.2.1 GET GETALLFLEXOFFERS

1.3: Retums flexofferController instance

€ e

1
1.4: getAllFlexoffers()

[SFrontERS| ! = Swener i S RS Housing <<Singleton>> <<Singleton>>
v FlexofferController DAO
T T T T
| | | |
| | | |
: 1: GET : /GetAlIFO | : :
>
1.1: new GSON() GSON : :
""""""" | I
T | |
1.2: getinstance() : :
i qn :
|
|
|
|
|
|

1.7: Retum JSON with flexoffers

|
|
|
|
|
|
|
|
|
|
|
|
|
|

1.4.6: retums flexofferDTO list

1.4.1: getinstance()

1.4.2: retums DAO instance

1.4.3: getAllFlexoffers()

1.5: toJson(foDTOLIst)

1.6: json String

1.4.4: retums FO list

flexofferDTO

Figure 48 - Sequence diagram for getAllFlexoffers

Figure 48 depicts the steps executed when retrieving all the flexoffers in the system.

PESTI Project

93

PESTI Report- Flexoffer Pilot

2.2.2 GET GETALLACTIVEFLEXOFFERS

1: GET : /GetAllActiveFO

1.7: Retum JSON with flexoffers

1.2: getinstance()

|
|
|
|
|
|
|
|
|
|
-

T
e 1.3: Retums flexofferController instance
______________ | AT St]

1.4: ge\AnActiveFlexofiers()

1.4.6: retums flexofferDTO list
’_

<<Singleton>> <<Singleton>>
FlexofferController DAO

1.4.1: getinstance()

1.4.2: retums DAO instance

1.4.3: getAllActiveFlexoffers()

1.5: toJson(foDTOList) ~I
|

1.6: json String

1.4.4: retums FO list

|

Figure 49 - Sequence diagram for getAllActiveFlexoffers

Figure 49 represents the sequence diagram for the execution of the get all active flexoffers service.

2.2.3 GET {PARAM}

) Superior de Enge rvxnmm

1: GET : /{param}

s

1.10: Retum JSON with flexoffer

<<Singleton>>
FlexofferController

1.5 getlnstanroe()

T
1.6: Retums flexofferController instance
!

S e -

I
1.7: convertsListToDTO{FOList)

1.7.1: new flexofferDTO()

1.7.2: retums flexofferDTO list

1.8: todson(foDTO}

PESTI Project

1.9: json String

————1

fr——=—

FlexofferDTO

Figure 50 - Sequence diagram for getFlexoffer

94

PESTI Report- Flexoffer Pilot

Figure 50 represents the sequence diagram for the retrieval of a specific flexoffer

2.2.4 GET SCHEDULE {PARAM}
(“FIORLERG | “dvn st Sneror de et P Housing <<Singleton>>
FlexofferController
[[|
| | |
| | |
| 1:GET: iGetSchedulelfparam) | :
gl 1.1: new GSON() GSoN :
|
|
| |
| |
| |
1.2: getinstance() | |
: pL
1.3: Retums flexofferController instance
S e e]
l
1.4: getFlexofferScheduleByDevID{param)
!
14.4: retums FOScheduleDTOlist [} ---------coo-"
P ===
:
1.5: toJson(schedule DTOLIist) |
1.6! json String
17:Retum JSON with schedules [[~

Sy

<<Singleton>>
DAO

1.4.1: getFOScheduleByDevicel D(param)

===

PO S e e SO A HO S P e R LSO

Figure 51 - Sequence diagram for getSchedule

1
|
| 1.4.2: retums FlexofferSchedule fist
|

FOScheduleDTO

e L e o e L e o S e

Figure 51 represents the sequence diagram for the retrieval of a specific schedule.

PESTI Project

95

PESTI Report- Flexoffer Pilot

2.2.5 GET DAY {PARAM}

[“FrontEnd | "FlexHousing <<Singleton>> <<Singleton>>

FlexofferController DAO

|
|
: 1: GET : /Day/{param}?Day=param2

i
1.2: getinstance()
\

1.3: Retums flexofferController instance

S e e

1.4: new DateFormatter("yyyy-MM-dd")
_________________ Palesnll (AP
I

i
1.5: formatter.parse{param2} |

; ‘
1.6: return date
< ————— -2 T2EE Fm—m—mm——-
|

1.7: getFlexofferByDevIDByDay(param day)

1.7.1: getinstance()

1.7.2: retums DAO instance

T

|

|

| IR s s R |

|

! 1.7.3: getFOByDeviceIDByDay(param,date)

! 1.7.4: retums Flexoffer List

| -

|

oo o 175 conversUSTODTOFOUS 1, [FOSchedulenTo
1.7.6: retums flexofferDTO list

1.9: jsonString
1.10: Retum JSON with flexoffers [I-I

————

|
|
Figure 52 - Sequence diagram for getFObyDay

The diagram depicted in figure 52 represents the steps taken in reiving the flexoffers for a specific
day.

PESTI Project

PESTI Report- Flexoffer Pilot

2.2.6 GET SCHEDULE DAY {PARAM}

~FonTERE renado o[FlaxHousing <<Singleton>> <<Singleton>>
FlexofferController DAO

1

I
e
oz
F
I
12
[N}
@
1 9
=]
I

U
E

1
1.2: getinstance()
I

1.3: Retums ﬂexoff:erControllef instance
[:

1
1.4: new DateFormatter("yyyy-MM-dd")
................ i
|

'
1.5: fomatter.parse{param2) |

|
t
. |
1.6: return date |
e 22 Fmm e i
' |
|
|

1.7: geff duleByDevIDBYD: day)

1.7.1: getFO! Devicel DByD: date)

»
e 1.7.2: retums FlexofferSchedule List jJ

1.7.3: conventsListToDTO(ScheduleList) FOScheduleDTO

P
:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1.7.4: retums FOScheduleDTO list

<_

T
|
1.8: toJson{scheduleDTOLIist) |

T

|

|

|

|

|

|

|

|

|

|

|

|

|

= % |
1.9: jsonString |
-] .
|

|

|

|

|

|

|

|

|

1.10: Retum JSON with schedules

————— e]

——————
ey

Figure 53 - Sequence diagram for getSchedulesByDay
Figure 53 depicts the sequence diagram for the retrieval of the schedules for a specific day.

2.2.7 POST {PARAM}

EEETE ' [FFiexHousing <<Singleton>> <<Singleton>>
FlexofferController DAOC
| 1: POST : /{param} !
1.1: new GSON()
et L A
Name:String,
startTime: long, :
endTime:long. I
upperEnergyValues:{double], 1.2: fromJson(JSON string) |
1.3: returns FlexofferDTO object
1.4: new DeviceController(param) |
______________________________ |
|
1.5 addFOtoDevice(foDTO) i !
1.5.1: getinstance()
T
1.5.2: Retums flexofferController instance
______ S e e e S
1.5.3: convertDTOtoRealFlexoffer(foDTO)
I
v
1.5.4: retums flexoffer
e R S S e
1.5.5: getinstance() :
T
1.5.6: retums DAO instance
< _____ ——
Altif new FO is replacing nextDayFO J
1.5.7: deactivateFO()
1.5.8: retums responseMessage
1.5.9: insertFlexoffer(fo,foDTO.getName())
h
i
L 1.5.10: retums responseMessage
R —— 1.6: returns responseMessage !
i e e S B e e e e e 1
T " T {
! ! | !

Figure 54 - Sequence diagram for posting a flexoffer

Figure 54 depicts the sequence diagram for the registering of a flexoffer in the system.

PESTI Project

PESTI Report- Flexoffer Pilot

2.2.7 DELETE
“FrontEnd | b o ke Srgmmaa A Elek Housing FlexofferController <<Singleton>>
DAO
! 1: DELETE : /Flexoffer?DevicelD=param =

Pl s e

1.1: deleteFlexoffer{param)

1.1.1: getinstance()

1.1.2: retums DAO instance

1.1.3: delete Flexoffer{param)

1.1.4: retums responseMessage

1.2: returns responseMessage

1.3: returns responseMessage

e A

Figure 55 - Sequence diagram for deleting a flexoffer
Figure 55 represents the steps taken when deleting a flexoffer.

2.3 HOUSE

This interface is used to interact with the devices in the building and the login against the VPS services,
the latter being required to be able to manage devices from an actuation and measurement retrieval
point of view.

House
+getStats()
+deleteRoom)
+registerRoomy()
+getAllRooms()
+gethllDevicesBy Roomy)
+Login{)

Figure 3 — Flexoffer Interface

2.3.1 GET STATS

The stats function is used for the retrieval of statistics relevant to the VPS system, namely the number
of flexoffer applied on devices, the total number of flexoffers that had been applied and a value
representing the money saved using the FlexHousing service.

98
PESTI Project

PESTI Report- Flexoffer Pilot

Table 41 - Example of a request to get the statistics of a house

/FlexHousing/House/Stats

Path Parameters Body
None
Query Parameters {
None "numberOfDevicesWithFO": 1,
Body "numberOfFOApplied": 24,
None "moneySaved":
1.2000000000000002
}

2.3.2 DELETE ROOM

As the name implies, it allows the deletion of a room, specified in a query parameter, which has to be
the room ID.

Table 42 - Example of a request to delete a room

/FlexHousing/House/Room?RoomID=24

Path Parameters Body

None

Query Parameters ResponseCode (200)
RoomlID — “24”

Body

None

2.3.3 POST ROOM

This function allows the creation and addition of the room with the name in the body of the request.
The service will automatically assign a unique ID when the room is added to the list. The ID is
obtainable when requesting the details of the room.

99
PESTI Project

PESTI Report- Flexoffer Pilot

/

"Name": “test”

FlexHousing/House/Room

ResponseCode (200)

Table 43 - Example of a request to register a room

2.3.4 GET ROOM {PARAM}

When consumed, this function will return all the devices that are currently in the room whose name

was sent as a path parameter.

None

/FlexHousing/House/Room/24

RoomID - “24”

Table 44 - Example of a request to retrieve a specific room

"ID": "3ZU-VGC-N3J-NWK-9P",

"room": {
"Name": "Sala",
"ID": 24
}I
"Name": "test",
"sensors": [
{
"id": 9454,

"Name": "Active Power"

PESTI Project

100

PESTI Report- Flexoffer Pilot

2.3.5 GET ROOM

This function allows for the retrieval of every room in the system. The returned data are a list of rooms
comprising name and unique ID.

Table 45 - Example of a request to get all the rooms

/FlexHousing/House/Room

Path Parameters Body
None
Query Parameters [
None {
Body "Name": "Sala",
None "ID": 24
} 4
{
"Name": "Quarto Principal",
"ID": 25
} 4
{
"Name": "Garagem",
"ID": 26
} 4
{
"Name": "Cozinha",
"ID": 27
} 4
{
"Name": "Sala de Estar",
"ID": 28
} 4
{
"Name": "Teste",
"ID": 29
}
]

2.3.6 POST LOGIN

This function accepts a body with an email address and a password. The system will then communicate
with the VPS services in order to verify if the email/password combination that was sent is registered
in their system. If the response is a success code, it will also include an authorization token, used in
any operation involving their services.

101
PESTI Project

PESTI Report- Flexoffer Pilot

Table 46 - Example of a request to execute the login

/

FlexHousing/House/Login

ResponseCode(200)

{

"Login":1120527 @isep.ipp.pt,

"Password":"cister"}

2.4 DIAGRAMS

2.4.1 GET STATS

'-‘mld o Lu.’:mr—

1: GET : /Stats

1.1: new GSON()

|
|
1.4: getStatistics()

1.4.2: getAlIFO()

1.4.3: retums all FO list

1.4.4: getDevicesWithFO()

1.4.5: retums device list

|
146 setNumbetOfFOsl(FOListJ

|
1.4.8: retums statistics 1.4.7: setNumberOfDevice sWithFO(deviceList)

_____________ SIS T
|

1.5: toJson(stats) |

"
g

|
|
|
1.6: jsonString I
|
|
|
|
I

Figure 56 - Sequence diagram for retrieving the statistics of the house
Figure 56 depicts the sequence diagram for retrieval of the statistics of the house.

2.4.2 DELETE ROOM

102
PESTI Project

mailto:1120527@isep.ipp.pt

PESTI Report- Flexoffer Pilot

TJ:'J st to Superior de .Jwr;umm

<<Singleton>>
HouseController

|
: 1: DELETE : /Device?RoomID=param :

1.1: getinstance()

F————-

1.2: returns houseController

1.3: deleteRoom(param)

1.3.5: retums responseMessage

1.3.4: retums responseMessage
]]

1.3.1: delete Room{param)

<<Singleton>>

1.3.2: retums responseMessage

Figure 57 - Sequence diagram for deleting a room

Figure 57 depicts the sequence diagram for deleting a room.

2.4.3 POST ROOM

\:\‘,1 st S b2 e o FiFgXHousing

: 1: POST : /Room :

Room{
Name:String}

1.1: new GSON()

1.2: fromJson(JSON string) |
.|

'
1.3: getinstance()

1.2.1: new String()
1.2.2: retums String object ~ |[""" """ 77
|

<<Singleton>>
HouseController

t
1.4: returns houseController

A% mtums:responseMessage

- 24
1.11.1: retums responseMessage

————1
————

i 1.3.3: removeRoomBylD{param)

<<Singleton>>

1.5: newRoom(roomName)

1.6: getinstance() :
t
|

1.7: returns DAO instance

1.8: insertRoom(Room)

Figure 58 - Sequence diagram for registering a room

1.10: addRoom(Room)

———————

1.9: returns responseMessage
- —le

Figure 58 depicts the sequence diagram for insertion of a room into the system.

PESTI Project

103

PESTI Report- Flexoffer Pilot

2.4.4 GET ROOM {PARAM}

B R 2 =T <<Singleton>>
HouseController

1: GET : /Room/{param}

—————————————]

1.2: getinstance()
i P

1.3: returns houseController
=]

|
1.4: getAllDevice sBy Room{param)

1.5: returns device list

e R S e q———————

1.6: toJson(deviceList)

1.7: json String
1.8: Retum JSON with devices | [~
T T |
| I

S s

Figure 59 - Sequence diagram for retrieving all the devices in a room

Figure 59 depicts the sequence diagram for obtaining the devices attached to a room.

2.4.5 GET ROOM

FRBATERR] ! =oninst Sweror de Sngeon o [EIERHOUSING <<Singleton>>
: HouseController

1: GET : /Rocom

P 1.1: new GSON() GSON

1.2: getinsta noe(')

|
1.3: returns houseController
=)

T S5 e
|
1.4: getAllRcoms()
+
1.5: returns room list
R SR e S

1.6: toJdson{rcomList)

1.7: json String

1.8: Retum JSON with rooms

< ———————————————————— |

Figure 60 - Sequence diagram for retrieving the details for a room

104
PESTI Project

PESTI Report- Flexoffer Pilot

Figure 60 depicts the sequence diagram for the retrieval of the details of a room.

2.4.6 LOGIN
“FiontEnd | - 5 #: (" FiexHousing <<Singleton>> <<Singleton>> <<Cloud>>
HouseController VPSController VPS Sewvices
! 1:POST : /Login !

Loginf
Email:String,
Password:String}

1.2.1: new Room() LoginSession
1.2.2: retums LoginSessionabject (I~ 77777 TTTTTIITS

|

|

|

|

|

|

|

|

|

|

|

1.2: fromJson(JSON string) | :

|

|

|

|

|

| |

| |

2 |

1.3: getinstance() |
t

14 rclulrns houseController
!
1.5: loginAtVP S{login_session)

1.5.1: getToken(login)

1.5.1.1: login{login)

1.5.1.2: retums responseMessage

Alt If login response is sucessful) :

1.5.1.3: setToken(response.getToken())

T
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1.5.1.4: retums responseMessage
|

1.6: returns responseMessage

1.7: returns responseMessage

e e e e e e e b

————
——————1

Figure 61 - Sequence diagram for the login in the system
Figure 61 depicts the sequence diagram the steps executed when the Login request is received

2.5 DEVICE

This interface gives the possibility managing the devices: register, update, check details, register
sensors and delete them. Any function that interacts with the VPS services will fail if the authorization
step wasn’t previously executed. The sensors are embedded in the devices but for the sake of usage,
they need to be added to the FlexHousing system. The methods attached to interface are depicted in
Figure 62.

+getAllDevices()
+gethll ActuatableDevices()
+getDevice()
+getDevicesByRoom()
+actuate ()
+removiesensor|)
+registerDevice()
+addSensor()
+getsensorByDevice()
+getSensorTypes()

Figure 62 - Flexoffer Interface

105
PESTI Project

PESTI Report- Flexoffer Pilot

2.5.1 GET

The function with the GET request at the same path as the interface(/Device) returns a list with all the
devices currently registered in the application.

Table 47- Example of a request to retrieving all the devices from the system

/FlexHousing/Device

Path Parameters Body
None
Query Parameters [
None {
Body "ID": "3ZU-VGC-N3J-NWK-9P",
None "room": {
"Name": "Sala",
"ID": 24
}I
"Name": "test",
"sensors": [
{
"id": 9454,
"Name": "Active Power"
}
]
}
]

2.5.2 GET GETACTUATABLE

Similar to the function described in section 2.3.1.1, with the exception of only returning devices with
the actuators attached to them. All the sensors have sensors embed, but some devices are capable to
actuate because they lack the actuation sensor. Such devices aren’t flexoffer compliant.

Table 48- Example of a request to retrieve all the actuable devices

/FlexHousing/Device/GetActuatable

Path Parameters Body

None

Query Parameters [

None {"ID": "3ZU-VGC-N3J-NWK-9P",
Body "room": {

106
PESTI Project

PESTI Report- Flexoffer Pilot

None "Name": "Sala",
"ID": 24
br
"Name": "test",
"sensors": [
{
"id": 9454,
"Name": "Active Power"
br
{
"id": 9456,
"Name": "Actuator"}]

2.5.3 GET {PARAM}

Invoking this function with the interface path with and an extra path parameter will return the details

of the device whose ID is in the said parameter. This will return name, ID, Room and sensors currently
linked to that specific device.

Table 49- Example of a request to retrieve a specific device

/FlexHousing/Device/3ZU-VGC-N3J-NWK-9P

Path Parameters Body
DevicelD — “3ZU-VGC-N3J-NWK-9P”
Query Parameters {
None "ID": "3ZU-VGC-N3J-NWK-9P",
Body "room": {
None "Name": "Sala",
"ID": 24
} 4
"Name": "test",
"sensors": |
{
"id": 9454,
"Name": "Active Power"
} 4
{
"id": 9450,
"Name": "Actuator"
}
]
}

2.5.4 POST ACTUATE

107
PESTI Project

PESTI Report- Flexoffer Pilot

This function is the backbone of the FlexHousing system: it allows to issue a command to a specific
device. The body of the request contains the ID of the device and the command to be issued: 0 for
turning off, 1 for turning on and 3 for commutation (from 1 to 0 or vice versa). When received, the
request will trigger FlexHousing into sending a second request to the VPS services, issuing the
demanded command to that specified device. This function can be used with any device, but will only
have an effect with devices equipped with actuators.

Table 50 - Example of a request to request an actuation on a device

/FlexHousing/Device/Actuate

Path Parameters

Body

None

Query Parameters

None

Body

{
"ID":"3ZU-VGC-N3J-NWK-9P",
"command":3

ResponseCode (200)

2.5.5 DELETE SENSOR

This function is used when a sensor is to be deleted. The request is sent specifying the device ID and
sensor ID, representing which sensor to delete from the system

Table 51 - Example of a request to delete a sensor

/FlexHousing/Device/Sensor?DevicelD=3ZU-VGC-N3J-NWK-9P&SensorID=9454

Path Parameters

Body

None

Query Parameters

DevicelD — “3ZU-VGC-N3J-NWK-9P”
Sensor|D — “9454”

Body

None

ResponseCode (200)

2.5.6 POST

PESTI Project

108

PESTI Report- Flexoffer Pilot

Using this function, attached to path of the interface, allows the user to register a device. The only
information the user has to input is the ID of the device, normally placed directly on the device, and a
name, used for a human readable traceability within the system. FlexHousing is capable to link the
device to its sensors and measurements with the physical ID of the device.

Table 52 - Example of a request to register a device

/FlexHousing/Device

Body

Path Parameters
None
Query Parameters
None
Body
{
"ID": "3ZU-VGC-N3J-NWK-9P",
“room":
"Name": "Sala",
"ID": 24
|2
"Name": "test"

ResponseCode (200)

2.5.7 POST SENSOR

This function allows for the attachment of sensors to the device. Essentially the sensors are already
attached to the device but only in the VPS services and have their own local ID. This function retrieves
the ID of that tag and allow the traceability and responsiveness of the said sensor, for either
measurements or in more specific case, the actuation. The body of the request contains the name of
the sensor meant to be added and the ID of the target device.

Table 53 - Example of a request to register a sensor

/FlexHousing/Device/Sensor

Path Parameters

Body

None

Query Parameters

None

Body

{
"ID": "3ZU-VGC-N3J-NWK-9P",
"Name": "Active Power"}

ResponseCode (200)

PESTI Project

109

PESTI Report- Flexoffer Pilot

2.5.8 GET SENSOR

The usage of this function allows the user to retrieve the sensor currently attached to a device,
specified by its ID, attached by a query parameter

Table 54 - Example of a request to retrieve the details of a sensor

/FlexHousing/Device/Sensor/3ZU-VGC-N3J-NWK-9P

Path Parameters Body
DevicelD — “3ZU-VGC-N3J-NWK-9P”
Query Parameters [
None {
Body "id": 9454,
None "Name": "Active Power"
} 4
{
"id": 9450,
"Name": "Actuator"
}
]

2.5.9 GET SENSOR TYPES

This function enables the user to check which kind of sensors is available to be added. It returns a list

of strings, containing the names of the sensors.

Table 55 - Example of a request to retrieve the sensor types in the system

/FlexHousing/Device/Sensor/Types

Path Parameters Body

None [

Query Parameters "Voltage RMS",
None "Frequency",

Body "Active Power",
None "Active energy+",

"Actuator",
"Power Factor",
"Power Factor",
"RSSI",

"LOI"

PESTI Project

110

PESTI Report- Flexoffer Pilot

2.6 DIAGRAMS

2.6.1 GET

FRBATERG | = = S o o S [GXHoUSING <<Singleton>>

1: GET : /GetAllDevices

Lg 1.1: new GSON() GSON

12 getlnstanoe(')

|
1.3: returns houseController
—

& RS
1
1.4: GetAllDevices()
1.5: returns all deviqes
e e SIS

1.6: toJson{devicelist)

1.7: json String
1.8: Retum JSON with devices | [~ 7
T T |
! |

Figure 63 - Sequence diagram for retrieving all the devices in the system
Figure 63 depicts the sequence diagram for retrieving the device that are registered in the system.
2.6.2 GET GETACTUATABLE

FRBALERG | © e Swe oo Seens (RIS HouSING <<Singleton>>
HouseController

1: GET : GetAllActuatableDevices

——_—_—_—————————]

1.2: getinstance()
| P
1.3: returns houseController
e e S ey
I
1.4: getDevicesWithActuators
f P
1.5: returns devices with actuators
_____________ —“———————

1.6: toJson(devicelList)

1.7: json String
1.8: Retum JSON with devices £ty

|
T T |

—————————E

Figure 64 - Sequence diagram for retrieving all the actuable devices

111
PESTI Project

PESTI Report- Flexoffer Pilot

Figure 64 depicts the sequence diagram for retrieving the devices that have the Actuator sensor

linked to them.

2.6.3 GET {PAR
" Front End

vcdamd

AM}

1: GET : /{param}

' ‘FlexHousing

1.8: Retum JSON with device

1.1:

new GSON()

<<Singleton>>
HouseController

GSON

1.2: getinsta noe(')

1.3: returns houseController
=

1
1.4: getDeviceBylD{param)

1.5: returns device with that ID

& e e e =

1.6: toJdson{device)

=
|

1.7: json String

Figure 65 - Sequence diagram for retrieving the details for a specific device

Figure 65 depicts the sequence diagram for obtaining the details a device.

2.6.4 POST ACTUATE

1.1: new GSON()

1.2:fromJson{JSON strng)

1.2.2: retums ActuationFH object

1.3: new DeviceController(actuationF H.getiD())

| Device Controfler

|

1.4: actuate(actuationFH,getCommand()) !

1.4.1: getinstance()
I

<<Singleton>>
\VPSController

14.2: retums

VPSController instance

o

143: getSensor(Actuator’) |
1.44: actuate(sensorgetTag), command)
I

<<Cloud>>
VPS
ices

H

1443 mtu;ns responseMessage

1.5: returns

‘ ‘ e
i 1:POST : iActuate]
ActuationFH{
1D:String,
command: integer}

1.6: returns

i
|
|
|
|
|
|
|

Figure 66 - Sequence diagram for requesting an actuation on a device

Figure 66 depicts the sequence diagram for the operations executed when a request for actuating on

a device is received.

PESTI Project

112

PESTI Report- Flexoffer Pilot

2.6.5 DELETE SENSOR

S5 Insshuto Superic o Engarhiriado P Py

I 1: DELETE : /Sensor?DevicelD=param&Sensor=param2 I

1.1: new DeviceController(param) Device Controller

1.2: removeSensor(param2) :

i 1.2.1: removeSensor(getSensorBy|D{param2))
1.2.2: getinstance()

1.2.3: retums DAO instance

1.2.4: delete Sensor{param2)

1.2.5: retums responseMessage

1.3: returns responseMessage

<_ ______________________

1.4: returns responseMessage

< ____________________________

.
|
|
|
|
|

Figure 67 - Sequence diagram for deleting a sensor
Figure 67 depicts the sequence diagram for the deletion of a sensor.

2.6.6 POST

[FRORMERG | = et Seror oo oo (ISR HousIng <<Singleton>> <<Singleton>>
HouseController DAO

! 1: POST : /Device !

NewDeviceDTO{
1D:String,
MName:String,

Room:amesstrng, | [_____ i\ ﬂ
D:nteger)

1.2: fromJson(JSON string) :
1.2.1: new NewDeviceDTO() NewDeviceDTO
1.2.2: retums NewDeviceDTO object [~~~ "~~~ """ 77777%

1.3: getinstance() |

t
1.4: returns houseController
T -

|

I

1
1.5: addNewDevice(DTO.getID,DTO.getName ,DTO.getRoom().getName)

1.5.1: ge y DTO.getRoom().geth:

1.5.2: new Device(lD.Name.Mom]
<«

1.5.3: addDevice (device)

1.5.4: getinstance()

1.5.5: retums DAO instance

1.5.6: InsertDevice(device) ,

T
T 1.5.7: retums responseMessage

1.7: returns responseMessage

a
|
I

Figure 68 - Sequence diagram for registering a device

Figure 68 depicts the sequence diagram the registration of a device into the FlexHousing system.

113
PESTI Project

PESTI Report- Flexoffer Pilot

2.6.7 POST SENSOR

H 1: POST : /Device/Sensor i

SensorDTO(
ID:integer,
tame:sing, (|| illanbian S
DevicelD:String}
1.2: fromJson(JSON siring) !

1.2.2: retums SensorDTO object

T
1.3: new DeviceController(SensorDTO.getDevicelD())
_______________________ IS e B SR S
I
|
|

1.4: addSensorToDevice(SensorDTO. getName)

ngle
'VPS Controller

1.5: returns responseMessage

1.4.1: new Sensor(Device getiD,Nam

1.4.2: getinstance()

e) Sensor

T
1.4.3: retums VPSController instance
I

1.4.4: getTag(Device

.getlD,Name)

1.45: retums

tag

D

14.4.1: GET:/Tags

146 setiD(tagID)

1.4.7: getinstance()

EV

1.4.9: addSensor(Sensor)
1.4.10: insertSensor(Sensor)
»

1.4.11: retums responseMessage
Prta i s satincn

1.6: returns responseMessage

Figure 69 - Sequence diagram for adding a sensor in the system

Figure 69 depicts the sequence diagram for adding a sensor to the FH system.

2.6.8 GET SENSOR
“FrontEnd | o

: 1: GET : /Sensor?DevicelD=param

1.1: new DeviceController(param)

- — e - - =

1.2: getSensors()

1.4.4.2: retums tagList for all devices J

1.3: returns SensorList

1.4: new GSON()

1.5: todson{SensorlList)

< ________________________

GSON

1.7: returns JSON with sensor List

= — — — — — — — — —

S

o
I
|
!

1.6: json String

Figure 70 - Sequence diagram for obtaining the details for a sensor

Figure 70 depicts the sequence diagram for retrieving the details from a sensor.

PESTI Project

<<Cloud>>
VPS Services

114

PESTI Report- Flexoffer Pilot

2.6.9 GET SENSOR TYPES

" FrontEnd - ! = o ©oe PFlexHousing <<Singleton>>
HouseController

1: GET : /Sensor/Types

> 1.1: new GSON() GSON

1.2: getinstance()

1.3: returns houseController

1.4: getSensorTypes

1.5: returns sensorTypes List.

< R

|
1.6: toJson{SensorTypesList) |

1.7: json String
1.8: Retum JSON with sensor types < - ———

|
T T |

Figure 71 - Sequence diagram for retrieving the types of sensors from the system
Figure 71 depicts the sequence diagram retrieving the different types of sensors.

2.7 MEASUREMENTS

This interface is used to query the measurements of the sensors embedded in the devices. Used for
verification of values, flexoffer establishment and to check if a flexoffer was respected energy-wise.
The services accept GET and DELETE operations, and their path have query parameters acting as filters.
Figure 72 depicts the methods attached to the Measurements interface.

d Meas urements
+deleteM easurements()
+gethMeasure mentsFromDatefnd Type()

Figure 72 - Measurements Interface

2.7.1GET

The GET function applied to a path allows the user to retrieve information about the measurements
from a device’s sensor. Every sensor has measurements although they can in specific cases only return
some stock values (The actuator will only return 0 or 1, depending whether the device was actuated
during that time). The measurements are stored at VPS servers, so the FlexHousing system acts as an
intermediate, with the option of storing specific information locally if the user desires.

115
PESTI Project

PESTI Report- Flexoffer Pilot

Table 56 - - Example of a request to retrieve the data collected by a sensor between dates

/FlexHousing/Measurements?DevicelD=3ZU-VGC-N3J-NWK-
9P&from=1473951600000&t0=1473962400000&Sensor=Active+Power
Path Parameters Body
None [
Query Parameters {
DevicelD — “3ZU-VGC-N3J-NWK-9P” "Measuring": "Active Power",
From —“1473951600000” "Value": 0.0178,
To —“1473962400000” "Date": "Sep 15, 2016
Sensor — Active Power 3:00:00 pM"
Body br
None {
"Measuring": "Active Power",
"Value": 0.0204,
"Date": "Sep 15, 2016
3:15:00 pM"
} 4
{
"Measuring": "Active Power",
"Value": 0.0218,
"Date": "Sep 15, 2016
3:30:00 pM"
} 4
{
"Measuring": "Active Power",
"Value": O,
"Date": "Sep 15, 2016
3:45:00 pM"
} 4
2.7.2 DELETE

The DELETE function allows the user to clear the database of the measurements that were stored
locally. The query parameters allow the system to pinpoint from which sensor to delete the

information and of which device

Table 57- Example of a request to delete the data collected by a sensor

/FlexHousing/Measurements?DevicelD=3ZU-VGC-N3J-NWK-9P&Type=Active+Power

Path Parameters

Body

None

Query Parameters

DevicelD — “3ZU-VGC-N3J-NWK-9P”

ResponseCode (200)

PESTI Project

116

PESTI Report- Flexoffer Pilot

Type — “Active Power”
Body
None

2.8 DIAGRAMS

2.8.1 GET

e Engrhsad <<Singllon>> I«Snwon» ‘ <<Cloud>>
I
|
|
|
|
1.1: new GSON()

1: GET ?RoomID=par pa oar

1.3.2: new Long(param2) |

1.3.3: retum from in long

1.34: new Long(param3)

1.3.5: retum to in long

|
<__| 1.3.6: retumSensorByName(paramd)

1.3.7: getinstance()

1.3.8: retums VPSControler instance
!

I
1.3.9: getMeasurements(Sensorfrom,to)
I

|
|
|
|
1.39.2: retum Measurements List
1
|
|
|
|

AltfstorelnDB optionis ON]

|
|
|
u |
t t
| |
| |
|

1.3.10: insertMeasurments(MeasurmentsList)
. |

T T
1.3.11: retums responseMessage J

L

|

|

I

|

|

|

L
|
|
|
I
|
|
|
|

|

|

|

t

|

|

|

|

|

|

|

|

|

|

I

|

|

|

i |

1.312: convertListToDTO{measurementsLst) :

By ||FE SRR AR R ERRERRTIRRTRAR [|

1.3.13: retums MeasurementsDTO List ' :
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
\
|
14:toJsoneasurenenisis) |

1.5: jsonString

1.6: Retum JSON with sensor types

r r }
| | !

S |

Figure 73 - Sequence diagram for retrieving the measurements collect between 2 dates

Figure 73 depicts the sequence diagram for gathering the measurements from a sensor for a time
period

117
PESTI Project

PESTI Report- Flexoffer Pilot

2.8.2DELETE

FlexHousing

1:GET pa pai

1.6: Retum JSON with sensor types

1.1: new GSON()

<<Singelon>> <<Singleton>> <<Cloud>>
VPSController DAO VPS Senvices

1.3: returnMeasurements Device.ID param2, param3)

132 new Long(param2) |

133 retum fromin long

1.34: new Long(param3)

1.35: fetumto in long

1.36: retumSensorByName(paramd)
|

i
]
137: getinstancel) |

t
1.3.8: retums VPSController instance
'

T
1.39: getMeasurements(Sensor,from, o)
I

|
| 1.39.1: fnstant?from=fromato=toatags=SensorgetiD

| »
o

|
1.3.9.2: retum Measurements List
L

Alt If storelnDB optionis ON_] | |

| |
1.3.10: insertMeasuments(MeasurmentsList)
. I

T T
1.3.11: retums responseMessage VIJ
1

1.3.13: retums MeasurementsDTO List

1.4: toJson{MeasurementsList)

1.5:jsonString i“

W
i 1

1.3.12: convertsListToDTO| e ist) >’—T|

s s e sty

Figure 74- Sequence diagram for deleting the measurements from a sensor

Figure 74 depicts the sequence diagram for the deletion of the measurements stored in the

middleware from a device and type of sensor.

3. INFORMATION MODEL

This section explains what each parameter and field represent for each interface of the FlexHousing

service.

3.1 FLEXOFFER

Table 58 - Description of the parameters used in the flexoffer interface

Parameter Format Description

DevicelD String The physical ID of the device

Flexoffer FlexofferDTO Contains the payload of the flexoffer

Schedule ScheduleDTO Contains the information about the
schedule

Day vyyy-MM-dd The date of a certain day

startTime/endTime long A specific moment in time in milliseconds
since 1% of January 1970

PESTI Project

118

PESTI Report- Flexoffer Pilot

upper/lowerEnergyValues

List of Doubles Each double represents an amount of

energy in kW

Name String Name of the flex. Normally allusive to the
device it was applied to.
3.2 HOUSE
Table 59 - Description of the parameters used in the house interface
Parameter Format Description
RoomID Integer The local ID of the room
DevicelD String The physical ID of the device
Email Email (aaaaa@aaaa.aa) | The email use to register at the VPS services
Password String The password use in conjuction with the
email for the VPS account
Room Room Contains the details of the room
Device NewDeviceDTO Contains the details of the device
Name String Sent to create a room with that name
3.3 DEVICE
Table 60 - Description of the parameters used in the device interface
Parameter Format Description
DevicelD String The physical ID of the device
Device NewDeviceDTO Contains the details of the device
Sensor SensorDTO Contains information about the sensor

ActuationFH

SensorTypes

SensorlD

3.4 MEASUREMENTS

Contains the ID and command of the

actuation

ActuationFH

List of String Represents the List of names of the sensors
that may be present in the devices
Integer Represents the ID of sensor using the VPS

local ID

Table 61 - Description of the parameters used in the measurement interface

Parameter Format Description

DevicelD String The physical ID of the device

Sensor String Name of the sensor

from/to long A specific moment in time in milliseconds

PESTI Project

since 1°* of January 1970

119

PESTI Report- Flexoffer Pilot

4.3 TESTING

The realization of software tests is crucial to ensure that it meets all of its requirements and has the
expected behavior. This process should be incremental and implemented alongside the project. If
some errors aren’t picked up earlier on, it might lead to some serious flaws [32].

In fact, there are two different approaches of development tests, “Black-Box” and “White-Box”
testing. “Black-Box” testing is done without knowing the internal parts of the software, the tester
knows what the program should do but does not know how it works. This testing approach applies in
different levels of software testing such as integration testing, system testing or acceptance testing.
Whereas the White-Box testing focus on the internal parts of the software, forcing the tester to know
the structure of the program. Most commonly, the White-Box testers have programming skills and
had already studied the implementation code. This testing approach applies in three different level of
software testing: integration, unit and system.

For the purpose of this project, seeing that a distributed system was developed, standard Unit Testing
would be lackluster. As such, a big emphasis was given to the acceptance tests [33].

4.3.1 ACCEPTANCE TESTS

Acceptance tests are developed focusing on specific scenario. Normally involving the usage of the
system as a whole. Each acceptance test tests a features, and features in this case translate into Use
Cases.

So for each Use Case, an acceptance test was developed.

1

Send Flexoffer
1. Input the required static information 1. Success
2. Able to retrieve pattern from 2. Success

measurements 3. Success
3. Manually create flexoffer 4. Success
4. Send Flexoffer 5. Success
5. Flexoffer received 6. Success
6. Flexoffer stored in database
Final Result Sucess

Table 62 - Acceptance test for UC 1

120
PESTI Project

PESTI Report- Flexoffer Pilot

2

Receive the schedules
1. Retrieve Flexoffer from database 1. Success
2. Execute Flexoffer emission 2. Success
3. Receive Schedule 3. Success
4. Store Schedule into database 4. Success
5. Ask for specific schedule 5. Success
6. Retrieve schedule from database 6. Success
7. Send Schedule 7. Success
8. Create Chart for Schedule 8. Success

Final Result Success
Table 63 - Acceptance test for UC 2

3

Login
1. Send credentials 1. Success
2. Receive credentials 2. Success
3. Send credentials to VPS Services 3. Success
4. Retrieve response Token 4. Success
5. Attach token to Controller 5. Success
6. Returnresponse 6. Success

Final Result Success

Table 64 - Acceptance test for UC 3

4
Manage House

1. Send request for room list 1. Success
2. Receive request 2. Success
3. Returnthe room list 3. Success
4. Receives room list 4. Success
5. Creates new room 5. Success
6. Receive new room information 6. Success
7. Returns response 7. Success
8. Request room details 8. Success
9. Receives request 9. Success
10. Return room details 10. Success
11. Receives room details 11. Success
Final Result Success

Table 65 - Acceptance test for UC 4

121
PESTI Project

PESTI Report- Flexoffer Pilot

5
Manage Device

1. Send request for device list 1. Success
2. Receive request 2. Success
3. Return the device list 3. Success
4. Receives device list 4. Success
5. Request device details 5. Success
6. Receives request 6. Success
7. Return device details 7. Success
8. Receives device details 8. Success
Final Result Success

Table 66 - Acceptance test for UC5

6
Check Measurements

1. Send request 1. Success
2. Receive request 2. Success
3. Send request to the VPS Services 3. Success
4. Receive response 4. Success
5. Send measurements back 5. Success
6. Receive measurements 6. Success
7. Build chart for measurements 7. Success
Final Result Success

Table 67 - Acceptance test for UC 6

7
Actuate on Device

1. Send request 1. Success

2. Receive request 2. Success

3. Send Request to VPS services 3. Success

4. Receive response 4. Success

5. Returnresponse 5. Success
Final Result Success

Table 68 - Acceptance test for UC 7

In conclusion, one can verify that all the tests were successful. The is further evidence by the formal
demonstration done in an official Arrowhead Meeting held in Turin, in October. All the features were

122
PESTI Project

PESTI Report- Flexoffer Pilot

demonstrated to the various partners present. Dr Jerker Delsing, Director of the Artemis European
project in which Arrowhead is included, was pleased by the demonstration. In addition to being one
of 2 partners who had live demonstration, all the features were demonstrated successfully.

123
PESTI Project

PESTI Report- Flexoffer Pilot

5. CONCLUSION

This chapter resumes all the developed work, taking into account what went best and worst during all
the internship.

Section 5.1 does a recap of the problem and how it was dealt with, then Section 5.2 enumerates and
describes the objectives that were accomplished. The limitations of the developed solution along with
some future work perspectives are discussed in Section 5.3. Finally, Section 5.4 describes the opinion
of the student towards the internship as a whole.

5.1 SUMMARY

This project’s goal was to implement a pilot for the integration of the Flexoffer Concept. As described
in section 1, the Flexoffer concept revolves around the exposure of the demands in electrical power
of the users to the energy market. The offer with the flexibility the user has is sent to an aggregator,
which sends back the schedule that meets the best prices (lowest price), but still matching the user’s
needs.

This pilot integrates with external cloud technologies from VPS, turning it into a house energy
automation application. The user would install smart plugs between the appliance and the electrical
outlet. The smart plugs allow for the control and monitor of the energy flow towards the appliance.
The company that supplied the plugs, Virtual Power Solutions, also provided us with the API that allow
for the remote control of the plugs.

The implemented pilot worked structured upon 2 major components: the Middleware and the
FrontEnd. The middleware was responsible to connect the Flexoffers services and the VPS services.
Capable of persisting any operation that the user made, it allowed for managing of the House. To
facilitate the user’s work, each smart plug is connected to a room and each room is linked to the user’s
home/building. The middleware provides services for various features including application of
flexoffers, retrieval of schedules, control of measures gathered from the smart plugs. The mechanism
that solidly integrates the flexoffer concept in the house is the automatic emission of flexoffers and
actuation on the devices depending on the schedule that is received. When a schedule is received,
using that mechanism, the middleware will operate (e.g. turn or turn off) each device, in order to
enforce the schedule. The FrontEnd was developed with the goal of providing the User with user
friendly interface. Using the services that the middleware provides, the FrontEnd allows the user to
execute all the task regarding the pilot. Using its user friendly graphical interface, the user can
customize his house, from the automation of the usage of its appliances to the control and monitor of
any individual smart plug. Built using a web server the FrontEnd application can be accessed on any
platform with internet access.

The pilot was demonstrated in an official Arrowhead meeting in Turin, in October of 2016. The
demonstration was successful, even getting some comments from the Project Leader, Dr Jerker
Delsing. This project also lead to the publishing of a communication article and corresponding poster
at the national Informatics symposium, INForum 2016, that took place in September. The paper was
published and presented in the Distributed and Embed systems session, which had Dr Luis Pinho as
lead chair.

124
PESTI Project

PESTI Report- Flexoffer Pilot

5.2 ACCOMPLISHED OBJECTIVES

The pilot was successfully developed. The FlexHousing system, comprised of the Middleware and the
FrontEnd integrates the Flexoffers and VPS Services while supplying a user friendly interface for the
end-user The architecture relies on a middleware linking the Flexoffers services with the VPS Services.
Table 70 represents the various goals that the pilot had and whether or not they were achieved.

Goal Degree of implementation

Integrate the Flexoffer Service Done

Integrate the VPS Services Done with the exception of the
registration of devices from scratch

Build Middleware with persistence Done

Host middleware services Done

Build FrontEnd for user interaction Done

Allows user to apply Flexoffers Done

Allows user the check the schedules for his devices Done

Allow user to manage his house and devices Done

Allow user to check the measurements gathered by the Done

smart plugs

Allow user to actuate remotely on devices Done

Allow system to verify if the flexoffers were respected Incomplete

Table 69 - Table describing the goals for the project

5.3 LIMITATIONS AND FUTURE WORK

The FrontEnd could still be improved. The usability isn’t optimal for a commercial deployment and not
customizable for different markets or companies. The aesthetics also need some innovation and
creativity. The implementation of the Front in C# on a ISS webserver isn’t the best approach, as the
execution can put a heavy strain on any resource constrained and low cost hardware. The
communication between the FrontEnd and the Middleware isn’t encrypted, thus revealing a
vulnerability.

There was an issue with the VPS Services, as their services weren’t highly documented, leading to
struggles in its integration with the middleware and support from VPS was not commonly available.
As such, the registration of the device on VPS cloud, was left incomplete —the solution was to register
the device manually, using VPS interfaces to the cloud. The service was available but the request was
incomplete: some of the fields required were IDs that referred to objects that were local to the VPS
Services, and thus unknown to the public.

One of the other issues was that every command or request that the pilot executed to operate a device
had to be sent to the VPS Services. The Services would then relay the request through the internet
towards the gateway in the house. Since the Gateway communicates with the smarts plug, a simpler
implementation would be to communicate directly with the gateway, thus decreasing the latency of
the system.

125
PESTI Project

PESTI Report- Flexoffer Pilot

With the further development of the Flexoffers, the integration might suffer due to the
implementation of new functionalities or the deletion of old ones. As such, until the Flexoffer Services
are considered complete, the pilot must keep track of the change the external systems might suffer.

The future work might also revolve around the implementation of more features or even the
integration of new systems, transforming FlexHousing into a system capable of controlling any smart
device inside the house-hold the user. VPS also has system for Business monitor and control. Its
integration could lead to the creation of a new platform, also capable of dealing with an industrial
environment

The pilot could also benefit with the implementation of a manager application. The application would
be responsible to manage various FlexHousing system that are registered in the Arrowhead
Framework. The manager would be able to control the various instances of FlexHousing, interacting
directly with it, thus minimizing the work of the end-user. Especially useful for condos or apartment
buildings.

5.4 FINAL APPRECIATION

An internship at CISTER is one of best experiences one could ask for. The work environment is very
flexible and any request for equipment or other demands met within a very short time.

The project allow for growth has it required the developers to deal with new technologies and new
ways or programming. Any problem that was tackled was met with a solution. That solution was then
discussed and revised with the project managers.

Considering the difficulties, the end result and time available, the outcome is pretty positive: 2 systems
were developed, 1 communication paper was written and published in a conference, another paper
is being written and the knowledge and experience of the developers was increased.

126
PESTI Project

PESTI Report- Flexoffer Pilot

BIBLIOGRAPHY

[1] "loT Expansion," [Online]. Available: http://www.cloudoye.com/blog/cloud-hosting/how-big-data-
and-cloud-prowess-can-accelerate-iot-expansion. [Accessed August 2016].

[2] "ArrowHead FW Wiki," [Online]. Available:
https://forge.soa4d.org/plugins/mediawiki/wiki/arrowhead-f/index.php/Technical_architecture.
[Accessed August 2016].

[3] "Cister," [Online]. Available: http://www.cister.isep.ipp.pt/info/. [Accessed August 2016].

[4] L. L. e. a. Ferreira, "Arrowhead compliant virtual market of energy," in Proc. of the 19th IEEE Intl.
Conf. on Emerging Technologies and Factory Automation (ETFA), 2014.

[5] "OpenADR Alliance," [Online]. Available: http://www.openadr.org/. [Accessed 6 June 2016].

[6] "BIND9," [Online]. Available: https://www.isc.org/downloads/bind/. [Accessed 6 June 2016].

[7] M. P.D. W. R. a.S. Z. D. B. Terry, "The Berkeley Internet Name Domain Server," in Proceedings of
USENIX Summer Conference, 1984.

[8] R. N. T. R. T. Fielding, "Principled Design of the Modern Web Architecture," in ACM Transactions on
Internet Technology (TOIT), 2002.

[9] "XMPP," [Online]. Available: https://xmpp.org/about. [Accessed 15 June 2016].

[10] "ISO/IEC/IEEE P21451-1-4 Standard for a Smart Transducer Interface for Sensors, Actuators, and
Devices based on the eXtensible Messaging and Presence Protocol (XMPP) for Networked Device
Communication," [Online]. Available: http://wiki.xmpp.org/web/Tech_pages/loT_Sensei. [Accessed
April 2014].

[11] "Internet History," [Online]. Available: http://www.internetsociety.org/internet/what-
internet/history-internet/brief-history-internet. [Accessed August 2016].

[12] "loT Growth," [Online]. Available: http://www.businessinsider.com/how-the-internet-of-things-
market-will-grow-2014-10. [Accessed August 2016].

[13] "IBM-IOT," [Online]. Available: http://www.slideshare.net/ArrowECSMarketing/internet-of-things-
and-ibm. [Accessed 18 August 2016].

127
PESTI Project

PESTI Report- Flexoffer Pilot

(14]

[15]

[16]

(17]

(18]

(19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

"Lighting Smart Grids," [Online]. Available: http://www.directcurrent.eu/en/projects/public-lighting-
on-dc-smart-grid. [Accessed August 2016].

"Last mile smart grid," [Online]. Available:
http://www.cs.rug.nl/aiellom/publications/PaganiAiellolsgt13.pdf. [Accessed August 2016].

"Last mile smart grid topology," [Online]. Available:
http://www.cister.isep.ipp.pt/docs/convergence_of smart_grid_ict_architectures_for_the_last_mile
/1039/view.pdf. [Accessed August 2016].

"Neur.io," [Online]. Available: http://neur.io/products/. [Accessed 29 August 2016].

"Canary device," [Online]. Available: https://canary.is/how-it-works/. [Accessed 29 August 2016].

"lvee Sleek," [Online]. Available: http://helloivee.com/. [Accessed 29 August 2016].

"loT house-hold applications," [Online]. Available: http://www.iotphils.com/solutions/smart-home/.
[Accessed 18 August 2016].

C. Teixeira, ""Convergence to the European energy policy in European countries: Case studies and
comparison"," in J. Soc. Technol, 2014.

"VPS Cloogy," [Online]. Available: http://www.cloogy.com/en/about/. [Accessed 20 May 2016].

"VPS Devices," [Online]. Available: http://www.vps.energy/#!solutions/x8d7y. [Accessed 20 May
2016].

"RUP," [Online]. Available: http://www.agilemodeling.com/essays/agileModelingRUP.htm. [Accessed
August 2016].

"RUP," [Online]. Available: https://en.wikipedia.org/wiki/Rational_Unified_Process. [Accessed 23
August 2016].

"Java," [Online]. Available: https://java.com/en/download/fag/whatis_java.xml. [Accessed 15 June
2016].

H. schildt, Java the Complete Reference Ninth Edition book, oracle press, 2014.

"C#," [Online]. Available: : https://msdn.microsoft.com/en-us/library/z1zx9t92.aspx. . [Accessed June
2016].

128

PESTI Project

PESTI Report- Flexoffer Pilot

[29] "MVC explanation," [Online]. Available: http://www.tomdalling.com/blog/software-design/model-
view-controller-explained/. [Accessed 18 May 2016].

[30] L. L. Ferreira, "The Arrowhead Aproach for SOA Application Development and Documentation,"
Arrowhead, EU, 2014.

[31] "Highcharts," [Online]. Available: http://www.highcharts.com/. [Accessed August 2016].

[32] M. E. Khan, Importance of Software Testing in Software Development Life.

129
PESTI Project

PESTI Report- Flexoffer Pilot

APPENDIXES

130
PESTI Project

