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Abstract—Our day-to-day life is dependent on several em-
bedded devices, and in the near future, many more objects
will have computation and communication capabilities enabling
an Internet of Things. Correspondingly, with an increase in
the interaction of these devices around us, developing novel
applications is set to become challenging with current software
infrastructures. In this paper, we argue that a new paradigm
for operating systems needs to be conceptualized to provide a
conducive base for application development on Cyber-physical
systems. We demonstrate its need and importance using a few
use-case scenarios and provide the design principles behind, and
an architecture of a co-operating system or CoS that can serve
as an example of this new paradigm.

I. INTRODUCTION

The penetration of embedded-systems in our daily lives is
increasing at a tremendous rate, and even today, a human being
can have tens of devices around him that have computational
capabilities. In the future, not only the number of such devices
is set to increase further, their capability to communicate
among themselves and accomplish complex and distributed
logic will become more widespread. In addition to the current
smart devices such as mobile-phones, music players and
tablets, even the dumb devices such as lamps, tables and
chairs may have computation capabilities and contribute to
ambient intelligence. This possible trend has led researchers in
academia and industry to foresee an Internet of Things, where
all (or most) of the objects will be connected to each other
and the internet. Such a highly connected world will further
enable several applications like home automation, intelligent
ambience, green buildings and so on. However, full potential
of highly-connected cooperating objects is still difficult to
perceive, as there is scope for diverse and revolutionary
applications that may not have been conceived yet.

To enable the development of such new applications, new
paradigms for embedded-systems software are required. We
believe that the currently available operating systems and pro-
gramming abstractions may not encourage an environment for
active application development for future networked embedded
systems. In this paper, we argue that the design of the operating
systems for networked embedded systems needs to be thought
from a different perspective than the one already taken in the
popular solutions like TinyOS [1], Contiki [2], Nano-RK [3]
etc. Most of the popular research works in the direction of
facilitating programming on sensor networks assume that the

existing operating systems are the de-facto platforms upon
which the middleware or the programming abstractions have to
be built. This assumption needs to be thought again from a top-
down perspective where the new goal is to support dynamic
deployment and management for network-level applications.

Existing operating systems were designed to ease the
programming of specific hardware that was developed as
prototypes for wireless sensor networks. Programming these
devices on bare-metal is complex and requires high degree
of expertise in embedded systems. Platforms like MicaZ and
TelosB are resource-constrained yet powerful-enough devices
that can easily support a small operating system, custom
communication stacks and one or more applications. Operating
systems were designed from the perspective of easing the
application development process on individual devices because
even in their standalone operation they are complex systems
with a processor, a radio, several sensors, a programming/com-
munication interface over the USB or the serial port and so
on. These hardware and software platforms have contributed
a lot towards the development of ground-breaking research
and proof-of-concept ideas. Moreover, the research in these
areas provided a vision for the future of networked embedded
systems. To achieve the goal of ubiquitous connectivity of
embedded devices described earlier, there is a need to design
(distributed) operating systems from scratch that completely
isolate the users from node-level intricacies, and take the
application development to a higher level where the whole
network ecosystem can be viewed as a single organism. We
believe that revamping the way operating systems are designed
is a first step towards this goal.

By networked embedded systems we refer to the broader
area of Cyber-Physical Systems (CPS) that react to the en-
vironment in addition to just sensing the physical quantities
as in the case of wireless sensor networks. Timeliness is an
important requirement of CPS, because of the tight integration
of sensing and actuation. We believe that it is time we move
from an operating system to a co-operating system or CoS,
that embodies all fundamental functionalities necessary for
encouraging application development for networked embedded
systems directly above it. CoS is a truly distributed operating
system, in the way that it provides a geographically distributed
view of the operating system to the user rather than abstracting
the network as a single machine. In the rest of this paper, we



describe a few key principles that can motivate the design
of such a cooperating-system, and we propose a possible
architecture that can satisfy those principles.

II. STATE OF THE ART

Many solutions have been designed that aim to provide
an environment for convenient application development for
networked embedded systems. From the perspective of allow-
ing the development of diverse applications on cyber-physical
systems, we classify them into three major classes.

A. Operating Systems

Earlier operating systems and even the more recent ones
provide several convenient abstractions for programming the
hardware. The popular sensor network operating systems like
Contiki, TinyOS, etc., all allow one or more applications to be
developed for hardware platforms, and the network-level co-
ordination is the responsibility of the application programmer.
These operating systems facilitated and supported computer
scientists familiar with programming of general-purpose com-
puters to develop applications for embedded hardware.

Some newer operating systems like LiteOS [4] provides
a UNIX-like interface for sensor networks and each device
can be accessed or written-to like a file. HomeOS [5], [6]
allows connectivity of heterogenous devices such that a typical
user can develop complex logic using the appliances in a
modern home. HomeOS is a centralized design that connects
the deployed devices and provides an interface for configuring
the devices according to the needs of the users, based on
access privileges and time of the day, for example. HomeOS
is an interface above the home automation infrastructure and
is closer to being a middleware-layer rather than an OS.

B. Middleware and Abstractions

Facilitating the development and the deployment of applica-
tions on heterogenous sensor networks has been a key driver
behind the design of several middleware and programming
abstractions proposed in the past. Most of the solutions dis-
cussed in the recent survey by Mottola and Picco [7] allow
programming the network as a whole, while abstracting the
user from lower-level complexities. Several different solutions
have been proposed that serve varied goals, but anecdotal
evidence suggests that almost none of those have been adopted
in actual deployments or test-beds other than those for which
these systems were built. When a new application is conceived,
researchers typically find it more convenient to develop their
own middleware/programming framework on top of a popular
operating system to deploy and test their application instead
of using an existing solution. The reasons behind this rela-
tively less enthusiastic adoption of middleware can be several.
Visibility of the solution, maturity of the software, hardware
platforms supported and application domains covered, are few
such factors that dictate the popularity of a middleware or a
programming abstraction.

In addition to those, developers generally are not able to
place confidence in third-party middleware for their applica-
tions because of the lack of robustness and support. Debugging

may eventually require delving into the middleware code and
its interactions with the underlying operating system. We aim
to design a co-operating system to overcome these limitations,
such that all the functionality of the underlying hardware and
the possible interactions of devices can be visible to the user-
interface, while providing easy development.

C. Standards

Several standards are being promoted by the industry and
academia to foster interoperability between various appliances
at home, and hence allow development of applications. Ex-
amples of such protocols are DLNA [8], Z-Wave [9] and
OSIAN [10]. These standards can be great contributors to-
wards distributed application development for appliances, and
any programming system should be able to leverage these
standards for communicating with heterogenous devices.

III. USE-CASE SCENARIOS

The operating system we envision (propose) should be
generic-enough for most of the cyber-physical applications
and should allow rapid application development as well. We
consider the following two broad application scenarios, on
which we can base the design decisions behind a CoS.

Intelligent surroundings (Distributed Applications):
Cyber-physical systems embody interacting (cooperating) ob-
jects, where based on sensed inputs by one or more devices,
a distributed action might be taken. We take the example of a
conference room in an office building with several chairs, an
LCD screen and lighting infrastructure. We also assume that
all these devices (the chairs, the lights and the screen) have
sensing and actuation capabilities, a computation platform
capable of running a CoS, and compatible radio-transceivers.
Several applications can be conceived on this infrastructure.
For example: i) adjusting the brightness and color temperature
of the LCD screen based on the distance of the chairs from
the screen and properties of the ambient light, ii) turning
the lights on/off based on the occupancy of the room, and
iii) turning on the heat in the chairs based on the occupant-
preferences and so on. Considering that these devices could
be manufactured by different vendors, developing distributed
applications is challenging. A CoS should provide a conducive
environment where applications can be deployed across di-
verse devices with different capabilities. End-to-end device
connectivity, application-code dissemination are some of the
basic functionalities that should be provided, and higher level
device interactions should be specified by the programmer.

Communicating Vehicles (Dynamic Topologies): A rel-
evant example of connected devices in dynamic topologies
is a set of cars at an intersection that are stuck in a traffic
jam. In such a scenario, where different vehicles meet at a
junction for brief periods, having a centralized middleware or
a common abstraction for directing them to catry out a certain
goal may or may not be possible. A practical solution can be
a modern operating system, that has coordination of dynamic-
topologies as a basic functionality, and allows programming
this ecosystem in a non-centralized way. A traffic policeman
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Fig. 1.  Programming with the help of a middleware, to emphasize the
centralizing aspect

can now simply broadcast a traffic-jam resolving algorithm
to all cars for that situation. For example, the policeman can
command the cars arriving at the intersection from the north
lane to start going into the west lane and so on. The operating
system running on the vehicles’ will allow the reception of
such commands, and take useful action like notifying the
driver or driving accordingly if it is an autonomous vehicle.

IV. DESIGN PRINCIPLES

The motivation behind CoS is driven by the observation
that the existing operating systems were only designed for
facilitating node-level application development, and middle-
ware solutions designed to allow macro- or network-level
programming are limited in scope and are highly dependent
on the underlying operating systems. We discuss some of the
principles that stress on the need for a new perspective in the
design of operating system for cyber-physical systems.

A. Programming using CoS

Traditional network programming approaches typically in-
volve a middleware or a programming abstraction that in-
evitably tends to centralize the network topology. A user has
to interact with a programming layer, that generally resides
on a central server or a gateway. As shown in Figure 1, the
middleware abstracts the network complexities from a user
with the help of a hierarchical setup that can be rigid and
highly application specific.

In contrast, CoS is designed to facilitate application de-
velopment in a distributed way for networked objects of the
future. The programmer interacts with the operating system
directly for creating network-level applications, instead of a
middleware or a gateway. CoS makes it possible that the user
can interact with the system at any logical or topological
location in the network, as shown in Figure 2(a). CoS manages
the communication and dissemination of application program
to other nodes, based on the user requirements embedded
in the logic of the application. The communication between
the nodes can be transparent to the user, and the interaction
among them is dictated by the application logic. The user may
deploy an application over one or more nodes, each running
an instance of CoS. Then the application is distributed to other
participating nodes by CoS as exemplified in Figure 2(b).
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(a) User interaction through a
CoS

(b) Layered diagram showing
application dissemination us-
ing CoS

Fig. 2. Programming using a CoS

B. Truly Distributed Design

Traditional distributed operating systems were designed
from a perspective of abstracting away the presence of more
than one machine from the user. According to Tanenbaum et
al. in [11]:

“As a rule of thumb, if you can tell which computer
you are using, you are not using a distributed system.
The users of a true distributed system should not
know (or care) on which machine (or machines) their
programs are running, where their files are stored,
and so on.”

This presents a major disconnect from cyber-physical sys-
tems, where the devices are not only logically distributed but
geographically as well, and more often than not, it is important
for the applications to associate the geographical location in
their logic. For example, controlling the window blinds based
on light level readings in specific rooms A, B and C. Most
middleware and programming abstractions tend to centralize
the network, and cause overheads in maintaining connectivity
to all the nodes and may also involve participation of the nodes
that may otherwise not be required. A middleware would
require a hierarchical architecture to allow deployment of
applications. Similar to the example of vehicles at a junction,
the nodes may not provide enough support for an active higher
layer in dynamic topologies. Hence, the operating system
executing on the nodes needs to allow application deployment
in a decentralized way, and then execute distributed logic.
A distributed operating system for cyber-physical systems
(logically and geographically) can decentralize the operation
of the network. It should allow a user to deploy applications
by connecting to any one or more nodes in the network. CoS
should obviate the requirement of having a middleware and/or
a programming abstraction to program the network.

C. Other Key Features

Modular: CoS should be modular in design supporting
dynamic loading-unloading of modules and application. This
can help a programmer create powerful applications with
significant ease by making use of existing modules, or creating
new ones. Modules can either reside on the system flash
memory, or can be delivered over-the-air, if needed.
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Integrated Network Management: CoS should support
tightly integrated network management, such that a device
is able to discover its neighboring devices and thus allowing
updating of routing information. This information should be
made available to the programming interface to network-wide
application development.

Programming Interface: The traditional way of program-
ming sensor nodes via a direct one-to-one connection to a
computer, is designed to facilitate application development
while making good use of on-board peripherals. The program-
ming interface of the proposed operating system should be
at the network-level by design, rather than being a layer on
top of node-level programming abstraction. The programming
interface should have information about the network topology
and capability of the nodes to provide a global view to the
programmer in an intuitive way.

Isolation of Applications: Multiple independent applica-
tions on a network of nodes should be supported, while making
sure that the data exchange and operation of the applications
remains isolated. The data may need to be multiplexed in the
network to save energy, and then demultiplexed to deliver to
each user.

Support for Heterogenous Platforms: The real-world
applications of sensor networks especially in the context of
cyber-physical systems may require diverse hardware, includ-
ing processor, sensors, actuators and communication periph-
erals. The operating system should be designed such that
it supports this varied ecosystem of hardware, and provides
suitable programming provisions.

V. CoS ARCHITECTURE

After discussing the design features of CoS, we can now de-
scribe its architecture. An outline of the architecture showing
various components is provided in Figure 3. The following im-
portant components constitute CoS: Kernel, drivers, exchange
plane and the applications on top. We will describe each of
those in detail next.

A. Applications

One of the key motivating principles behind the design of
CoS is easy and convenient deployment of applications directly
on top of the operating system, rather than having a network-
wide middleware or a programming framework. The status-
quo in the programming of networked embedded systems in-

volve either copying operating system images with embedded
applications onto to the flash, or using a network-level virtual-
machine delivery system. Following from the typical trend
of writing applications on top of an OS for general-purpose
computing systems, CoS should allow installing applications at
runtime, without the need of a middleware. Given the resource-
constrained nature of the embedded systems, a programmer
can create and compile applications on a PC, and then deliver
the binaries to CoS.

As explained earlier, the user may not need to depend on
a gateway or a central-server to deploy the application, CoS
allows any one or more nodes to act as point of delivery.
The distribution of an application to participating nodes is
handled by the data-exchange plane. The kernel provides a
mount-point to the newly deployed application and adds its
information in a local list. The mount-point is a pointer to the
memory location where the application resides, so that it can
be executed according to the scheduling policy of CoS, and
the criticality or the priority of the application.

Each application has to specify a scope, both geographic
and logical, to help determine the nodes to be associated
with that application. In case of more than one application
submitted by independent users, CoS ensures isolation between
the state of the applications both at node- and network-level,
thus making sure that the data is delivered to the intended
destination in a seamless manner and appropriate action is
taken in case of sense-and-react applications. This may require
conflict resolution or deadlock avoidance support from the
kernel. For example, in an intelligent surroundings scenario,
if one application requires lights off in the night, and another
requires the lights to be turned on if the window shades are
down, it may happen that they can be in conflict at some point
in time. This conflict has to be resolved among participating
applications, and this responsibility lies with the kernel.

B. Kernel

The kernel handles the core functionality, including manag-
ing the applications, task-scheduling and timing. Scheduling
the applications is one of the most important functions of the
kernel. The underlying hardware platform may be significantly
resource-constrained that may not support more than a certain
number of applications, and the resource usage of applications
have to be limited within certain bounds. The kernel ensures
that the applications do not misbehave, and their timing
requirements are met in the best manner possible. For this
purpose, kernel from the NanoRK [3] operating system can be
adapted, as it has support for real-time scheduling and task-
level resource reservations. In addition to these optimizations,
the kernel should be able to resolve conflicts in case of
dissimilar requirements of applications. The kernel can make
use of priorities, or assign default behaviors to the peripherals.
In the example of conflict in the state of lights provided earlier,
the kernel may choose to keep the lights off at night, until
over-ridden manually.

The kernel should be modular in design so that drivers or
other modules can be added to enable required functionalities.



Cyber-physical systems can consist of varied sensor and
actuator peripherals, and providing out-of-the-box support for
such possibly large number of devices may not be practical.
Programmers or users should be able to install modules on the
nodes covered by their applications. The kernel should allow
dynamic loading and unloading of modules in a manner similar
to the SOS [12] operating system. The kernel can achieve this
with the help of module management and storage components.

As CoS may be run on battery-powered devices, minimizing
the power consumption is important. A power-management
module tries to put the device to sleep for as long as possible.
Nodes may operate at very low duty-cycles, hence the power-
management module can ensure that different applications
execute in way to maximize the sleep interval.

C. Drivers

Hardware support for the peripherals on a node, including
the radio, the sensors and the actuators, is provided through
drivers. In addition to the default drivers available with CoS,
drivers can be loaded as modules at the runtime. Such design
allows easy integration of heterogenous devices and dynamic
behavior in the long-term. The operating system does not
need to be flashed again if some peripheral devices are added
or removed. In addition to the peripherals, drivers can help
applications to configure the communication layer as well.
Radio configuration, medium-access control and routing can
be implemented as modules and changed on-the-fly, if needed.

D. Exchange Plane

One of most important components of the CoS architecture
is the data-exchange plane. The data-exchange plane handles
all the communication to and from the node. Applications
created by the user are delivered to the nodes through this
plane, and are further relayed to other nodes that participate
in the given application. Other responsibilities of the data-
exchange plane are ensuring isolation between the applica-
tions, delivering data to the nodes involved, and also directing
actuation based on the distributed logic of an application.

The data-exchange plane uses information from the network
management module in the kernel about the topology and
routing information in order to maintain the communication
across a multi-hop network. It can use a device-advertisement
phase to construct a topology map of the system. The adver-
tisements allow the exchange-plane to maintain information
about the capabilities of the neighboring nodes. The radius of
the neighborhood may be pre-decided as a design-parameter or
specified by the applications. Developing an application may
require knowledge about the capabilities of the devices in the
network and hence, the advertisements available to the data-
exchange plane should be provided to the programmer so that
a distributed logic can be implemented, in accordance with the
truly distributed design principle explained in Section I'V-B.

The flexibility of CoS lies mainly in the configurability of
the data-exchange plane and how conveniently a programmer
can access and adapt this plane in her application. It allows on-
demand information gathering about the devices around and

topology formation according to the application needs. For
more dynamic network topologies, the maintenance of network
information and device advertisements can be more frequent if
an application requires so. Otherwise, the network may remain
relatively dormant if no application-level updates are required.

VI. CONCLUSIONS

We proposed a new paradigm in operating system design
called Co-operating System or CoS, that aims to ease the
application development for cyber-physical systems. We ar-
gued that the current operating systems like TinyOS, Con-
tiki or Nano-RK are designed with a goal to facilitate the
programming of individual nodes in a network of embedded
devices. Middleware or network programming frameworks are
the other end of the spectrum that may reduce the flexibility
of applications and jeopardize the reliability and robustness.
Perhaps this is the reason that even with the development of
several such solutions, not many have been widely adopted,
and researchers still depend heavily on developing applications
directly on top of an operating system. We provided the design
principles behind CoS and discussed its architectural aspects
that may enable significant changes in the way applications are
developed and distributed for networked embedded systems. It
can be argued that CoS may not be significantly different from
a middleware running on top of a traditional OS in terms of
the software-architecture, but the fresh perspective of creating
network applications directly on CoS can provide a conducive
setup for rapid and diverse application development for cyber-
physical systems.
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