

Coordinated Runtime Adaptations in
Cooperative Open Real-Time Systems

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-090612

Version: 0

Date: 08-31-2009

Luís Nogueira

Luís Miguel Pinho

Jorge Coelho

Technical Report HURRAY-TR-090612

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Coordinated Runtime Adaptations in Cooperative Open Real-Time Systems
Luís Nogueira, Luís Miguel Pinho, Jorge Coelho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: luis@dei.isep.ipp.pt, lpinho@dei.isep.ipp.pt, jcoelho@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
This paper proposes an one-step decentralised coordination model based on an effective feedback mechanism to reduce
the complexity of the needed interactions among interdependent nodes of a cooperative distributed system until a
collective adaptation behaviour is determined. Positive feedback is used to reinforce the selection of the new desired
global service solution, while negative feedback discourages nodes to act in a greedy fashion as this adversely impacts
on the provided service levels at neighbouring nodes. The reduced complexity and overhead of the proposed
decentralised coordination model are validated through extensive evaluations.

Coordinated Runtime Adaptations in Cooperative Open Real-Time Systems

Luı́s Nogueira1, Luı́s Miguel Pinho1, Jorge Coelho2

IPP Hurray Research Group1

School of Engineering, Polytechnic Institute of Porto, Portugal
LIACC2

School of Engineering, Polytechnic Institute of Porto, Portugal
{luis,lpinho,jcoelho}@dei.isep.ipp.pt

Abstract

This paper proposes an one-step decentralised coordina-
tion model based on an effective feedback mechanism to re-
duce the complexity of the needed interactions among inter-
dependent nodes of a cooperative distributed system until
a collective adaptation behaviour is determined. Positive
feedback is used to reinforce the selection of the new desired
global service solution, while negative feedback discour-
ages nodes to act in a greedy fashion as this adversely im-
pacts on the provided service levels at neighbouring nodes.
The reduced complexity and overhead of the proposed de-
centralised coordination model are validated through ex-
tensive evaluations.

1 Introduction

Adaptive real-time is a relatively new approach to open
embedded systems design. It allows an online reaction to
load variations, adapting the system to the specific con-
straints of devices and users, nature of executing tasks and
dynamically changing environmental conditions. This abil-
ity is essential to efficiently manage the provided Quality-
of-Service (QoS) in domains such as telecommunications,
consumer electronics, industrial automation, and automo-
tive systems.

While there has been a great deal of research in sev-
eral aspects of runtime adaptation in embedded real-time
systems, there has been very little work which addresses
the specific problem of coordinating inter-dependent au-
tonomous adaptations in distributed environments. How-
ever, coordination is critical to maintain the correctnessof
a distributed application during adaptation [1, 8] and also
very challenging. In particular, a QoS-aware adaptation ina
service’s distributed execution can require communication
and synchronisation among nodes, used as a building block

for a collective adaptation behaviour that emerges from lo-
cal interactions among nodes.

One main challenge is controlling this exchange of infor-
mation in order to achieve a convergence to a globally con-
sistent solution without overflowing nodes with messages.
This paper shows how it is possible to achieve higher levels
of self-adaptiveness in systems required to work in time crit-
ical environments through a fast convergence decentralised
coordination model. With the increasing size and com-
plexity of open embedded systems the ability to build self-
managed distributed systems using centralised coordination
models is reaching its limits [13], as solutions they produce
require too much global knowledge.

The proposed one-step decentralised coordination model
defines a set of rules through which a coalition of nodes
can be reconfigured, imposing restrictions on the way their
members can self-adapt in response to changes in the en-
vironment. By exchanging feedback on the desired self-
adaptive actions, nodes converge towards a global solution,
even if that means not supplying their individually best so-
lutions. As a result, each node, although autonomous, is in-
fluenced by, and can influence, the behaviour of other nodes
in the system.

2 System model

Consider an open distributed system with several hetero-
geneous nodes, each with its specific set of resources, where
independently developed services, some of them with real-
time execution constraints, can appear while other are being
executed, at any time, at any node. Due to these charac-
teristics, resource availability is highly dynamic and unpre-
dictable in advance.

It is assumed that each serviceS has a set of QoS param-
eters that can be changed in order to adapt the system’s ser-
vice provisioning to a dynamically changing environment.
Each subset of parameters that relates to a single aspect

of service quality is named as aQoS dimension. Each of
these QoS dimensions has different resource requirements
for each possible level of service. We make the reasonable
assumption that services’ execution modes associated with
higher QoS levels require higher resource amounts.

There may exist QoS dependencies among two or more
of the multiple QoS dimensions of a serviceS [18]. Given
two QoS dimensions,Qa andQb, a QoS dimension,Qa, is
said to be dependent on another dimensionQb if a change
along the dimensionQb will increase the needed resource
demand to achieve the quality level previously achieved
alongQa.

Users provide a single specification of their own range of
QoS preferencesQPref for a complete serviceS, ranging
from a desired QoS levelLdesired to the maximum tolera-
ble service degradation, specified by a minimum acceptable
QoS levelLminimum, without having to understand the in-
dividual components that make up the service.

For some of the system’s nodes there may be a constraint
on the type and size of services they can execute within the
users’ acceptable QoS levels. Therefore, the CooperatES
framework [14, 16] allows a distributed cooperative execu-
tion of resource intensive services in order to maximise the
users’ satisfaction with the obtained QoS. By redistribut-
ing the computational load across a set of nodes, a coopera-
tive environment enables the execution of far more complex
and resource-demanding services than those that otherwise
would be able to be executed on a stand-alone basis [16].

Each coalition is dynamically formed as the set of nodes
that maximise the satisfaction of the user-imposed QoS con-
straints associated with the a new serviceS and minimise
the impact on the previous global QoS caused by the new
service’s arrival [14], establishing an initial Service Level
Agreement (SLA), a service description whose parameters
are within the range of the user’s accepted QoS levels.

Due to the existence of QoS inter-dependencies among
the tasks of a serviceS, there are groups of tasks that must
be executed in the same node within a coalition [15]. We
refer to such groups aswork units. Let W = {w1, . . . , wn}
be the finite set of work units of a serviceS. We represent
the set of inter-dependencies among work unitswi ∈ W as
a connected graphGW = (VW , EW), on top of the service’s
distribution graph, where each vertexvi ∈ VW represents a
work unit wi and a directed edgeei ∈ EW from wj to wk

indicates thatwk is functionally dependent onwj . Within
GW = (VW , EW), we callcut vertexto a nodeni ∈ VW ,
if the removal of that node dividesGW in two separate con-
nected graphs.

We assume that each work unitwi ∈ W is being ex-
ecuted at its current QoS levelQi

val at a nodeni, from a
set of predefined QoS levels{Q0, . . . , Qn}, ranging from
the user’s desired QoS levelLdesired to the maximum tol-
erable service degradation, specified by the minimum ac-

ceptable QoS levelLminimum. This relation is repre-
sented by a triple(ni, wi, Q

i
val). Furthermore, for a given

work unit wi ∈ W , each nodeni knows the setIwi
=

{(nj, wj , Q
j
val), . . . , (nk, wk, Qk

val)}, describing the qual-
ity of all the inputs related to work unitwi coming from its
adjacent nodes inGW .

3 Self-managing cooperative systems

One of the key ideas of the CooperatES framework is
that each coalition member should be able to take the initia-
tive and to decide when and how to adapt to changes in the
environment [14]. However, whenever such autonomous
adaptations have an impact on the outputted QoS of other
coalition members the need of coordination arises, that is,
how to ensure that local, individual, adaptation actions of
a node can produce a globally acceptable solution for the
entire distributed service [9].

With the increasing size and complexity of open embed-
ded systems the ability to build self-managed distributed
systems using centralised coordination models is reaching
its limits [13], as solutions they produce require too much
global knowledge. As such, researchers are increasingly in-
vestigating decentralised coordination models to establish
and maintain system properties [5, 10, 4, 2, 6]. Without
a central coordination entity, the collective adaptation be-
haviour must emerge from local interactions among nodes.
This is typically accomplished through the exchange of
multiple messages to ensure that all involved nodes make
the same decision about whether and how to adapt.

Bridges et al. [3] propose a framework based on Cac-
tus [22] which supports adaptations that span multiple com-
ponents and multiple nodes in a distributed system. The
architecture supports coordinated adaptations across layers
using a fuzzy logic based controller module and coordina-
tion across hosts using a prototype protocol designed for
communication oriented services. However, the authors do
not specifically propose a method to obtain a globally coor-
dinated solution.

Ren et al. [19] present a real-time reconfigurable coor-
dination model (RT-RCC) that decomposes dynamic real-
time information systems based on the principle of sepa-
ration of concerns, namely, functional actors which are re-
sponsible for accomplishing tasks, and non-functional coor-
dinators which are responsible for coordination among the
functional actors. High level language abstractions and a
framework for actors and coordinators are provided to fa-
cilitate programming with the RT-RCC model.

A similar approach is followed by Kwiat et al. [12] who
propose a coordination model for improving software sys-
tem attack-tolerance and survivability in open hostile envi-
ronments. The coordination model is based on three active
entities: actors, roles, and coordinators. Actors abstract the

2

system’s functionalities, while roles and coordinators stati-
cally encapsulate coordination constraints and dynamically
propagate those constraints among themselves and onto the
actors. Both the coordination constraints and coordination
activities are distributed among the coordinators and roles,
shielding the system from single points of failure.

However, none of these works proposes support for co-
ordinating inter-dependent autonomous QoS adaptations in
cooperative systems, which is the focus of our work. Fur-
thermore, with some decentralised coordination models it
becomes difficult to predict the exact behaviour of the sys-
tem taken as a whole because of the large number of possi-
ble non-deterministic ways in which the system can behave
[20]. Whenever real-time decision making is in order, a
timely answer to events suggests that after some finite and
bounded time we would expect the global adaptation pro-
cess to converge to a consistent solution. Furthermore, op-
timal decentralised control is known to be computationally
intractable [4], although near-optimal systems can be devel-
oped for certain classes of applications [11, 7, 6].

Our goal is then to achieve a fast convergence to a
global solution through a regulated decentralised coordina-
tion without overflowing nodes with messages. The next
section details the proposed one-step decentralised coordi-
nation model based on an effective feedback mechanism
to reduce the complexity of the needed interactions among
nodes until a collective adaptation behaviour is determined.

3.1 A one-step decentralised coordination
model

The core idea behind the proposed decentralised coordi-
nation model is to support distributed systems composed of
autonomous individual nodes working without any central
control but still producing the desired function as a whole.
We model a self-managed coalition as a group of nodes that
respond to environmental inter-dependent changes accord-
ing to a distributed coordination protocol defined by the fol-
lowing phases:

1. Coordination request. WheneverQi
val′ , the needed

downgrade or desired upgrade of the currently out-
putted QoSQi

val for a work unitwi ∈ S, has an impact
on the currently supplied QoS level of other work units
wj ∈ S being executed at other coalition members, a
coordination request is sent to the affected partners.

2. Local optimisation. Affected partners, executing any
wj ∈ S, become aware of the new output valuesQi

val′

of wi and recompute their local set of SLAs in order to
formulate the corresponding feedback on the requested
adaptation action. We assume that coalition partners
are willing to collaborate in order to achieve a global
coalition’s consistency, even if this might reduce the

utility of their local optimisations. However, a node
only agrees with the requested adaptive action if and
only if its new local set of SLAs is feasible.

3. Adaptive action. If the requested adaptive action is
accepted by all the affected nodes in the coalition, the
new local set of SLAs is imposed at each of those
coalition members. Otherwise, the currently global
QoS level of serviceS remains unchanged.

Furthermore, we consider the existence of feasible QoS
regions [21]. A region of output quality[q(o)1, q(o)2] is de-
fined as the QoS level that can be provided by a work unit
when provided with sufficient input quality and resources.
Within a QoS region, it may be possible to keep the cur-
rent output quality by compensating for a decrease in input
quality by an increase in the amount of used resources or
vice versa. As such, if a nodenj , despite the change in cur-
rent quality of some or all of its inputs, is able to continue
to produce its current QoS level there is no need to further
propagate the required coordination request along the de-
pendency graphGW . Thus, acut-vertexis a key node in our
approach.

Consider that a nodenk proposes an upgrade toQk
val′ for

a work unitwk ∈ S. It may happen that some other nodes,
precedent in the path until the next cut-vertexnc, may be
able to upgrade toQj

val′ and others may not. Whenever
the cut-vertexnc receives the upgrade request and its new
set of inputs, if it is unable to upgrade toQc

val′ then all the
effort of previous nodes to upgrade is unnecessary and the
global upgrade fails. Otherwise, the upgrade coordination
request continues along the graph, until the end-user node
nu is reached.

In the case of a downgrade toQk
val′ initiated by nodenk,

it may happen that some other nodes in the path to the next
cut-vertexnc may be able to continue to output their cur-
rent QoS level despite the downgraded input by compensat-
ing with an increased resource usage and others may not.
Again, if the next cut-vertexc is unable to keep outputting
its current QoS level then all the precedent nodes which are
compensating their downgraded inputs with an increased re-
source usage can downgrade toQ

j
val′ since their effort is

useless.
The formulation of the corresponding positive or nega-

tive feedback, at thelocal optimisationphase, must depend
on the feasibility of the requested coordination action as
a function of the quality of the node’s new inputsIwi

for
the locally executed work unitwi. Such feasibility is deter-
mined by the anytime local QoS optimisation algorithm de-
tailed in Algorithm 1 which aims to minimise the impact of
the requested changes on the currently provided QoS level
of other services. The CooperatES framework differs from
other QoS-aware frameworks by considering, due to the in-
creasing complexity of open real-time systems, the needed

3

tradeoff between the level of optimisation and the useful-
ness of an optimal runtime system’s adaptation behaviour.
This idea has been formalised using the concepts of anytime
QoS optimisation algorithms [16].

Algorithm 1 Feedback formulation
Let τe be the set of previously accepted tasks whose
stability period∆t has expired.
Let τp be the set of all previously accepted tasks whose
current QoS cannot be changed.
Each taskτi ∈ τe ∪ τp has associated a set of user’s defined
QoS constraintsQi.
Let Qkj [i] be the currently provided level of service for
attributej of thekth QoS dimension for each taskτi ∈ τe

LetL be the set of local dependency graphsGwi
of all work

unitswi ∈ τe ∪ τp

Let σ be the determined set of SLAs, updated at each step
of the algorithm

1: DefineSLA′
wi

, the requested SLA for the work unit
wi, as a function on the new input valuesIwi

and the
required output levelQval′

2: Updateσ with SLA′
wi

3: while σ is not feasibledo
4: if there is no taskτi being served atQkj [m] >

Qkj [n], for anyj attribute of anyk QoS dimension
then

5: return FALSE
6: end if
7: for each work unitwd ⊆ τe \ wi do
8: for each taskτi ∈ wd do
9: for eachjth attribute of anyk QoS dimension

in τa with valueQkj [m] > Qkj [n] do
10: Downgrade attributej to the previous possi-

ble valueQkj [m + 1]
11: TraverseGwd

∈ L and change values accord-
ingly

12: Determine the utility decrease of this down-
grade

13: end for
14: end for
15: end for
16: Find taskτmin whose reward decrease is minimum
17: DefineSLA′

wmin
for the work unit where taskτmin

belongs, setting the QoS values of all affected tasks
according with the new valueQyx[m+1] for attribute
x of the QoS dimensiony for taskτmin

18: Updateσ with SLA′
wmin

19: end while
20: return TRUE

Note that the node’s local resource usage optimisation
associated with the new local set of SLAs can be lower af-

ter the coordination request. Recall that we make the as-
sumption that, in cooperative environments, coalition part-
ners are willing to collaborate in order to achieve a global
coalition consistency, even if this coordination might reduce
the global utility of their local QoS optimisations. The re-
ward achieved by the currently provided SLA for a work
unit wi ∈ S is measured by considering the proximity of
the promised level of service with respect to the weighted
user’s QoS preferences expressed in decreasing relative or-
der [14].

If all the nodes affected by the requested adaptation sent
by nodeni agree with its new service solution, theadaptive
action phase takes place. A “commit” message is sent by
nodeni to its direct neighbours in the dependency graph,
which then propagate the message to all the involved nodes
in the global adaptation process.

Decentralised control is then a self-organising emergent
property of the system. The proposed coordination model
is based on these two basic modes of interaction: posi-
tive and negative feedback. Negative feedback loops occur
when a change in one coalition member triggers an oppos-
ing response that counteracts that change at other depen-
dent node. On the other hand, positive feedback loops pro-
mote global adaptations. The snowballing effect of positive
feedback takes an initial change in one node and reinforces
that change in the same direction at all the affected partners.
By exchanging feedback on the performed self-adaptations,
nodes converge towards a global solution, overcoming the
lack of a central coordination and global knowledge.

Note that only one negotiation round is required between
any pair of dependent nodes. As such, the uncertain out-
come of iterative decentralised control models whose effect
may not be observable until some unknowable time in the
future is not present in the proposed regulated coordina-
tion model. Also note that the normal operation of nodes
continues in parallel with thechange acknowledgeand lo-
cal optimisationphases. Every time a node recomputes its
set of local SLAs, promised resources are pre-reserved un-
til the global negotiation’s outcome is known (or a timeout
expires). As such, the currently provided QoS levels only
actually changes at theadaptive actionphase, as a result of
a successful global coordination.

Due to the environment’s dynamism, more than one
coalition member can start an adaptation process that spans
multiple nodes at a given time. Such request can either be a
downgrade or an upgrade of its current SLA for a work unit
wi of serviceS. Even with multiple simultaneous negotia-
tions for the same serviceS, only one of those will result in
a successful adaptation at several nodes since, due to local
resource limitations, only the minimum globally requested
SLA will be accepted by all the negotiation participants. In
order to manage these simultaneous negotiations, every ne-
gotiation has an unique identifier, generated by the request-

4

ing node.

3.2 Properties of the coordination model

In this section we provide a global view of what is in-
volved for the general case and analyse some of the proper-
ties of the proposed decentralised coordination model. We
start with some auxiliary definitions and proofs. For the
sake of simplicity, we present the following functions in a
declarative notation with the same operational model as a
pattern matching-based functional language.

Definition 3.1 Given a connect graphGW = (VW , EW)
and given two work unitswi, wj ∈ VW , we obtain all the
nodes in the possible paths betweenwi andwj as the result
of the function:

n paths(wi, wj) = flatten(n paths(wi, wj , ∅))

n paths(wi, wj , T) = ∅, if wi = wj

n paths(wi, wj , T) = {{wi, wk1
}

∪ n paths(wk1
, wj , T ∪ {wk1

}),
. . .
{wi, wkn}
∪ n paths(wkn , wj , T ∪ {wkn})},
∀wkm ∈ VW , such that
(wi, wkm) ∈ EW andwkm /∈ T

n paths(wi, wj , T) = ⊥

Definition 3.2 Given a setA containing other sets, the
functionflatten(A) is defined as:

flatten(∅) = ∅
flatten(A) = a ∪ flatten(A \ a), if a ∈ A

Note that then paths function is a breadth first ap-
proach with cycle checking to find nodes in possible paths
in graphs. It outputs all the nodes in the possible paths be-
tween two nodesni andnj , or returns⊥ if there is no path
between those two nodes. Nevertheless, for the sake of clar-
ity of presentation, in the remainder of this chapter, we as-
sume that only well-formed dependency graphs are consid-
ered in the proposed algorithms.

Proposition 3.1 Given a connected graphGW =
(VW , EW) and two work units wi, wj ∈ VW ,
n paths(wi, wj , ∅) terminates and returns all the nodes in
the possible paths betweenwi andwj , ∅ in casewi = wj ,
or ⊥ in case there is no path betweenwi, wj ∈ VW .

Definition 3.3 Given a node ni, a work unit wi ,
the set of local SLAsσ = {SLAw0

, . . . , SLAwp
}

for the p locally executed work units,Qval′ as
the new requested QoS level for a serviceS, and

Iwi
= {(nj, wj , Q

j
val), . . . , (nk, wk, Qk

val)} as the set
of QoS levels given as input towi, then the value of
test feasibility(ni, wi, Q

i
val′ , Iwi

) is the return value of
Algorithm 1 applied to nodeni.

Lemma 3.1 (Correctness of the feasibility test)The
function test feasibility always terminates and returns
true if the new required set of SLAs for outputting the QoS
levelQ′

val at work unitwi is feasible or false otherwise.

Proof 3.1 Termination comes from the finite number of
tasksτi being executed in nodeni and from the finite num-
ber of thek QoS dimensions andj attributes being tested.
The number of QoS attributes being manipulated decreases
whenever a taskτi is configured to be served at its lowest
admissible QoS levelQkj [n], thus leading to termination.

Correctness comes from the heuristic selection of the
QoS attribute to downgrade at each iteration of the algo-
rithm.

Thus, after a finite number of steps the algorithm either
finds a new set of feasible SLAs that complies with the co-
ordination request or returns false if the requested SLA for
the work unitwi cannot be supplied.

Definition 3.4 Given a connected graphG = (V , E), such
that the work unitwi is being processed by nodeni ∈ V ,
and I = {(nj , wj , Q

j
val), . . . , (nk, wk, Qk

val)} as the cur-
rent set of QoS inputs for a work unitwi, and givenT as
the set of changed QoS inputs in response to the coordina-
tion request, the functionupdate(I, T) updatesI with the
elements fromT :

update(∅, T) = ∅
update(I,T) = {(ni, wi, Q

i
val′)}

∪ update(I \ (ni, wi, Q
i
val), T), if

(ni, wi, Q
i
val) ∈ I and(ni, wi, Q

i
val′) ∈ T

update(I,T) = {(ni, wi, Q
i
val)}

∪ update(I \ (ni, wi, Q
i
val), T), if

(ni, wi, Q
i
val) ∈ I and(ni, wi, Q

i
val′) /∈ T

Proposition 3.2 Given two setsI and T , both with ele-
ments of the form(ni, wi, Q

i
val), update(I,T)terminates and

returns a new set with the elements ofI such that whenever
(ni, wi, Q

i
current) ∈ I and (ni, wi, Q

i
new) ∈ T the pair

stored in the returned set is(ni, wi, Q
i
new).

Definition 3.5 Given a nodeni and a work unitwi, we de-
fine the functionget input qos(ni, wi) as returning the set
of elements(nj , wj , Q

j
val), where each of these elements

represents a work unitwj being executed at nodenj with
an output QoS level ofQj

val used as an input of the work
unit wi at nodeni.

Given these, th next sections detail how the decentralised
coordination model operates on upgrades or downgrades of
the currently supplied QoS level of a dependent work unit
wi being executed at nodeni.

5

3.2.1 Coordinating upgrades

Given the connected graphG = (V , E) with a set of cut-
verticesC and an end-user nodenu receiving the final out-
come of the coalition’s processing of serviceS, whenever a
nodeni ∈ V is able to upgrade the output of its work unit
wi ∈ S to a QoS levelQ′

val, the other nodes in the coalition
respond to this upgrade request according to Algorithm 2.

Algorithm 2 Coordinating upgrades
temp := ni

U := ∅
for eachnc ∈ C ∪ {nu} do

if upgrade(temp, nc,G, Q′
val) = (TRUE, T) then

temp := nc

U = U ∪ T

else
U = ∅
return

end if
end for
for each (ni, Qval) ∈ U do

Set the new QoS levelQ′
val for work unitwi ∈ S

end for

Definition 3.6 Given the connected graphG = (V , E)
with a set of cut-verticesC and the subgraph that con-
nects nodeni to next cut-vertexnc ∈ C, the function
upgrade(ni, nc,G, Q′

val) is defined by:

upgrade(ni, nc,G, Q′
val) =

T := {(ni, wi, Q
′
val)}

for eachnj ∈ n paths(ni, nc) \ {ni} do
S := update(get input qos(ni, wi), T)
if test feasibility(nj, wj , Q

′
val, S) = TRUE then

T := T ∪ {(nj, Q
′
val)}

end if
end for
S := update(get input qos(nc, wc), T)
if test feasibility(nc, wc, Q

′
val, S) = TRUE then

return (TRUE, T)
end if
return (FALSE, ∅)

Lemma 3.2 Given the connected graphG = (V , E) such
thatni ∈ V andnj ∈ V and a QoS level valueQ′

val, the call
to upgrade(ni, nj ,G, Q′

val) terminates and returns true if
nj is able to output a new QoS levelQ′

val or false otherwise.

Proof 3.2 SinceV is a finite set and since by Proposition
3.1n paths terminates and by Proposition 3.2 update ter-
minates, the number of iterations is finite due to the finite
number of elements in the paths. Thus, upgrade terminates.

For any element in the paths betweenni andnj, the new
required QoS levelQ′

val is tested and, by Lemma 3.1, the
upgrade is possible if and only if the new local set of SLAs
is feasible. After considering all nodes in the paths, the
upgrade function returns true and the set of nodes able to
upgrade, if nodenj is able to upgrade toQ′

val, or false oth-
erwise. Thus, the result follows by induction on the length
of the set of elements in the paths betweenni andnj.

�

Theorem 3.1 (Correctness of Upgrade)Given the con-
nected graphG = (V , E) representing the QoS inter-
dependencies of a serviceS being executed by a coalition
of nodes, such thatnu ∈ V is the end-user node receiving
the service at a QoS levelQval, whenever a nodeni an-
nounces an upgrade toQ′

val, Algorithm 2 changes the set of
SLAs at nodes inG such thatnd receivesS upgraded to the
QoS levelQ′

val or does not change the set of local SLAs at
any node andnu continues to receiveS at its current QoS
levelQval.

Proof 3.3 Termination comes from the finite number of el-
ements inC ∪ nu and from Lemma 3.2.

Algorithm 2 applies the functionupgrade iteratively to
all nodes in the subgraph starting withni and finishing in
nu. The base case is when there are no cut-vertices and
there is only one call toupgrade. It is trivial to see that
the result ofupgrade will consist in true and a set of nodes
that will upgrade for the new QoS levelQ′

val or false and
an empty set and, by Lemma 3.2, it is correct. The remain-
ing cases happen when there are one or more cut-vertices
betweenni andnu. Here,upgrade will be applied to all
subgraphs starting inni and finishing innd. Each of these
subgraphs are sequentially tested and only if all of them can
be upgraded the serviceS will be delivered to nodenu at
the new upgraded QoS levelQ′

val. The result follows by
induction in the number of cut-vertices.

3.2.2 Coordinating downgrades

Algorithm 3 Coordinating downgrades
1: temp := ni

2: for eachnc ∈ C ∪ {nu} do
3: if downgrade(temp, nc,G, Q′

val) = FALSE then
4: temp := nc

5: else
6: Downgrade was compensated andnc continues to

outputQval

7: return
8: end if
9: end for

6

Given the connected graphG = (V , E) with a set of cut-
verticesC and an end-user nodenu receiving the final out-
come of the coalition’s processing of serviceS, whenever
a nodeni ∈ V needs to downgrade the quality of the out-
put of a work unitwi ∈ S from its current QoS level of
Qval to a downgraded QoS levelQ′

val, the other nodes in
the coalition respond to this downgrade request according
to Algorithm 3.

Definition 3.7 Given the connected graphG = (V , E)
with a set of cut-verticesC and the subgraph that con-
nects nodeni to next cut-vertexnc ∈ C, the function
downgrade(ni, nc,G, Q′

val) is defined by:

downgrade(ni, nc,G, Q′
val) =

T := {(ni, Q
′
val)}

for eachnj ∈ n paths(ni, nc) \ {ni} do
D := update(get input qos(nj , wj), T)
if test feasibility(nj, wj , Qval, D) = TRUE then

T := T ∪ {(nj, Qval)}
else

set qos level(nj, wj , Q
′
val)

end if
end for
D := update(get input qos(nc, wc), T)
if test feasibility(nc, wc, Qval, D) = TRUE then

return TRUE
else

for eachnj ∈ n paths(ni, nc) \ {ni} do
set qos level(nj, wj , Q

′
val)

end for
return FALSE

end if

Lemma 3.3 Given the connected graphG = (V , E) such
that ni ∈ V andnj ∈ V andnj currently outputs a QoS
level Qval, the call todowngrade(ni, nj ,G, Q′

val) termi-
nates and returns true ifnj is able to keep its current output
levelQval or false otherwise.

Proof 3.4 SinceV is a finite set and since, by Proposition
3.1,n paths terminates and by Proposition 3.2update ter-
minates, the number of iterations is finite due to the finite
number of elements in the paths. Thus,downgrade termi-
nates.

For any element in the paths betweenni and nj , it is
tested if the node, given its new set of inputs, can continue
to output its current QoS levelQval. After considering all
nodes in the paths, thedowngrade function returns true, if
nodenj is able to continue to outputQval, or sets all the
previous nodes in the paths to the downgraded QoS level
Q′

val and returns false. Again the result follows by induction
on the length of the set of elements in the paths betweenni

andnj .

�

Theorem 3.2 (Correctness of Downgrade)Given the
connected graphG = (V , E) representing the QoS inter-
dependencies of a serviceS being executed by a coalition
of nodes such thatnu ∈ V is the end-user node receiving
S at the QoS levelQval, whenever a nodeni is forced to
downgrade the quality of the output of a work unitwi ∈ S

from its current QoS level ofQval to a degraded QoS level
Q′

val, Algorithm 3 changes the set of SLAs at nodes inG
such thatnu continues to receiveS at its current QoS level
Qval or sets all nodes to a degraded QoS level ofQ′

val.

Proof 3.5 Termination comes from the finite number of el-
ements inC ∪ nu and from Lemma 3.3.

The correctness trivially follows by the correctness of
Lemma 3.3 and by induction on the number of elements in
C ∪ {nu}.

3.3 Number of exchanged messages

In the previous sections we presented the formalisation
of the two main coordination operations, namely upgrades
and downgrades of the currently supplied QoS levelQval

for a serviceS, as a reaction to a change in the quality of
inter-dependent inputs sent by adjacent nodes. In this sec-
tion we analyse the number of exchanged messages in such
coordination operations. We start with some auxiliary defi-
nitions.

Definition 3.8 Given a directed graphG = (V , E), the in-
degree of a nodeni ∈ V is the number of edges that have
ni as their destination.

Definition 3.9 Given a directed graphG = (V , E), the out-
degree of a nodeni ∈ V is the number of edges that have
ni as their starting node.

Whenever an upgrade to a new QoS levelQ′
val is re-

quested by a nodeni, if the next cut-vertexnc in the graph
G on QoS inter-dependencies cannot supply the requested
upgrade, then all the precedent nodes betweenni andnc

are kept in their currently supplied QoS levelQval. Thus,
the number of needed messages is given by the number of
edges in the paths between theni andnc where it was de-
termined that the requested upgrade was not possible. On
the other hand, if the upgrade is possible, the number of
needed messages is twice the number of edges betweenni

and the end-user nodenu. This is because an upgrade is
only possible after all the involved nodes are queried and
the conjunction of their efforts results in a upgraded QoS
level being delivered tonu.

Whenever, due to resource limitations, a nodeni an-
nounces a downgrade toQ′

val, the next nodes in the sub-
graph fromni to the next cut-vertexnc try to compensate

7

the downgraded input quality in order to keep outputting
the previous QoS levelQval. When the cut-vertexnc is
reached two scenarios may occur. In the first one, the cut-
vertex cannot compensate the degradation, although some
of its precedent nodes may. In this case, all the precedent
nodes are informed that they can downgrade their current
QoS level toQ′

val since their compensation effort is use-
less. Note that, in the worst case, this can be propagated
until the final nodenu is reached and all the coalition mem-
bers will downgrade their current QoS level. As such, in the
worst case, a message is sent from each node to its adjacent
ones and a reply is received, which demands a total num-
ber of messages of two times the number of edges between
ni andnu. On the other hand, in the second possible sce-
nario, some cut-vertexnk may be able to compensate the
downgraded input quality and continue to produce the cur-
rent QoS levelQval. In this case, the coordination process
is restricted to the subgraph betweenni andnk. As such,
coordination messages are exchanged in this subgraph only.

Thus, in the worst case, the maximum number of ex-
changed messages in a coordination operation is given by
Equation 1.

∑

n∈V

(out degree(n) + in degree(n)) (1)

4 Evaluation

An application that captures, compresses and transmits
frames of video to end users, which may use a diversity of
end devices and have different sets of QoS preferences, was
used to evaluate the behaviour of the proposed decentralised
coordination model, with a special attention being devoted
to introduce a high variability in the characteristics of the
considered scenarios. The application is composed by a set
of source units to collect the data, a compression unit to
gather and compress the data sent from multiple sources, a
transmission unit to transmit the data over the network, a
decompression unit to convert the data into the user’s spec-
ified format, and an user unit to display the data in the end
device [16].

The number of simultaneous nodes in the system ran-
domly varied from 10 to 100. Each node was running a pro-
totype implementation of the CooperatES framework [17],
with a fixed set of mappings between requested QoS lev-
els and resource requirements. The code bases needed to
execute each of the application’s units was loaded a pri-
ori in all the nodes. The characteristics of end devices and
their more powerful neighbour nodes was randomly gen-
erated, creating a distributed heterogeneous environment.
This non-equal partition of resources affected the abilityof
some nodes to singly execute some of the application’s units
and has driven nodes to a coalition formation for a cooper-

ative service execution.
At randomly selected end devices, new service requests

from 5 to 20 simultaneous users were randomly generated,
dynamically generating different amounts of load and re-
source availability during the previously accepted services’
execution. Each service request was formulated as a set of
random QoS levels, expressing the spectrum of the user’s
acceptable QoS levels in a qualitative way, ranging from a
randomly generated desired QoS level to a randomly gener-
ated maximum tolerable service degradation. The relative
decreasing order of importance imposed in dimensions, at-
tributes and values was also randomly generated.

Based on each user’s service request, coalitions of 4 to
20 nodes were formed using the anytime coalition forma-
tion and service proposal formulation algorithms proposed
in [16, 15]. Each node was connect at least to another node
in the coalition. The maximum degree of each node, that is,
the number of connections to a node was set to 3. After the
coalition was formed, a randomly percentage of the connec-
tions among its members was selected as a QoS dependency
among those work units.

The behaviour of the proposed decentralised one-step
coordination model in highly dynamic scenarios was com-
pared to a classic centralised optimal coordination model.
With a centralised coordination model, all changes in the
output quality of a work unitwij ∈ Si have to be communi-
cated to a single entity with service-wide knowledge. Then,
this central coordinator has to determine the impact of those
changes in the overall coalition’s QoS level and request the
adaptation of the involved nodes. To evaluate the success or
failure of such dependent adaptation, an adaptation request
must be sequentially made along the dependency graph ei-
ther until a common global service solution is found or one
of the coalition member is unable to supply the new desired
QoS values.

The conducted evaluation started by comparing the total
number of messages that had to be exchanged among nodes
when using both approaches to globally coordinate depen-
dent autonomous self-adaptations. The average results of
all simulation runs for different coalition sizes are plotted
in Figure 1.

As expected, both coordination approaches require more
messages to be exchanged among nodes as the complex-
ity of the service’s topology increases. Nevertheless, the
proposed decentralised coordination model requires around
80% of the needed number of messages required by the cen-
tralised model until all the affected coalition members be-
come aware of the coordination request’s result.

Less messages should result in a faster convergence to a
global common solution. To verify the veracity of such as-
sumption a second study measured the needed average time
from the moment a node issued a coordination request un-
til the outcome of the global adaptation process was deter-

8

Figure 1. Number of exchanged messages

mined. The deadline used for the anytime local QoS adap-
tation at each node was set to one second. At the end of the
algorithm’s execution, the feasibility or unfeasibility of the
received coordination request was determined by the node.
The obtained results, on an Intel Core Duo T5500 at 1.66
GHz with 2 GB of RAM, are plotted in Figure 2.

Figure 2. Time for a global adaptation

Clearly, the proposed decentralised coordination model
is faster to determine the overall coordination result in all
the evaluated services’ topologies, needing approximately
75% of the time spent by the centralised optimal model.

Even if the proposed one-step decentralised model re-
quires less messages and is faster than a centralised optimal
model to determine a global solution it is still important to
evaluate impact of an one-step coordination model on the
achieved service solution’s quality. Recall that, when adopt-
ing the proposed one-step coordination algorithm, if some
other dependent node in the coalition is unable to supply the
new requested values no other alternative solution is tried
and the global adaptation process fails. On the other hand,
with the centralised optimal coordination model, a node is
able to reply with a service counter-proposal whenever it is

unable to coordinate with the currently requested values. As
such, it is possible that after some iterations, the node’s best
possible service solution can be accepted by all the depen-
dent coalition partners as part of a global SLA. Note that
such intermediate service solution would not be achieved
with the proposed one-step coordination model.

The results were plotted, in Figure 3, by averaging the
results over several independent runs of the simulation, di-
vided in two categories: (i) when the average amount of
available resources per node is greater than the average
amount of resources demanded by the services being exe-
cuted; and (ii) when the average amount of resources per
node is smaller than the average amount of demanded re-
sources.

Figure 3. Relative solution’s utility

As the coalition’s topology complexity increases it is
clearly noticeable, in both scenarios, that a near-optimalser-
vice solution’s quality is achieved when using the one-step
coordination model, despite its simpler approach and faster
convergence to a common solution. The achieved results
can be explained by the fact that as the coalition’s topol-
ogy complexity increases it also increases the probabilityof
one of the involved nodes in the global adaptation process
to be unable to use more than its current level of reserved
resources for a work unitwi ∈ S. As the achieved results
clearly demonstrate, such probability is even greater when
the resources are scarce.

5 Conclusion

This paper addressed the problem of coordinating
autonomous dependent adaptations of resource-bounded
nodes in dynamic open cooperative real-time environments.
The proposed one-step decentralised coordination model
imposes restrictions on the way members of dynamically
created coalitions can self-adapt in response to changes in

9

the environment. It is based on an effective feedback mech-
anism that reduces the complexity of the needed interac-
tions among nodes. Feedback is formulated as a result of
a QoS adaptation process that evaluates the feasibility of
the new requested service solution. As the achieved results
clearly demonstrate, the proposed coordination model has
a reduced overhead and enables a faster convergence to a
near-optimal global service solution.

Acknowledgements

This work was supported by FCT through the CISTER Re-
search Unit - FCT UI 608 and the research projects CooperatES-
PTDC/EIA/71624/2006 and RESCUE - PTDC/EIA/65862/2006.

References

[1] G. Allen, T. Dramlitsch, I. Foster, N. T. Karonis, M. Ripeanu,
E. Seidel, and B. Toonen. Supporting efficient execution in
heterogeneous distributed computing environments with cac-
tus and globus. InProceedings of the 2001 ACM/IEEE con-
ference on Supercomputing, pages 52–52, November 2001.

[2] C. Boutilier, R. Das, J. O. Kephart, G. Tesauro, and W. E.
Walsh. Cooperative negotiation in autonomic systems using
incremental utility elicitation. InIn Proceedings of the 19th
Conference on Uncertainty in Artificial Intelligence, pages
89–97, Acapulco,Mexico, August 2003.

[3] P. Bridges, W.-K. Chen, M. Hiltunen, and R. Schlichting.
Supporting coordinated adaptation in networked systems. In
Proceedings of the Eighth Workshop on Hot Topics in Oper-
ating Systems, page 162, Oberbayern, Germany, May 2001.

[4] T. De Wolf and T. Holvoet. Towards autonomic computing:
agent-based modelling, dynamical systems analysis, and de-
centralised control.Proceedings of the IEEE International
Conference on Industrial Informatics, pages 470–479, Au-
gust 2003.

[5] M. Dorigo and G. D. Caro. The ant colony optimization
meta-heuristic. New ideas in optimization, pages 11–32,
1999.

[6] J. Dowling and S. Haridi. Decentralized Reinforcement
Learning for the Online Optimization of Distributed Systems,
chapter in Reinforcement Learning: Theory and Applica-
tions, pages 142–167. I-Tech Education and Publishing, Vi-
enna, Austria, 2008.

[7] I. Dusparic and V. Cahill. Research issues in multiple pol-
icy optimization using collaborative reinforcement learning.
In Proceedings of the 2007 International Workshop on Soft-
ware Engineering for Adaptive and Self-Managing Systems,
page 18, Washington, DC, USA, 2007. IEEE Computer So-
ciety.

[8] B. Ensink and V. Adve. Coordinating adaptations in dis-
tributed systems. InProceedings of the 24th International
Conference on Distributed Computing Systems, pages 446–
455, Tokyo, Japan, March 2004.

[9] D. Gelernter and N. Carriero. Coordination languages and
their significance.Communications of the ACM, 35(2):96–
107, 1992.

[10] S. Graupner, A. Andrzejak, V. Kotov, and H. Trinks. Adap-
tive control overlay for service management. InFirst Work-
shop on the Design of Self-Managing Systems, San Fran-
cisco, USA, June 2003.

[11] M. Jelasity, A. Montresor, and O. Babaoglu. A modular
paradigm for building self-organizing peer-to-peer applica-
tions. In In Engineering Self-Organising Systems, G. Di
Marzo Serugendo, pages 265–282. Springer, 2004.

[12] K. Kwiat and S. Ren. A coordination model for improving
software system attack-tolerance and survivability in open
hostile environments. InProceedings of the IEEE Inter-
national Conference on Sensor Networks, Ubiquitous, and
Trustworthy Computing, pages 394–402, Taichung, Tawain,
June 2006.

[13] A. Montresor, H. Meling, and̈O. Babaoglu. Toward self-
organizing, self-repairing and resilient distributed systems.
In Future Directions in Distributed Computing, pages 119–
126, 2003.

[14] L. Nogueira and L. M. Pinho. Dynamic qos-aware coalition
formation. InProceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium, page 135,
Denver, Colorado, April 2005.

[15] L. Nogueira and L. M. Pinho. Dynamic qos adaptation
of inter-dependent task sets in cooperative embedded sys-
tems. InProceedings of the 2nd ACM International Confer-
ence on Autonomic Computing and Communication Systems,
page 97, Turin,Italy, September 2008.

[16] L. Nogueira and L. M. Pinho. Time-bounded distributed qos-
aware service configuration in heterogeneous cooperative en-
vironments.Journal of Parallel and Distributed Computing,
69(6):491–507, June 2009.

[17] L. M. Pinho, L. Nogueira, and R. Barbosa. An ada frame-
work for qos-aware applications. InProceedings of the 10th
Ada-Europe International Conference on Reliable Software
Technologies, pages 25–38, York, UK, June 2005.

[18] R. Rajkumar, C. Lee, J. Lehoczky, and D. Siewiorek. A re-
source allocation model for qos management. InProceedings
of the 18th IEEE Real-Time Systems Symposium, page 298.
IEEE Computer Society, 1997.

[19] S. Ren, L. Shen, and J. Tsai. Reconfigurable coordination
model for dynamic autonomous real-time systems. InPro-
ceedings of the IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing, pages
60–67, Taichung, Tawain, June 2006.

[20] G. D. M. Serugendo.Autonomous Systems with Emergent
Behaviour, chapter Handbook of Research on Nature In-
spired Computing for Economy and Management, pages
429–443. Idea Group, Inc., Hershey-PA, USA, September
2006.

[21] M. Shankar, M. de Miguel, and J. W. S. Liu. An end-to-
end qos management architecture. InProceedings of the 5th
IEEE Real-Time Technology and Applications Symposium,
pages 176–191, Washington, DC, USA, 1999. IEEE Com-
puter Society.

[22] C. S. D. The University of Arizona. The cactus
project. Available athttp://www.cs.arizona.edu/
projects/cactus/.

10

