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Abstract 
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the 
goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate 
between processors. We propose an algorithm which can schedule all task sets that any other possible 
algorithm can schedule assuming that our algorithm is given processors that are three times faster. 
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Abstract 
 

Consider the problem of scheduling a set of 
sporadically arriving tasks on a uniform multiprocessor 
with the goal of meeting deadlines. A processor p has the 
speed Sp. Tasks can be preempted but they cannot migrate 
between processors. We propose an algorithm which can 
schedule all task sets that any other possible algorithm 
can schedule assuming that our algorithm is given 
processors that are three times faster. 
 

1. Introduction 

Consider the problem of preemptive scheduling of a 
set τ of n sporadically arriving tasks on m processors. A 
task is given a unique index within the range 1..n and a 
processor is given a unique index within the range 1..m. 
The speed of processor p is denoted Sp with the 
interpretation that if a task executes L time units on 
processor p, it performs L × Sp units of execution. 

A task τi generates a (potentially infinite) sequence of 
jobs. The time when these jobs arrive cannot be 
controlled by the scheduling algorithm and the time of a 
job arrival is unknown to the scheduling algorithm before 
the job arrives. It is assumed that the time between two 
consecutive arrivals of jobs from the same task τi is at 
least Ti. We say that a job generated by τi finishes 
execution at the time when it has performed Ci units of 
execution. If a job finishes execution at most Ti time units 
after its arrival then we say that the job meets its deadline; 
otherwise it misses its deadline. It is assumed that 0 ≤ Ci 
and 0 ≤ Ti, and that Ti and Ci are real numbers. Note that 
we permit Ti ≤ Ci. 

The scheduling algorithm is allowed to preempt the 
execution of a task and there is no cost associated with 
preemption. Task migration is not permitted; when a job 
resumes execution after being preempted, the job must 
execute on the same processor as it executed on before it 
was preempted. Also, if any two jobs are generated by the 
same task then these two jobs must execute on the same 
processor. It is assumed that a processor can execute at 

most one job at a time, and a job cannot execute on two 
or more processors simultaneously. It is also assumed that  
Ti and Ci of all tasks are known to the scheduling 
algorithm. 

Our goal is to design an algorithm that schedules tasks 
to meet the deadlines of all jobs. Unfortunately, the 
problem of deciding if a set of tasks can be partitioned 
such that all tasks on each processor meet deadlines is 
NP-complete [1]. Consequently, the problem of assigning 
tasks to processors is intractable. For this reason, we will 
allow an algorithm to fail to assign tasks to processors 
even when it would be possible to assign tasks to 
processors such that deadlines would be met. For such 
scheduling algorithms, it is common to characterize the 
performance with the notion of a utilization bound [2]. 
This notion has the additional advantage of allowing 
designers to find out if a specific task set will meet 
deadlines before run-time; this is often called 
schedulability analysis. Unfortunately, the standard 
definition of a utilization bound used in uniprocessor 
scheduling [2] and on multiprocessors with identical 
processors [3, 4] cannot be applied on uniform 
processors. For this reason, we will instead use another 
commonly-used [5, 6] performance metric: the 
competitive factor. 

The competitive factor of an algorithm A is denoted as 
CPTA. It is a number such that for every task set τ and for 
every uniform multiprocessor system Π, characterized by 
its speed Sp, it holds that if it is possible to design an 
algorithm that meets all deadlines of τ on Π´ then A meets 
all deadlines of τ on Π, where Π is a uniform 
multiprocessor system where each processor has a speed 
CPTA greater than the corresponding processor in Π´. 

A low competitive factor indicates high performance. 
A competitive factor of 1 is the best achievable. And a 
competitive factor of 2 is (as we will see) the best 
achievable for scheduling algorithms that do not allow 
migration. If a scheduling algorithm has a finite 
competitive factor then one can solve every problem 
instance using processors that are sufficiently fast. If no 
finite competitive factor has been proven for a scheduling 
problem then one cannot know if faster processors will 
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ever help. Unfortunately, with the current state of art in 
partitioned scheduling on uniform multiprocessor, there is 
no algorithm with a proven finite competitive factor. 

Therefore, in this paper we propose a partitioned 
scheduling algorithm for uniform multiprocessors; it 
allows preemption and it uses Earliest-Deadline-First 
(EDF) [2] on each processor. We prove its competitive 
factor: it is at most three. 

The remainder of this paper is organized as follows. 
Section 2 discusses design issues for uniform 
multiprocessors. Section 3 discusses the problem of 
deciding whether it is possible to schedule a task set on a 
uniform multiprocessor assuming that the scheduling 
algorithm is permitted to migrate tasks. Section 4 presents 
our new algorithm which does not migrate tasks. We also 
prove its competitive factor. This proof uses results in 
Section 3 on scheduling where migration is permitted. 
Section 5 discusses the ability of previous work to solve 
the addressed problem. Section 6 gives conclusions. 

2. Design issues 

Recall that task migration is not permitted; when a job 
resumes execution after being preempted, the job must 
execute on the same processor as it executed on before it 
was preempted. Also, if any two jobs are generated by the 
same task, then these two jobs must execute on the same 
processor. This type of scheduling is called partitioned 
multiprocessor scheduling because it is equivalent to 
partitioning the set of tasks such that all tasks in a 
partition are assigned to its dedicated processor and then a 
uniprocessor scheduling algorithm is used at run-time. 
The run-time scheduling is trivial. It is well-known that 
preemptive Earliest-Deadline-First (EDF) is optimal on a 
uniprocessor with our task model; that is, it meets 
deadlines if there is any uniprocessor scheduling 
algorithm that meets deadlines. For this reason, we will, 
in the remainder of the paper, assume that preemptive 
EDF is used on each processor. For convenience we will 
refer to EDF with the meaning of preemptive EDF.  

The problem of partitioning the task set is however 
non-trivial. It is important that the task assignment 
algorithm is aware of the scheduling algorithm used on a 
uniprocessor and it must use a uniprocessor schedulability 
test to know this. This is illustrated in Example 1. 

Example 1. Consider n = 3 tasks to be scheduled on 
m = 2 processors. The task set is characterized by 
T1 = 1, C1 = 0.34, T2 = 1, C2 = 0.34, T3 = 1, C3 = 0.34; 
and the processors have the speed S1 = S2 = 1. If all 
tasks are assigned to processor 1 then the utilization on 
that processor is 1.02. This causes a deadline miss. 
Consequently, an algorithm for assigning tasks to 
processors must use a schedulability test according to 
the uniprocessor scheduling algorithm to be used at run-
time.          � 

We saw in Example 1 that the task assignment 
algorithm must use a schedulability test when making 
decisions. For EDF it is known [2] that: 

Theorem 1. Let p be a processor of speed Sp = 1. If 
∑Ci/Ti ≤ 1 and tasks are scheduled with EDF on p then all 
deadlines are met.         � 

We can easily remove the restriction Sp = 1 from 
Theorem 1. 

Theorem 2. Let p be a processor of speed Sp. If 
∑Ci/Ti ≤ Sp and tasks are scheduled with EDF on p then all 
deadlines are met.         � 

When assigning tasks to processors, the speed of a 
processor clearly is used in the schedulability test, for 
example the one in Theorem 2. But it is also important that 
processors are considered in the right order, in order to 
achieve a finite competitive factor. Example 2 illustrates 
this. 

Example 2. Let k be an arbitrary integer such that 
k ≥ 2. Consider n = k3+1 tasks to be scheduled on m = k3 
processors. All tasks have Ti = 1, ∀i∈1..m+1. Tasks 
with ∀i∈1..m, have Ci = 1 and the task τm+1 has 
Cm+1 = k+1. Processor 1 has the speed S1 = k+2 and the 
processors with index 2..m have the speed Sp = 1.  

Observe Figure 1. It can be seen (from Figure 1a) 
that this task set can be scheduled by assigning τm+1 to 
processor 1 and one of the other tasks to processor 1, 
and the other tasks given one dedicated processor each. 
However, consider Figure 1b. If the task assignment 
scheme considers tasks and processors in order of their 
index and uses a normal bin-packing algorithm, then a 
deadline is missed. A deadline is still missed even if 
processors are k times faster. We can see this as follows. 
Processor 1 will have the speed S1 = k2+2k and 
processors 2,3,4,…,m will have speed Sp = k. The speed 
of processor 1 is not enough to host all the tasks 
τ1,τ2,τ3,…,τm because their cumulative utilization is k3 
and this exceeds the speed of processor 1, which is 
S1 = k2+2k (it is true that k3 ≥ k2+2k since k ≥ 2). 
Consequently, task τm+1 will not be assigned to 
processor 1 and hence τm+1 must be assigned to one of 
the processors with index 2,3,…,m. But τm+1 cannot be 
assigned to a processor with index 2,3,…,m because the 
utilization of τm+1 is k+1 and the speed of each of the 
processors is k. 

We have seen that algorithms using bin-packing can 
fail if the speed of the processors is not considered in 
the assignment algorithm. This can happen although 
these algorithms are given processors that are k times 
faster. We can do this reasoning for any k ≥ 2. By 
letting k→∞ we obtain that the competitive factor is 
infinite for these bin-packing schemes that do not take 
the speed of each processor into consideration. This 
stresses the importance of taking the speed of 
processors into account when the task
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(a) Using bin-packing that takes the speed of processors into account leads to that all deadlines are met. 
A dotted line shows the assignment of a task to a processor. 

          Processors 

S1=k2+2k 
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S2=k 
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P2

Sm=k 

...

Pm

C1=1 

C2=1 

... 

Cm=1 

Cm+1=k+1 

τm

...

τ2

τ1

τm+1

(b) Using bin-packing without taking the speed of processors into account leads to a deadline miss. A 
dotted line shows the assignment of a task to a processor. 

Fig. 1. It is important to exploit knowledge of the speed of the processors when assigning tasks to 
processors. Otherwise, the competitive factor can approach infinity. 

assignment algorithm makes decisions.       � 
We saw in Example 2 that it is important to take the 

speed of processors into account when assigning tasks to 
processors. In particular, if a task can be assigned to a 
processor such that this task occupies a large fraction of 
the processing capacity of that processor, then it is 
beneficial to assign the task to that processor. Considering 
that we will use the competitive factor as a performance 
metric, it is interesting to find out how good performance 
can be achieved. Clearly, we want as low competitive 
factor as possible, and clearly a competitive factor less 
than 1 is impossible. But since we study scheduling with 

Example 3. Observe Figure 2. Consider n = m+1 
tasks to be scheduled on m processors. All

no migration, a competitive factor of two is the best 
achievable, as it will be shown in Example 3. 

 tasks have 
Ti = 1, Ci = m/(m+1) ∀i∈1..m+1. All processors have 
speed Sp = 1. It can be seen that these tasks can be 
scheduled to meet deadlines with an algorithm that 
allows task migration because ∑Ci/Ti ≤ m and all 
processors are identical. Figure 2a shows this. Let us 
now try to schedule these tasks without migration on 
processors of speed Sp = 2m/(m+1)-ε, where ε > 0. It is 
necessary that two or more tasks are assigned to the 
same processor. On that processor, the utilization 
exceeds the speed of the processor and hence a deadline 
is missed. We can do this reasoning for any m ≥ 1
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          Processors 
 
 
 
 
 
 

 
Fig. 2. The competitive factor of every partitioned scheduling algorithm is at least 2. 

and for any ε > 0. Letting m→∞ and ε→0 yields that a 
deadline is missed although the speed is arbitrarily close 
to two. Hence, it is impossible to achieve a competitive 
factor less than 2 for partitioned scheduling.     � 

3. Optimal Scheduling With Migration 

We will now discuss feasibility testing of scheduling 
with migration; that is, we will state conditions such that 
if and only if these conditions are true for a task set then it 
is possible to schedule the task set. We will state those 
conditions for a heterogeneous multiprocessor platform 
(in Section 3.1) and then we will state them (in 
Section 3.2) for uniform platforms. The latter is useful for 
proving the competitive factor of the new algorithm in 
Section 4. 

3.1. Heterogeneous Multiprocessor Platforms 
The problem of feasibility testing on a heterogeneous 

multiprocessor platform has been studied previously [7]. 
We define ri,p as follows: on a heterogeneous 
multiprocessor platform, a task τi executing on processor 
p for L time units, performs ri,p×L units of work. Let xi,p 
denote the fraction of time that task τi spends on 
processor p. It holds that a task set is feasible on a 
heterogeneous multiprocessor platform if and only if l ≤ 1 
for the following optimization problem. 

 
  minimize l 
  subject to: 

S1=1 

Tasks 

S2=1 

 

P1

P2

Sm=1 

...

Pm

 

... 

τm

...

τ2

τ1

τm+1

(a) Scheduling with migration allowed. A dotted line shows the assignment of a task to a processor. The 
number attached to the line indicates how much computing capacity that this assignment requests from 

the processor. 

m/(m+1) 

m/(m+1) 

m/(m+1) 

m/(m+1) 

1/(m+1) 

1/(m+1) 

1/(m+1) 

1/(m+1) 

 

S1=2m/(m+1)-ε 

Tasks 

S2=2m/(m+1)-ε 

 

P1

P2

Sm=2m/(m+1)-ε 
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C1= m/(m+1) 

C2= m/(m+1) 

Cm= m/(m+1) 

Cm+1= m/(m+1) 

...

τ2

τ1

τm

τm+1

(b) Scheduling where migration is not allowed but processors are faster. A dotted line shows the 
assignment of a task to a processor. There is no processor where τm+1 can be assigned. 

C1= m/(m+1) 

C2= m/(m+1) 

Cm= m/(m+1) 

Cm+1= m/(m+1) 

          Processors 
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3.2. Uniform Multiprocessor Platforms 
We can specialize the feasibility analysis in 

Section 3.1 to uniform multiprocessors. We have ∀p: 
r1,p = r2,p = r3,p = … = rn,p = Sp, where Sp is the speed of 
processor p and ri,p is the parameter from Section 3.1. The 
feasibility test can then be formulated as follows: A task 
set is feasible on a uniform multiprocessor platform if and 
only if l ≤ 1 for the following optimization problem. 
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Let us substitute xi,p×Sp with ui,p. Then, the feasibility 
test can then be reformulated as follows: A task set is 
feasible on a uniform multiprocessor platform if and only 
if l ≤ 1 for the following optimization problem. 

 

{ } lxni
m

p
pi∑

=

≤∈∀
1

,:,...,2,1  

{ } lxmp
n

i
pi∑

=

≤∈∀
1

,:,...,2,1  

  minimize l 
  subject to: 

{ }
i

i
m

p
pi T

Cuni ∑
=

=∈∀
1

,:,...,2,1  (1) 

  and 

{ } l
S
u

ni
m

p p

pi∑
=

≤∈∀
1

,:,...,2,1  
(2) 

  and 

{ } l
S
u

mp
n

i p

pi∑
=
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then no scheduling algorithm can meet all deadlines. 
Proof: We know from the assumption of the lemma that 

there is a task set τ and a uniform multiprocessor Π such 
that: 
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Applying (1) yields: 

 

and swapping the summation order yields: 
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Hence it is impossible to satisfy (3) and l ≤ 1. 
Consequently, a deadline will be missed. This proves 

the lemma.          � 

4. The New Algorithm 

The new algorithm is described in Figure 3. It is 
called EDF-DU-IS-FF because it uses EDF on each 
processor, it sorts tasks in order of Decreasing-
Utilization, it sorts processors in order of Increasing-
Speed and it uses First-Fit bin-packing. 

 2. It is 

s given by Theorem 3. 

Line 11 is the schedulability test from Theorem
straightforward to see that the algorithm has the time 
complexity O(n×m+n×log n). The performance of EDF-
DU-IS-FF i

Theorem 3. CPTEDF-DU-IS-FF ≤ 3 
Proof: We can prove it using contradiction. We will do 

so and show that a failed task set must request more than 
50% of the processing capacity of a subset of processors. 
We will then consider this task set to be scheduled using a 
scheduling algorithm where migration is allowed and a 
computing platform with lower speed is used. It will turn 
out that every such migrative algorithm must utilize more 
than the sum of the computing capacity of the subset of 
processors. This will contradict Lemma 1 and it proves the 
theorem. Let us elaborate this reasoning. 
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1. sort process
2. sort tasks such that C

ors such that S1≤S2≤…≤Sm 
T1≥C2/T2≥…≥Cn/Tn 

3. for all p in 1..m do 
4.   U[p] := 0 

  for 
:= 1 
ile (i<=n) do 

8.   p := 1 
9.   allocated := FALSE 
10.   while (p<=m) and (allocated=FALSE) do 

  if U[p]+ Ci/Ti<=Sp then 
    assign task i to processor p 

13.       U[p] := U[p]+ /Ti 
14.       allocated := TRUE 
15.       i := i + 1 
16.     else 

s false then there exists a task set TF 
such that EDF-DU-IS-FF declares FAILURE on 
multiprocessor platform Π. But if TF  to be scheduled on 
Π´ then it is possible to meet all deadlines. It must be hat 
on speed which is 1/x of the speed of 
its corresponding processor in Π and x>3. 

Consider the situation when EDF-DU-IS-FF was given 
TF as input and EDF-DU-IS-FF declared FAILURE. There 
mu een a task τfailure that was considered when 
EDF-DU-IS-FF declared FAILURE. We can delete all 
tasks with index greater than τfailure and we still would have 
a task set such that the theorem was false. We let τ denote 
this

ule τ on Π´ to meet deadlines (5) 

lared failure in (4). Let k denote 
the number of processors such that Sp < Cn/Tn. Due to the 
sorting performed on line 1 and line 2 we obtain th

For every ( p∈{1,2,..,k} and for i∈{1,2,..,n} 
it holds that: Sp < Ci/Ti. (6) 

From (6) it follows that: 
When EDF-DU-IS-FF is run, no tasks are assigned to 

ocessor p with p∈{1,2,..,k}. (7) 

Let us now consider τn, the task hat caused failure for 
EDF-DU-IS-FF. We know that: 

(8) 

bserve from (8) that τ  could not be assigned to any 
of ,m, despite the fact that 
Cn/Tn ≤ Sp for those processors. Hence we have that: 

When EDF-DU-IS-FF declares FAILURE, for each 

p ∈ {k+1,k+2,…,m}: U[p]>0.50×Sp. 
Proof: If Fact 1 was false then there must exist a 

processor p with U[p] ≤ 0.50×Sp. We know from (9) that 
there is at least one task assigned to processor p. Hence 
the h Ci/T  ≤ 0.50×Sp assigned to 
processor p. Due to the sorti  of tasks we have that 
Cn/Tn ≤ Ci/Ti and it leads to Cn/Tn ≤ 0.50×Sp. But th  it 

rocessor p and 
DF-DU-IS-FF 

declared failure. This is a cont diction and it proves the 
fact. (End of proof of Fact 1)     � 

DF-DU-IS-FF 
de

(10

1 2 n-1  assigned, we obtain from (10) 
that: 

1/

5. end
6. i 
7. wh

11.   
12.   

Ci

17.       p := p + 1 
18.     end if 
19.   end while 
20.   if (allocated=FALSE) then 
21.     declare FAILURE 
22.   end if 
23. end while 
24. declare SUCCESS 

 
Fig. 3. EDF-DU-IS-FF, a task assignment 
algorithm for a uniform multiprocessor. 
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 t

For p∈{k+1,2,..,m}, it holds that U[p]+Cn/Tn > Sp

O n
the processors k+1,k+2,…

processor p∈{k+1,k+2,..,m} it holds that: there is at least 
one task assigned to processor p. 

(9) 

We have that Fact 1 is true. 
Fact 1. When EDF-DU-IS-FF declares failure, it holds 

that ∀

re is a task wit i
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we know that it cannot happen since E
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From Fact 1 we obtain that when E
clares failure it holds that: 
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Let us consider two cases 
Case 1. k = 0. 
We have Sp´ ≤ Sp/x, where

p in Π´. We also have x > 3
 Sp´ is the speed of processor 
. Combining this with (11) 

yields: 
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Simplifying the left-hand side, relaxing it and adding 
the utilization of τn to the right-hand side yields: 
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From (12) and Lemma 1, it follows that no algorithm 
can schedule the task set on Π´ even if migration is 
permitted. This contradicts (5). (End of Case 1) 

Case 2. k ≥ 1 
Let us study a migrative scheduling algorithm that meets 
all deadlines of τ on Π´. Hence the optimization (1)-(3) 
has a solution with l ≤ 1. Fact 2 and Fact 3 reason about 
this solution. 
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Fact 2. For any i, it holds that 
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We have S

, piu  

p´ ≤ Sp/x, where Sp´ is the speed of processor 
p in Π´. Applying this yields: 
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Rewriting yields (and using the knowledge that x is 
positive) yields: 
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Since x > 3 we obtain that 2/(x-1)<1. Using it yields: 
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−

= +=+=

<
1

1 1
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1
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kp
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Swapping the order of the indi es of the summ  on 
the right-hand side yields: 

=+= kp ikp 1 11

This requires that there is a p uch that: 

c ation

∑ ∑∑
−

<
m n

pi

m

p uS
1

,´  
 

+=

 s

∑
−

<
1

=

n   
1

,´
i

pip uS

Dividing by ´Sp  yields: 

∑
−

=1 ´i pS

And hence it is impossible to satisfy (3) and l ≤ 1. 
Consequently, a deadline will be missed on Π´. But this 
co

    � 

5. Previous work 

 the goal 
is  time when all jobs have been finished. 

 and hence it cannot solve our problem. 
The problem of partitioning a set of tasks on a uniform 

ultiprocessor has been considered previously [9, 10]. This 
 the same problem as we addressed in this paper. We find 

<
1

,1
n

piu  
 

ntradicts (5). (End of Case 2) 
We can see that regardless of the case, we obtain a 

contradiction and hence Theorem 3 is true.  

Algorithms in operations research have been proposed 
for scheduling jobs with no real-time requirements 
assuming that all jobs arrive at the same time and

to minimize the
(See for example [8].) A solution to this problem can be 
used for scheduling periodically arriving tasks with 
deadlines [1]. But unfortunately, that algorithm [1] allows 
task migration

m
is
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two d  and analysis though. 
First, the algorithms are analyzed by extending the 
utilization bound from identical ultiprocessors. But their 
utilization bound is not a single number; it is a function of 
the m
pe ssors is 
very large and (ii) the maxim m Ci/Ti is large. This 
pessimism is neither a consequence of the algorithm, nor 
the analysis techniques but it is a consequence of the 
defini uniform 
multiprocessors. The second drawback of above 
mentioned previous work [9, 1  is that their competitive 
factor is infinite. The algorithms use First-Fit or Any-Fit; 
this i
pro
po e 2 to occur and it 
causes the competitive factor to  infinite. 

The problem we address can be solved using task 
assignm
multi 11] 
exhau sks” and this lea
a time er algorithm [12] has 
polynomial time-complexity but it is high; it requires that 
a linear program is solved. Neither of them proves a 
competitive factor. 

A ady been proven for 
scheduling real-time tasks n uniform multiprocessors [5, 
6]; one of the algorithms as a competitive f f 
two [5]. In addition it has the advantage of being proven 
not j  but for the more 
generic model of aperiodic jobs where the scheduling 
algorithm has no knowledge of jobs arriving in th re. 
Unfortunately, it requires that tasks can migrate. 

6. Conclusions 

We have presented an algorithm to schedule 
spora  multiprocessor 
and we have proven its competitive factor. It is at most 
three. This is a significant sult because it is irst 
proven competitive factor in real-time schedu on 
unifo igration is not allowed. 

We Is it possible to achieve 
a competitive factor of two without migration? ( hat 
is the competitive factor when rate-monotonic [2] is used 
on ea
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