

Competitive Analysis of Partitioned
Scheduling on Uniform Multiprocessors

Björn Andersson
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

TR-061101

Version: 1.0

Date: Nov 2006

Competitive Analysis of Partitioned Scheduling on Uniform Multiprocessors
Björn ANDERSSON, Eduardo TOVAR

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {bandersson, emt}@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
Consider the problem of scheduling a set of sporadically arriving tasks on a uniform multiprocessor with the
goal of meeting deadlines. A processor p has the speed Sp. Tasks can be preempted but they cannot migrate
between processors. We propose an algorithm which can schedule all task sets that any other possible
algorithm can schedule assuming that our algorithm is given processors that are three times faster.

Competitive Analysis of Partitioned Scheduling on Uniform Multiprocessors

Björn Andersson and Eduardo Tovar
IPP Hurray Research Group

Polytechnic Institute of Porto, Portugal
{bandersson,emt}@dei.isep.ipp.pt

Abstract

Consider the problem of scheduling a set of
sporadically arriving tasks on a uniform multiprocessor
with the goal of meeting deadlines. A processor p has the
speed Sp. Tasks can be preempted but they cannot migrate
between processors. We propose an algorithm which can
schedule all task sets that any other possible algorithm
can schedule assuming that our algorithm is given
processors that are three times faster.

1. Introduction

Consider the problem of preemptive scheduling of a
set τ of n sporadically arriving tasks on m processors. A
task is given a unique index within the range 1..n and a
processor is given a unique index within the range 1..m.
The speed of processor p is denoted Sp with the
interpretation that if a task executes L time units on
processor p, it performs L × Sp units of execution.

A task τi generates a (potentially infinite) sequence of
jobs. The time when these jobs arrive cannot be
controlled by the scheduling algorithm and the time of a
job arrival is unknown to the scheduling algorithm before
the job arrives. It is assumed that the time between two
consecutive arrivals of jobs from the same task τi is at
least Ti. We say that a job generated by τi finishes
execution at the time when it has performed Ci units of
execution. If a job finishes execution at most Ti time units
after its arrival then we say that the job meets its deadline;
otherwise it misses its deadline. It is assumed that 0 ≤ Ci
and 0 ≤ Ti, and that Ti and Ci are real numbers. Note that
we permit Ti ≤ Ci.

The scheduling algorithm is allowed to preempt the
execution of a task and there is no cost associated with
preemption. Task migration is not permitted; when a job
resumes execution after being preempted, the job must
execute on the same processor as it executed on before it
was preempted. Also, if any two jobs are generated by the
same task then these two jobs must execute on the same
processor. It is assumed that a processor can execute at

most one job at a time, and a job cannot execute on two
or more processors simultaneously. It is also assumed that
Ti and Ci of all tasks are known to the scheduling
algorithm.

Our goal is to design an algorithm that schedules tasks
to meet the deadlines of all jobs. Unfortunately, the
problem of deciding if a set of tasks can be partitioned
such that all tasks on each processor meet deadlines is
NP-complete [1]. Consequently, the problem of assigning
tasks to processors is intractable. For this reason, we will
allow an algorithm to fail to assign tasks to processors
even when it would be possible to assign tasks to
processors such that deadlines would be met. For such
scheduling algorithms, it is common to characterize the
performance with the notion of a utilization bound [2].
This notion has the additional advantage of allowing
designers to find out if a specific task set will meet
deadlines before run-time; this is often called
schedulability analysis. Unfortunately, the standard
definition of a utilization bound used in uniprocessor
scheduling [2] and on multiprocessors with identical
processors [3, 4] cannot be applied on uniform
processors. For this reason, we will instead use another
commonly-used [5, 6] performance metric: the
competitive factor.

The competitive factor of an algorithm A is denoted as
CPTA. It is a number such that for every task set τ and for
every uniform multiprocessor system Π, characterized by
its speed Sp, it holds that if it is possible to design an
algorithm that meets all deadlines of τ on Π´ then A meets
all deadlines of τ on Π, where Π is a uniform
multiprocessor system where each processor has a speed
CPTA greater than the corresponding processor in Π´.

A low competitive factor indicates high performance.
A competitive factor of 1 is the best achievable. And a
competitive factor of 2 is (as we will see) the best
achievable for scheduling algorithms that do not allow
migration. If a scheduling algorithm has a finite
competitive factor then one can solve every problem
instance using processors that are sufficiently fast. If no
finite competitive factor has been proven for a scheduling
problem then one cannot know if faster processors will

 1

ever help. Unfortunately, with the current state of art in
partitioned scheduling on uniform multiprocessor, there is
no algorithm with a proven finite competitive factor.

Therefore, in this paper we propose a partitioned
scheduling algorithm for uniform multiprocessors; it
allows preemption and it uses Earliest-Deadline-First
(EDF) [2] on each processor. We prove its competitive
factor: it is at most three.

The remainder of this paper is organized as follows.
Section 2 discusses design issues for uniform
multiprocessors. Section 3 discusses the problem of
deciding whether it is possible to schedule a task set on a
uniform multiprocessor assuming that the scheduling
algorithm is permitted to migrate tasks. Section 4 presents
our new algorithm which does not migrate tasks. We also
prove its competitive factor. This proof uses results in
Section 3 on scheduling where migration is permitted.
Section 5 discusses the ability of previous work to solve
the addressed problem. Section 6 gives conclusions.

2. Design issues

Recall that task migration is not permitted; when a job
resumes execution after being preempted, the job must
execute on the same processor as it executed on before it
was preempted. Also, if any two jobs are generated by the
same task, then these two jobs must execute on the same
processor. This type of scheduling is called partitioned
multiprocessor scheduling because it is equivalent to
partitioning the set of tasks such that all tasks in a
partition are assigned to its dedicated processor and then a
uniprocessor scheduling algorithm is used at run-time.
The run-time scheduling is trivial. It is well-known that
preemptive Earliest-Deadline-First (EDF) is optimal on a
uniprocessor with our task model; that is, it meets
deadlines if there is any uniprocessor scheduling
algorithm that meets deadlines. For this reason, we will,
in the remainder of the paper, assume that preemptive
EDF is used on each processor. For convenience we will
refer to EDF with the meaning of preemptive EDF.

The problem of partitioning the task set is however
non-trivial. It is important that the task assignment
algorithm is aware of the scheduling algorithm used on a
uniprocessor and it must use a uniprocessor schedulability
test to know this. This is illustrated in Example 1.

Example 1. Consider n = 3 tasks to be scheduled on
m = 2 processors. The task set is characterized by
T1 = 1, C1 = 0.34, T2 = 1, C2 = 0.34, T3 = 1, C3 = 0.34;
and the processors have the speed S1 = S2 = 1. If all
tasks are assigned to processor 1 then the utilization on
that processor is 1.02. This causes a deadline miss.
Consequently, an algorithm for assigning tasks to
processors must use a schedulability test according to
the uniprocessor scheduling algorithm to be used at run-
time. �

We saw in Example 1 that the task assignment
algorithm must use a schedulability test when making
decisions. For EDF it is known [2] that:

Theorem 1. Let p be a processor of speed Sp = 1. If
∑Ci/Ti ≤ 1 and tasks are scheduled with EDF on p then all
deadlines are met. �

We can easily remove the restriction Sp = 1 from
Theorem 1.

Theorem 2. Let p be a processor of speed Sp. If
∑Ci/Ti ≤ Sp and tasks are scheduled with EDF on p then all
deadlines are met. �

When assigning tasks to processors, the speed of a
processor clearly is used in the schedulability test, for
example the one in Theorem 2. But it is also important that
processors are considered in the right order, in order to
achieve a finite competitive factor. Example 2 illustrates
this.

Example 2. Let k be an arbitrary integer such that
k ≥ 2. Consider n = k3+1 tasks to be scheduled on m = k3
processors. All tasks have Ti = 1, ∀i∈1..m+1. Tasks
with ∀i∈1..m, have Ci = 1 and the task τm+1 has
Cm+1 = k+1. Processor 1 has the speed S1 = k+2 and the
processors with index 2..m have the speed Sp = 1.

Observe Figure 1. It can be seen (from Figure 1a)
that this task set can be scheduled by assigning τm+1 to
processor 1 and one of the other tasks to processor 1,
and the other tasks given one dedicated processor each.
However, consider Figure 1b. If the task assignment
scheme considers tasks and processors in order of their
index and uses a normal bin-packing algorithm, then a
deadline is missed. A deadline is still missed even if
processors are k times faster. We can see this as follows.
Processor 1 will have the speed S1 = k2+2k and
processors 2,3,4,…,m will have speed Sp = k. The speed
of processor 1 is not enough to host all the tasks
τ1,τ2,τ3,…,τm because their cumulative utilization is k3
and this exceeds the speed of processor 1, which is
S1 = k2+2k (it is true that k3 ≥ k2+2k since k ≥ 2).
Consequently, task τm+1 will not be assigned to
processor 1 and hence τm+1 must be assigned to one of
the processors with index 2,3,…,m. But τm+1 cannot be
assigned to a processor with index 2,3,…,m because the
utilization of τm+1 is k+1 and the speed of each of the
processors is k.

We have seen that algorithms using bin-packing can
fail if the speed of the processors is not considered in
the assignment algorithm. This can happen although
these algorithms are given processors that are k times
faster. We can do this reasoning for any k ≥ 2. By
letting k→∞ we obtain that the competitive factor is
infinite for these bin-packing schemes that do not take
the speed of each processor into consideration. This
stresses the importance of taking the speed of
processors into account when the task

 2

 Processors

S1=k+2

Tasks

S2=1

P1

P2

Sm=1

...

Pm

C1=1

C2=1

...

Cm=1

Cm+1=k+1

τm

...

τ2

τ1

τm+1

(a) Using bin-packing that takes the speed of processors into account leads to that all deadlines are met.
A dotted line shows the assignment of a task to a processor.

 Processors

S1=k2+2k

Tasks

S2=k

P1

P2

Sm=k

...

Pm

C1=1

C2=1

...

Cm=1

Cm+1=k+1

τm

...

τ2

τ1

τm+1

(b) Using bin-packing without taking the speed of processors into account leads to a deadline miss. A
dotted line shows the assignment of a task to a processor.

Fig. 1. It is important to exploit knowledge of the speed of the processors when assigning tasks to
processors. Otherwise, the competitive factor can approach infinity.

assignment algorithm makes decisions. �
We saw in Example 2 that it is important to take the

speed of processors into account when assigning tasks to
processors. In particular, if a task can be assigned to a
processor such that this task occupies a large fraction of
the processing capacity of that processor, then it is
beneficial to assign the task to that processor. Considering
that we will use the competitive factor as a performance
metric, it is interesting to find out how good performance
can be achieved. Clearly, we want as low competitive
factor as possible, and clearly a competitive factor less
than 1 is impossible. But since we study scheduling with

Example 3. Observe Figure 2. Consider n = m+1
tasks to be scheduled on m processors. All

no migration, a competitive factor of two is the best
achievable, as it will be shown in Example 3.

 tasks have
Ti = 1, Ci = m/(m+1) ∀i∈1..m+1. All processors have
speed Sp = 1. It can be seen that these tasks can be
scheduled to meet deadlines with an algorithm that
allows task migration because ∑Ci/Ti ≤ m and all
processors are identical. Figure 2a shows this. Let us
now try to schedule these tasks without migration on
processors of speed Sp = 2m/(m+1)-ε, where ε > 0. It is
necessary that two or more tasks are assigned to the
same processor. On that processor, the utilization
exceeds the speed of the processor and hence a deadline
is missed. We can do this reasoning for any m ≥ 1

 3

 Processors

Fig. 2. The competitive factor of every partitioned scheduling algorithm is at least 2.

and for any ε > 0. Letting m→∞ and ε→0 yields that a
deadline is missed although the speed is arbitrarily close
to two. Hence, it is impossible to achieve a competitive
factor less than 2 for partitioned scheduling. �

3. Optimal Scheduling With Migration

We will now discuss feasibility testing of scheduling
with migration; that is, we will state conditions such that
if and only if these conditions are true for a task set then it
is possible to schedule the task set. We will state those
conditions for a heterogeneous multiprocessor platform
(in Section 3.1) and then we will state them (in
Section 3.2) for uniform platforms. The latter is useful for
proving the competitive factor of the new algorithm in
Section 4.

3.1. Heterogeneous Multiprocessor Platforms
The problem of feasibility testing on a heterogeneous

multiprocessor platform has been studied previously [7].
We define ri,p as follows: on a heterogeneous
multiprocessor platform, a task τi executing on processor
p for L time units, performs ri,p×L units of work. Let xi,p
denote the fraction of time that task τi spends on
processor p. It holds that a task set is feasible on a
heterogeneous multiprocessor platform if and only if l ≤ 1
for the following optimization problem.

 minimize l
 subject to:

S1=1

Tasks

S2=1

P1

P2

Sm=1

...

Pm

...

τm

...

τ2

τ1

τm+1

(a) Scheduling with migration allowed. A dotted line shows the assignment of a task to a processor. The
number attached to the line indicates how much computing capacity that this assignment requests from

the processor.

m/(m+1)

m/(m+1)

m/(m+1)

m/(m+1)

1/(m+1)

1/(m+1)

1/(m+1)

1/(m+1)

S1=2m/(m+1)-ε

Tasks

S2=2m/(m+1)-ε

P1

P2

Sm=2m/(m+1)-ε

...

Pm

...

C1= m/(m+1)

C2= m/(m+1)

Cm= m/(m+1)

Cm+1= m/(m+1)

...

τ2

τ1

τm

τm+1

(b) Scheduling where migration is not allowed but processors are faster. A dotted line shows the
assignment of a task to a processor. There is no processor where τm+1 can be assigned.

C1= m/(m+1)

C2= m/(m+1)

Cm= m/(m+1)

Cm+1= m/(m+1)

 Processors

 4

{ }
i

i
m

p
pipi T

C
rxni ∑

=

=×∈∀
1

,,:,...,2,1

 and

 and

3.2. Uniform Multiprocessor Platforms
We can specialize the feasibility analysis in

Section 3.1 to uniform multiprocessors. We have ∀p:
r1,p = r2,p = r3,p = … = rn,p = Sp, where Sp is the speed of
processor p and ri,p is the parameter from Section 3.1. The
feasibility test can then be formulated as follows: A task
set is feasible on a uniform multiprocessor platform if and
only if l ≤ 1 for the following optimization problem.

 minimize l
 subject to:

{ } lxni
m

p
pi∑

=

≤∈∀
1

,:,...,2,1

{ } lxmp
n

i
pi∑

=

≤∈∀
1

,:,...,2,1

{ }
i

i
m

p
ppi T

C
Sxni ∑

=

=×∈∀
1

,:,...,2,1

 and

 and

Let us substitute xi,p×Sp with ui,p. Then, the feasibility
test can then be reformulated as follows: A task set is
feasible on a uniform multiprocessor platform if and only
if l ≤ 1 for the following optimization problem.

{ } lxni
m

p
pi∑

=

≤∈∀
1

,:,...,2,1

{ } lxmp
n

i
pi∑

=

≤∈∀
1

,:,...,2,1

 minimize l
 subject to:

{ }
i

i
m

p
pi T

Cuni ∑
=

=∈∀
1

,:,...,2,1 (1)

 and

{ } l
S
u

ni
m

p p

pi∑
=

≤∈∀
1

,:,...,2,1
(2)

 and

{ } l
S
u

mp
n

i p

pi∑
=

Lemma 1. If it holds that:

≤∈∀
1

,:,...,2,1
(3)

From (1), (2) and (3) we obtain Lemma 1.

∑∑
==

<
n

i i

i
m

p
p T

C
S

11

then no scheduling algorithm can meet all deadlines.
Proof: We know from the assumption of the lemma that

there is a task set τ and a uniform multiprocessor Π such
that:

∑∑
==

<
n

i i

i
m

p
p T

C
S

11

Applying (1) yields:

and swapping the summation order yields:

This requires that there is a p such that:

Dividing by Sp yields:

∑∑∑
= ==

<
n

i

m

p
pi

m

p
p uS

1 1
,

1

∑∑∑
= ==

<
m

p

n

i
pi

m

p
p uS

1 1
,

1

∑
=

<
n

i
pip uS

1
,

∑
=

<
n

i p

pi

S
u

1

,1

Hence it is impossible to satisfy (3) and l ≤ 1.
Consequently, a deadline will be missed. This proves

the lemma. �

4. The New Algorithm

The new algorithm is described in Figure 3. It is
called EDF-DU-IS-FF because it uses EDF on each
processor, it sorts tasks in order of Decreasing-
Utilization, it sorts processors in order of Increasing-
Speed and it uses First-Fit bin-packing.

 2. It is

s given by Theorem 3.

Line 11 is the schedulability test from Theorem
straightforward to see that the algorithm has the time
complexity O(n×m+n×log n). The performance of EDF-
DU-IS-FF i

Theorem 3. CPTEDF-DU-IS-FF ≤ 3
Proof: We can prove it using contradiction. We will do

so and show that a failed task set must request more than
50% of the processing capacity of a subset of processors.
We will then consider this task set to be scheduled using a
scheduling algorithm where migration is allowed and a
computing platform with lower speed is used. It will turn
out that every such migrative algorithm must utilize more
than the sum of the computing capacity of the subset of
processors. This will contradict Lemma 1 and it proves the
theorem. Let us elaborate this reasoning.

 5

1. sort process
2. sort tasks such that C

ors such that S1≤S2≤…≤Sm
T1≥C2/T2≥…≥Cn/Tn

3. for all p in 1..m do
4. U[p] := 0

 for
:= 1
ile (i<=n) do

8. p := 1
9. allocated := FALSE
10. while (p<=m) and (allocated=FALSE) do

 if U[p]+ Ci/Ti<=Sp then
 assign task i to processor p

13. U[p] := U[p]+ /Ti
14. allocated := TRUE
15. i := i + 1
16. else

s false then there exists a task set TF
such that EDF-DU-IS-FF declares FAILURE on
multiprocessor platform Π. But if TF to be scheduled on
Π´ then it is possible to meet all deadlines. It must be hat
on speed which is 1/x of the speed of
its corresponding processor in Π and x>3.

Consider the situation when EDF-DU-IS-FF was given
TF as input and EDF-DU-IS-FF declared FAILURE. There
mu een a task τfailure that was considered when
EDF-DU-IS-FF declared FAILURE. We can delete all
tasks with index greater than τfailure and we still would have
a task set such that the theorem was false. We let τ denote
this

ule τ on Π´ to meet deadlines (5)

lared failure in (4). Let k denote
the number of processors such that Sp < Cn/Tn. Due to the
sorting performed on line 1 and line 2 we obtain th

For every (p∈{1,2,..,k} and for i∈{1,2,..,n}
it holds that: Sp < Ci/Ti. (6)

From (6) it follows that:
When EDF-DU-IS-FF is run, no tasks are assigned to

ocessor p with p∈{1,2,..,k}. (7)

Let us now consider τn, the task hat caused failure for
EDF-DU-IS-FF. We know that:

(8)

bserve from (8) that τ could not be assigned to any
of ,m, despite the fact that
Cn/Tn ≤ Sp for those processors. Hence we have that:

When EDF-DU-IS-FF declares FAILURE, for each

p ∈ {k+1,k+2,…,m}: U[p]>0.50×Sp.
Proof: If Fact 1 was false then there must exist a

processor p with U[p] ≤ 0.50×Sp. We know from (9) that
there is at least one task assigned to processor p. Hence
the h Ci/T ≤ 0.50×Sp assigned to
processor p. Due to the sorti of tasks we have that
Cn/Tn ≤ Ci/Ti and it leads to Cn/Tn ≤ 0.50×Sp. But th it

rocessor p and
DF-DU-IS-FF

declared failure. This is a cont diction and it proves the
fact. (End of proof of Fact 1) �

DF-DU-IS-FF
de

(10

1 2 n-1 assigned, we obtain from (10)
that:

1/

5. end
6. i
7. wh

11.
12.

Ci

17. p := p + 1
18. end if
19. end while
20. if (allocated=FALSE) then
21. declare FAILURE
22. end if
23. end while
24. declare SUCCESS

Fig. 3. EDF-DU-IS-FF, a task assignment
algorithm for a uniform multiprocessor.

If the theorem wa

is
 t

Π´ a processor has a

st have b

 task set. Clearly we have:
Applying τ on Π using EDF-DU-IS-FF declares

FAILURE (4)

and
It is possible to sched

It was task τn that dec

at:
p,i) such that

pr

 t

For p∈{k+1,2,..,m}, it holds that U[p]+Cn/Tn > Sp

O n
the processors k+1,k+2,…

processor p∈{k+1,k+2,..,m} it holds that: there is at least
one task assigned to processor p.

(9)

We have that Fact 1 is true.
Fact 1. When EDF-DU-IS-FF declares failure, it holds

that ∀

re is a task wit i
ng

en
would be possible for τn to be assigned to p
we know that it cannot happen since E

ra

From Fact 1 we obtain that when E
clares failure it holds that:

[]∑∑
+=+=

<×
m

kp

m

kp
p pUS

11
5.0

)

Since τ ,τ ,…,τ were

∑∑
−

=+=

<×
11

5.0
i ikp

p T
S

1n
i

m C
(11)

Let us consider two cases
Case 1. k = 0.
We have Sp´ ≤ Sp/x, where

p in Π´. We also have x > 3
 Sp´ is the speed of processor
. Combining this with (11)

yields:

∑∑
−

==

<××
1

11
´35.0

n

i i

i
m

p
p T

C
S

Simplifying the left-hand side, relaxing it and adding
the utilization of τn to the right-hand side yields:

∑∑
==

<
n

i i

i
m

p
p T

C
S

11
´

(12)

From (12) and Lemma 1, it follows that no algorithm
can schedule the task set on Π´ even if migration is
permitted. This contradicts (5). (End of Case 1)

Case 2. k ≥ 1
Let us study a migrative scheduling algorithm that meets
all deadlines of τ on Π´. Hence the optimization (1)-(3)
has a solution with l ≤ 1. Fact 2 and Fact 3 reason about
this solution.

 6

Fact 2. For any i, it holds that

´, k

k

pi S≤
1p
u∑

=

o ain that in a migrative
schedule where deadlines are met, it holds that:

Pr mof: Fro (2) we obt

1,∑ ≤
m

piu
´S1=

ields:

p p

Taking the sum over only a subset y

1
´1

,∑ ≤
k

piu

=

n t the speeds of processors are
s i

p pS

Usi g the fact tha
orted n ascending order yields:

1
´1

,∑
=

≤pi

By a simple rewriting t s gives us Fact 2.
 �

k u

p kS

hi
(End of proof of Fact 2.)
Fact 3. For any i, it holds that

∑
+=

×
−

≤
m

kp
pi

i

i u
x

x
T
C

1
,1

Proof: From (6) we obtain:

i

i
k T

CS <
(13)

Based on (13) and (1) we have:

∑
=

<
m

p
pik uS

1
,

(14)

From the assumption on Π and Π´ we obtain:

x
SS k

k <´
 (15)

Combining F 15) yields: act 2 and (

xp
pi

Su k
k

≤∑
=

(16)

1
,

From (16) we obtain:

∑∑
+==

+≤
m

kp
pi

k
m

p
pi u

x
Su

1
,

1
,

(17)

Combining (14) and (17) yields:

∑∑
+=

=

=

+≤
kp

pi
p

p
pi u

x
u

1
,

1

1
,

∑ m

m

pim
u , (18)

Rewriting (18) and using (1) yields:

∑×≤
m

pi
i uxC

+=

(End of proof of Fact 3.) �

Re

− kpi xT 1
,1

call from (11) that when we used partitioning we had:

∑∑
−

=+=

<×
1

11
5.0

n

i i

i
m

kp
p T

C
S

Applying Fact 3 yields:

∑ ∑∑
=+=

×
−

<×
11 1

5.0
i pkp

p x
S

−1n mm x
+= 1k

We have S

, piu

p´ ≤ Sp/x, where Sp´ is the speed of processor
p in Π´. Applying this yields:

∑ ∑∑
−

= +=+=

×
−

<××
1

1 1
,

1 1
´5.0

n

i

m

kp
pi

m

kp
p u

x
xSx

Rewriting yields (and using the knowledge that x is
positive) yields:

∑ ∑∑
−

= +=+=

×
−

<
1

1 1
,

1 1
2´

n

i

m

kp
pi

m

kp
p u

x
S

Since x > 3 we obtain that 2/(x-1)<1. Using it yields:

∑ ∑∑
−

= +=+=

<
1

1 1
,

1
´

n

i

m

kp
pi

m

kp
p uS

Swapping the order of the indi es of the summ on
the right-hand side yields:

=+= kp ikp 1 11

This requires that there is a p uch that:

c ation

∑ ∑∑
−

<
m n

pi

m

p uS
1

,´

+=

 s

∑
−

<
1

=

n
1

,´
i

pip uS

Dividing by ´Sp yields:

∑
−

=1 ´i pS

And hence it is impossible to satisfy (3) and l ≤ 1.
Consequently, a deadline will be missed on Π´. But this
co

 �

5. Previous work

 the goal
is time when all jobs have been finished.

 and hence it cannot solve our problem.
The problem of partitioning a set of tasks on a uniform

ultiprocessor has been considered previously [9, 10]. This
 the same problem as we addressed in this paper. We find

<
1

,1
n

piu

ntradicts (5). (End of Case 2)
We can see that regardless of the case, we obtain a

contradiction and hence Theorem 3 is true.

Algorithms in operations research have been proposed
for scheduling jobs with no real-time requirements
assuming that all jobs arrive at the same time and

to minimize the
(See for example [8].) A solution to this problem can be
used for scheduling periodically arriving tasks with
deadlines [1]. But unfortunately, that algorithm [1] allows
task migration

m
is

 7

two d and analysis though.
First, the algorithms are analyzed by extending the
utilization bound from identical ultiprocessors. But their
utilization bound is not a single number; it is a function of
the m
pe ssors is
very large and (ii) the maxim m Ci/Ti is large. This
pessimism is neither a consequence of the algorithm, nor
the analysis techniques but it is a consequence of the
defini uniform
multiprocessors. The second drawback of above
mentioned previous work [9, 1 is that their competitive
factor is infinite. The algorithms use First-Fit or Any-Fit;
this i
pro
po e 2 to occur and it
causes the competitive factor to infinite.

The problem we address can be solved using task
assignm
multi 11]
exhau sks” and this lea
a time er algorithm [12] has
polynomial time-complexity but it is high; it requires that
a linear program is solved. Neither of them proves a
competitive factor.

A ady been proven for
scheduling real-time tasks n uniform multiprocessors [5,
6]; one of the algorithms as a competitive f f
two [5]. In addition it has the advantage of being proven
not j but for the more
generic model of aperiodic jobs where the scheduling
algorithm has no knowledge of jobs arriving in th re.
Unfortunately, it requires that tasks can migrate.

6. Conclusions

We have presented an algorithm to schedule
spora multiprocessor
and we have proven its competitive factor. It is at most
three. This is a significant sult because it is irst
proven competitive factor in real-time schedu on
unifo igration is not allowed.

We Is it possible to achieve
a competitive factor of two without migration? (hat
is the competitive factor when rate-monotonic [2] is used
on ea

References
[1] S. K. Baruah, "Scheduling periodic t on

uniform multiprocessors," in 12th Euromicro
s. Stockholm,

[2] C.L. Liu and J. W Layland, "Schedul
Algorithms for Multiprogramming in a Hard

ent," Journal of

pp. 46-61, 1973.

[3] S.K. Dhall and C. L. Liu, "On a real-time
scheduling problem," Operations Research, vol.

, 1978.
[4] B. Andersson, S. K. Baruah, and J. Jonsson,

"Static-priority scheduling n multiprocess
in Proc. of the IEEE Real-Time Systems

s, and S. K. Baruah, "On-
Uniform Multiprocessors,"

in IEEE Real-Time Systems Symposium. London,
UK, 2001.

[6]

omputers, vol. 52, pp. 966-970, 2003.
[7] S. K. Baruah, "Feasibility alysis of preem e

real-time systems upon heterogeneous
E
,

2004. Lisbon, Portugal
[8] T. Gonzalez and S. Sahni, "Preem

 Baruah, "Task assignment on
uniform heterogeneous ultiprocessors," in h
Euromicro Conference on Real-Time Systems,

earic Islands,

[10] V. Darera and L.
for RM Scheduling on Uni

in The 12th IEEE
nference on Embedded and

Real-Time Comput g Systems and Applications.
Sydney, Australia, 2006.

[11] S. K. Baruah, "Task partitioning upon
 in

plications Symposium.

-time
ultiprocessors," in

Conference on Parallel

rawbacks with those algorithms

 m

aximum Ci/Ti of tasks. This causes a large amount of
ssimism when (i) the difference in speeds of proce

u

tion of the utilization bound in
the

0]

s a good design. However, the algorithms sort
cessors in increasing order of speed; this makes it

ssible for the behavior of Exampl
be

ent algorithms for heterogeneous
processors [11, 12]. The algorithm in [uses
stive enumeration of “hea a ds to vy t
 complexity of O(mm). The oth

competitive factor has alre
o
 h actor o

ust for the sporadic task model

e futu

dically arriving tasks on a uniform

re the f
ling

rm multiprocessors where m
 left open the questions (i)

ii) W

ch processor?

asks

Conference on Real-Time System
Sweden, 2000.

. ing

Real-Time Environm the

Association for Computing Machinery vol. 20,

26, pp. 127-140

 o ors,"

Symposium. London, 2001.
[5] S. Funk, J. Goossen

Line Scheduling on

 S. K. Baruah and J. Goossens, "Rate-Monotonic
Scheduling on Uniform Multiprocessors," IEEE
Trans. C

 an ptiv

multiprocessor platforms," in 25th IEE
International Real-Time Systems Symposium

, 2004.
ptive

scheduling of uniform processor systems,"
Journal of the ACM, vol. 25, pp. 92, 1978.

[9] S. Funk and S. K.
 m 17t

2005. Palma de Mallorca, Bal
Spain, 2005.

Jenkins, "Utilization Bounds
form

Multiprocessors,"
International Co

in

heterogeneous multiprocessor platforms,"
10th IEEE Real-Time and Embedded
Technology and Ap
Toronto, Canada, 2004.

[12] S. K. Baruah, "Partitioning real tasks
among heterogeneous m
International
Processing. Montréal, Québec, Canada, 2004.

 8

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

