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ABSTRACT

This paper discusses the increased need to support dynamic
task-level parallelism in embedded real-time systems and
proposes a Java framework that combines the Real-Time
Specification for Java (RT'SJ) with the Fork/Join (FJ) model,
following a fixed priority-based scheduling scheme.

Our work intends to support parallel runtimes that will co-
exist with a wide range of other complex independently de-
veloped applications, without any previous knowledge about
their real execution requirements, number of parallel sub-
tasks, and when those sub-tasks will be generated.

Categories and Subject Descriptors

D.1.3 [Programming Techniques|: Concurrent Program-
ming — Parallel programming; D.2.11 [Software Engi-
neering)|: Software architectures; J.7 [Computers in Other
Systems]: Real-Time
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1. INTRODUCTION

Nowadays, embedded systems are starting to incorporate
multiple processors of the same architecture. The reason
behind this paradigm shift lies on the reduced production
costs and improved energy efficiency. This trend will be-
come increasingly noticeable in the future as the tendency
is to reduce even more the production/selling costs of this
type of systems. Furthermore, embedded systems increas-
ingly generate heavy workloads and it is rapidly becoming
unreasonable to implement them as single core systems.

Besides the incorporation of multiple processors, embed-
ded systems are also known by their stringent operation re-
quirements, such as low memory footprint, low power con-
sumption, and most of them inherently present timing con-
straints where a single deadline miss may pose consequences
for the system under control.
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Over the past few years, the real-time systems commu-
nity has been addressing Java, through the adoption of the
Real-Time Specification for Java (RTSJ) [4]. RTSJ is a real-
time extension, in the form of an Application Programming
Interface (API), to the Java standard platform which pro-
vides predictable execution to applications when executed
in a real-time virtual machine (VM) environment. Gener-
ally speaking, Java is considered a successful programming
language that is used to develop many applications nowa-
days. Much of the success is due to its advantages, from
a software engineering perspective, over other programming
languages and models, but also due to its open-source na-
ture, platform-independence, applications’ portability, and
marketing hype.

Modern Operating Systems (OS) and Java VMs running
on uniprocessor systems are multiprogrammed environments
where applications execute concurrently in order to max-
imise the utilisation of system resources. With the current
evolution of uniprocessor systems to multiprocessor systems,
it is not sufficient to migrate or even adapt current sequential
programming models or tools to these new multiprocessor
systems. The penalty of doing so lies on the underutilisation
of system resources. Furthermore, moving to multiproces-
sor systems is likely to fail if one does not consider a natural
evolution of sequential programming models to new models
of hardware and software that are naturally parallel [1].

Some of the scientific challenges associated with this evo-
lution were already identified in [1] and [7], from where we
highlight the following:

e Creation of new parallel programming models that ef-
ficiently take advantage of parallel platforms and ar-
chitectures;

e Development of specific parallel data structures, algo-
rithms and, code generation tools;

e Development of programming models that should be
independent of the number of processors.

Although only focused on parallel computing, these chal-
lenges provide an important research direction that allows
us to explore new programming models in order to combine
parallel systems with embedded real-time systems. With
this powerful combination, not only it is possible to create
models that take advantage of the new parallel architectures
in embedded real-time systems, but also it is possible to ad-
dress several issues specifically arising from the joint relation
between these two distinct scientific research domains.



We consider that current embedded real-time OSes and
VM environments do not offer the necessary programming
models and tools to handle the parallel execution of applica-
tions. Simply running sequential applications in these rela-
tively new parallel architectures will not be advantageous as
system resources will become underutilised. Moreover, the
problem of maximising resource utilisation in these parallel
embedded systems becomes even more serious when consid-
ering the increasing number of resources (i.e. processors).
Thus, there exists an implicit requirement of efficiently man-
aging system resources in order to increase the performance
throughput of the applications.

In this work, we propose the efficient execution of mul-
tiprogrammed or parallel applications in parallel real-time
embedded systems. For that, we propose the creation of a
novel framework that handles the parallel execution of dy-
namic real-time applications with the objective of optimising
resource utilisation. Furthermore, the applications may have
timing requirements and are composed by a set of complex
tasks that can be divided into smaller units of execution
that are executed by the underlying architecture abstrac-
tion. The framework integrates RTSJ with the Fork/Join
model and runs on top of a real-time Java virtual machine
considering all interactions with the underlying OS.

Although the model presented in this paper is strongly
focused on the well known fixed priority-based real-time
scheduling scheme, the scheduling of parallel dynamic real-
time applications using work-stealing as its basis is a still
an open challenge. The main focus of the framework is to
assure that resource utilisation is maximised while assuring
the timeliness of the applications. For that, memory sharing
between different worker threads needs also to be addressed.

The remainder of this paper is organised as follows. Sec-
tion II presents the related work. Section III briefly describes
the Fork/Join model. Section IV puts forward the system
model considering a fixed-priority scheduling scheme based
on the Java Fork/Join model for parallel embedded real-time
systems. Finally, Section V concludes this paper.

2. RELATED WORK

This research work considers Java real-time VMs as the
platform that is underneath the proposed framework, there-
fore it is useful to present some of the features that RTSJ
adds to standard Java concerning real-time systems.

The approach followed by the RT'SJ is to incorporate the
notion of a schedulable object generalizing the concept of
threads (i.e. RealtimeThread or AsyncEventHandler). In
order to characterise a real-time task properly, these objects
have as attributes the period or deadline, release time and
priority, among others. As for the scheduling policy, RTSJ
specifies a pre-emptive priority-based scheduler, with 28 pri-
ority levels supported, that guarantees that the schedulable
object with the highest priority is the one that is executing.
This scheduler can handle periodic tasks and sporadic tasks,
i.e. asynchronous event handlers.

Memory management may be considered as one of the
most important aspects that need attention in embedded
systems, where the amount of resources is very limited. Thus,
how memory is allocated is of extreme importance in embed-
ded systems. Standard Java uses dynamic memory alloca-
tion to allocate objects in the heap and garbage collection to
deallocate objects that are not in use by any of the running
programs. Furthermore, memory management in standard

Java is the cause of many application delays.

Real-time systems require all the operations to be bounded
in time, including memory allocation and deallocation oper-
ations. Of major importance are the deallocation operations
performed by the garbage collector which may impact the
timing requirements imposed by real-time applications. In
order to solve this problem, RTSJ handles memory manage-
ment using a model based on the concept of memory regions.
The following memory regions are considered by the speci-
fication:

e HeapMemory - Allows objects to allocate memory in
the heap, as it happens in standard Java;

e ImmortalMemory - This memory region allows that
all the memory allocated within it is never deallocated
throughout the program execution. It is shared among
all the program threads and it is deallocated when the
program terminates, thus it is never subject to garbage
collection;

e ScopedMemory - Is a memory region with a limited
lifetime and specific assignment rules. Real-time threads
may allocate objects in a memory scope and the ob-
jects will stay allocated until the scoped memory area
is no longer active. At that time, all the objects in the
memory scope are finalized and collected.

Besides the memory regions, RTSJ provides extensions
that allow programs to directly access memory by using spe-
cial classes. Also, it provides an object named NoHeapRe-
altimeThread, that is not allowed to allocate objects on the
heap and therefore, is independent of garbage collection.
Furthermore, the RTSJ garbage collector has the ability
of being preemptable, meaning that when a higher prior-
ity thread arrives for execution, the garbage collector can
be pre-empted leaving the system in a safe state.

Regarding synchronisation, standard Java suffers from the
priority inversion problem as all mutual exclusion mecha-
nisms. RTSJ requires the implementations to support the
priority inheritance or priority ceiling protocols. An alter-
native mechanism to the implementation of such protocols
is to use nonblocking communication, and for this purpose
RTSJ specifies several classes.

Although RTSJ adds several new features to standard
Java in order to allow for the required predictability and
determinism of real-time systems, RTSJ has limitations in
what it concerns to multiprocessor support. Andy Wellings
discusses the limitations of RT'SJ with regards to SMP sys-
tems in [12]. The objective of that work is to identify RT'SJ
limitations in order to include native support for multipro-
cessors in future versions of the specification. Some of the
limitations that need to be addressed are stated in that work
and include:

e Direct mapping of schedulable objects to processors.
Currently, the Java Virtual Machine does not support
this feature;

e RTSJ assumes a fixed priority scheduler with a single
run queue per priority level. This needs to be adapted
to scheduling schemes for multiprocessors: global, par-
titioned and hybrid scheduling;

e Temporal protection of groups of schedulable objects.
RTSJ does not account for simultaneous execution of
groups of schedulable objects;



e Interrupt handling per processor. This feature is ad-
vantageous because it allows managing critical tasks in
a proper manner, avoiding task migration and there-
fore cache issues;

e Dynamic changes in the processor set. This is specif-
ically important for parallel systems as it enables the
proposed framework to adapt the algorithms to spe-
cific changes in the processor set.

Nevertheless, these limitations are taken from the point
of view of applications running on a small number of cores,
typically far less than the application threads. It is impor-
tant to note that as the number of cores increases, threads
do not increase accordingly, as threads are given by applica-
tion requirements. Therefore, it is necessary to provide new
runtime models that ease the parallelisation of applications.

Many of the current applications can be parallelised as a
way to take advantage of the system resources and there-
fore maximise system performance. As parallel computing
is regaining the attention of the scientific community due
to the recent switch to parallel microprocessors, a group of
Berkeley researchers gathered together to discuss the future
of parallel systems across different disciplines. The results
of the study are presented in [1]. This study presents seven
questions that should be considered in order to find new so-
lutions for parallel hardware and software. Among the im-
portant questions and recommendations presented in that
work, we would like to highlight the need for new program-
ming models, data structures and new methods for code
generation.

Regarding the programming models and tools, there are
already available a few of them, that specifically target par-
allel computing. Frameworks such as Cilk [3], Intel’s Par-
allel Building Blocks [5], Java Fork/Join [6], OpenMP [10],
[7] and Microsoft’s Task Parallel Library [8] encourage pro-
grammers to divide their applications into parallel blocks.
These parallel blocks will then be assigned to CPUs either
by the frameworks or by the OS in a balanced manner.

To deal with the load balancing of parallel tasks, Blumofe
and Leiserson proposed the work-stealing algorithm in [2].
This algorithm was proven to be optimal for scheduling fully-
strict computations, therefore it is used in frameworks such
as Cilk and Java Fork/Join.

3. FORK/JOIN MODEL

Frameworks such as Cilk, OpenMP and Java Fork/Join
are based on the divide and conquer principle to solve many
classes of problems. Basically, an application is broken up
into subtasks that can be executed in a concurrent and in-
dependent manner in a set of processors. Applications start
with a single thread that is forked into subtasks which will
then be recursively split into new subtasks until they are
small enough to be executed sequentially in each of the avail-
able processors. The join operation causes the current task
to wait until the subtasks have completed [6].

Each of the above frameworks implements the Fork/Join
model in their own way. OpenMP enables parallelism by
extending serial code using compiler directives which do not
affect the logical behaviour of serial program. All the paral-
lelisation is handled by the compiler which knows which code
to parallelise due to the directives added by the programmer
[7]. On the other hand, Cilk extends the semantics of the

C/C++ languages with extra keywords which will then be
processed by the Cilk runtime that is responsible for manag-
ing all the aspects of parallelism. Java Fork/Join is a library
that includes a set of useful methods that can be used to add
parallelism to Java applications. Although it started as an
independent library under JSR166 [11], most of the relevant
features were included in the Java Development Kit version
7.0.

Java Fork/Join is a variant of the design used in Cilk, and
according to its author [6], the advantages of a Fork/Join
framework developed in Java over the common concurrency
mechanism (java.lang. Thread or POSIX threads in which
java threads are often based) rely on the synchronisation
mechanisms and task granularities. Regarding synchronisa-
tion, subtasks only block when they finish their work and
are waiting for other subtasks. As for granularities, regular
threads are heavier to construct and allocate, and sometimes
the cost of memory allocation surpasses the amount of work
that they need to do.

Java Fork/Join, as well as Cilk, relies on work-stealing to
schedule sub-tasks. As work-stealing has its own set of rules
and because it is strongly present in our work, we present
an overview of the rules for the sake of completeness. The
work-stealing rules are the following [6]:

e There exists a worker thread with its own scheduling
double-ended queue per CPU;

e Double-ended queues support LIFO and FIFO opera-
tions;

e Subtasks generated by tasks that belong to a given
worker thread are pushed into that worker thread’s
double-ended queue;

e Worker threads process their own double-ended queues
in a LIFO order;

e When a worker thread has no tasks to execute, it steals
tasks from other worker threads’ double-ended queues;

e When a join operation is issued, a worker thread pro-
cesses other tasks until the target task is completed;

e When there is no work to do, a worker thread remains
idle until new work arrives.

Work-stealing has the advantage of reducing task con-
tention due to the support for LIFO - worker threads pro-
cessing own tasks - and FIFO - other worker threads steal-
ing from the opposite side of the queue. Furthermore, ini-
tial tasks generate more work than later generated tasks
which affects the amount of stealing operations performed
and task decompositions. Whenever a worker thread steals
work from other worker threads, it steals work generated
earlier (from other worker threads’ double-ended queues fol-
lowing a FIFO policy) which allows initial generated tasks
to be decomposed by means of parallelisation.

4. PROPOSED MODEL

This section presents a preliminary scheduling scheme that
combines the Java Fork/Join model with RT'SJ. The objec-
tive of creating such scheduling scheme is to take advantage
of the new parallel architectures and allow for the compu-
tation of real-time tasks in a parallel manner in such a way
that the system resources’ utilisation is maximised.



We consider the scheduling of sporadic independent and
dynamic real-time tasks on m identical processors, pi,p2,
...,Pm. The tasks belong to a task set 7. Each task 7; of the
task set releases a job j at sporadic time intervals and the
exact execution requirements as well as its time arrival is
only known at runtime. During the execution of the 5" job,
the job may spawn a set of parallel jobs p; 1,pi2, ..., Di,n at
any time. Figure 1 illustrates this nomenclature through a
set of geometric figures that may help in understanding the
remaining parts of the model.

Tasks belonging to a Task set - T
. Jobs belonging to a Task T; -
A p-Jobs belonging to a Job ji- p

Figure 1: Model’s Legend

One should note that the Fork/Join model denotes paral-
lel jobs as tasks. However, this definition clashes with the
term task commonly used in the real-time systems domain to
denote a scheduling entity, therefore, the term parallel jobs
[9] is used instead in order to differentiate both entities.

Figure 2 presents a visual representation of the jobs be-
longing to a task set, and the spawning of the parallel jobs
by each one of the jobs that is released for a specific task.
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The parallel jobs are work units that can be executed in
different processors at the same time instant. This system
model considers that each parallel job is totally independent
from the remaining ones, meaning that with the exception of
the processors, there are no other shared resources, critical
sections or precedence constraints.

Each job that is ready to execute is scheduled according to
its priority and therefore it is placed in a global submission
queue, ordered by increasing priority as presented in Fig-
ure 3. It is important to mention that each parallel job will
inherit the timing characteristics of the job that spawned
it, i.e. period and priority. This can easily be seen in the
figure.

A pool of worker threads is created at the beginning of
application execution and each processor has an associated
worker thread. The current model accounts for a 1-to-1 map-
ping, however more worker threads can be assigned to a pro-
cessor. Worker threads are extended from RealTimeThread,

<T, Priority Ordered >T,

.

'
A
3
A

Figure 3: Scheduling of jobs using priorities

however it would be also potentially possible to inherit from
NoHeapRealtimeThread instead, in order to avoid the garbage
collection effects. Each worker thread is responsible for han-
dling a double-ended queue and executing the parallel jobs
that are generated by each job, as presented in Figure 4. It
is important to mention that each worker thread will respect
and apply the timing constraints of each job when executing
its parallel jobs in order to assure that no deadline is missed.

T‘ <T, >T;
ProcessorlAA AA

2

ProcessorZAA AA

m

ProcessormAA AA

D Worker Thread

1

~deque

Figure 4: Mapping of parallel jobs to processors

In the beginning, the tasks that are already in the global
submission queue will be directly mapped to the available
processors in order to be executed. As time elapses and
parallel jobs are generated, these are pushed into the double-
ended queue belonging to that particular processor and not
in the global submission queue. By following this approach,
task contention in the global submission queue is avoided.

Another important characteristic associated with worker
threads within the scope of Fork/Join model is the fact that
they use a work-stealing policy to schedule parallel jobs.
Each worker thread checks its own queue for parallel jobs
until there are no more parallel jobs to execute. When there
are no parallel jobs to execute, these worker threads steal
the older parallel jobs in other threads’ queues. If none is
available, worker threads suspend.



In this standard approach, worker threads steal parallel
jobs from other random threads, which means that priori-
ties are not considered. Note that if this is changed and the
stealing is performed from the thread where the parallel jobs
have higher priorities, priority inversion may occur. A sim-
ple example is the following: assume that two cores execute
two threads: t,, in core 1, of medium priority, and ¢; in core
2 of high priority. Further assume that t,, generates paral-
lel jobs which are obviously placed in core 1 double-ended
queue.

If at some instant a new thread of high priority tpe is
ready, it will preempt t,,. The parallel jobs generated by
this new thread will be also eventually placed in core 1’s
double-ended queue, but, according to the standard work-
stealing algorithm, in the head of the queue, pushing older
parallel jobs (of medium priority) to the end of the queue.

Now, if core 2 has no work to do, it may start stealing
parallel jobs from core 1 queue. Since work-stealing works
by stealing older parallel jobs, it will steal and execute those
of medium priority. Note that this is equivalent to task tp2
being executed in core 1, and task ¢, in core 2 (which is
common in regular global scheduling systems), but in prin-
ciple work-stealing would allow for task tn2 to be executed
first in both processors in parallel. This is an example of
priority inversion, but note that if no stealing would occur,
core 1 would be idle.

In order to purely integrate the Fork/Join model with
RTSJ, one needs to assure that the properties of work-stealing
and the properties of real-time tasks are respected. This
aspect should be handled carefully not only to assure the
timeliness of the real-time tasks, through feasibility analy-
sis, but also with respect to the impact of task migration and
its effects on the real-time predictability of the system. This
initial work considers a simple priority-based model, which
can lead to priority inversion, only when a core would be
otherwise idle, but that has the advantage of requiring only
few adaptations to both the RTSJ and the work-stealing
approach. However, more complex schemes are also being
considered, which can lead to higher utilisation and flexibil-
ity [9].

From the memory management point of view, threads
need to share their own queues in order to make it possible
for other threads to steal tasks from them. In order to avoid
the effects of garbage collection, it seems logic that each
worker thread should have its own memory region. How-
ever, this cannot easily be done due to the imposed memory
scope assignment rules. To solve this problem, memory por-
tals may be used to share parallel jobs between different
worker threads.

Besides all the above integration issues, it is necessary to
consider the ones that were already covered in [12], among
other methods, it is necessary to include methods that al-
lows the schedulable objects to be pinned to processors (i.e.
set Affinity()).

5. CONCLUSION

For fully utilising the parallel abilities of multicore plat-
forms, real-time systems should be able to support tasks
that may be executed on different cores at the same time
instant. In this paper, we have presented a novel frame-
work to tackle this problem in embedded real-time systems.
This framework combines RT'SJ with the Fork/Join model to
schedule independent and dynamic parallel real-time tasks

in Java-based systems. The proposed system model takes
advantage of the existing processors in the system so that
real-time jobs are divided into smaller units of execution, the
parallel jobs, which are executed by a set of worker threads.
Worker threads are mapped to processors and respect the
timing constraints of the parallel jobs. Furthermore, by ap-
plying work-stealing, the framework is taking advantage of
the spare resources existing in the system.

Concerning the present work, two important aspects are
being taken into account: the definition and specification of
scheduling algorithms based on work-stealing, that consider
real-time parallel jobs’ constraints; and the definition and
specification of the memory model for handling and sharing
parallel jobs among the work-stealing double-ended queues.
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