
 
 

IPP-HURRAY! Research Group 
 
 
 

Polytechnic Institute of Porto 
School of Engineering (ISEP-IPP) 

 
 
 
 

Characterizing the Timing Behaviour 
of Power-Line Communication by 

Means of Simulation 
 

Luis MARQUES 
Filipe PACHECO 

Luis Miguel PINHO 
 
 

HURRAY-TR-0419  
Ju e-2004 

 

elatór o 
técnic  

e
r

 

chnic
eport  
al 
n

i
o



 
 

Characterizing the Timing Behaviour of Power-Line 
Communication by Means of Simulation 
 
Luis MARQUES, Filipe PACHECO, Luis Miguel PINHO  
IPP-HURRAY! Research Group 
Polytechnic Institute of Porto (ISEP-IPP) 
Rua Dr. António Bernardino de Almeida, 431 
4200-072 Porto 
Portugal 
Tel.: +351.22.8340502, Fax: +351.22.8340509 
E-mail: {npereira, emt, bbatista, lpinho}@dei.isep.ipp.pt 
http://www.hurray.isep.ipp.pt 
 
 
Abstract: 
Although power-line communication (PLC) is not a new technology, its use to support 
communication with timing requirements is still the focus of ongoing research. Recently, a 
new infrastructure was presented, intended for communication using power lines from a 
central location to geographically dispersed nodes using inexpensive devices. This new 
infrastructure uses a two-level hierarchical power-line system, together with an IP-based 
network. Within this infrastructure, in order to provide end-to-end communication through the 
two levels of the powerline system, it is necessary to fully understand the behaviour of the 
underlying network layers. The master/slave behaviour of the PLC MAC, together with the 
inherent dynamic topology of power-line networks are important issues that must be fully 
characterised. Therefore, in this paper we present a simulation model which is being used to 
study and characterise the behaviour of power-line communication. 



REMPLI 
Access Point 

REMPLI 
Access Point 

REMPLI 
Node 

REMPLI 
Node 

REMPLI 
Node 

REMPLI 
Node 

REMPLI 
Node 

REMPLI 
Node 

REMPLI 
Bridge 

REMPLI 
Bridge 

REMPLI 
Bridge 

TCP/IP-
based  

 
MV PLC 

LV PLC 

REMPLI 
App Server 

REMPLI 
App Server 

Redundancy  
link 

REMPLI 
Node 

Characterizing the Timing Behaviour of Power-Line Communication  
by Means of Simulation1

                                                           
1 This work is being partly supported by the EC within project REMPLI (NNE5-2001-00825). http://www.rempli.org 

Luís Marques, Filipe Pacheco, Luís Miguel Pinho 
IPP-HURRAY! Research Group 

Polytechnic Institute of Porto 
R. Dr. António Bernardino de Almeida, 431 

4200-072 Porto, Portugal 
{lmarques,ffp,lpinho}@dei.isep.ipp.pt 

 
 

Abstract 

Although power-line communication (PLC) is not a 
new technology, its use to support communication with 
timing requirements is still the focus of ongoing 
research. Recently, a new infrastructure was presented, 
intended for communication using power lines from a 
central location to geographically dispersed nodes 
using inexpensive devices.  This new infrastructure uses 
a two-level hierarchical power-line system, together 
with an IP-based network.   

Within this infrastructure, in order to provide end-to-
end communication through the two levels of the power-
line system, it is necessary to fully understand the 
behaviour of the underlying network layers. The master-
slave behaviour of the PLC MAC, together with the 
inherent dynamic topology of power-line networks are 
important issues that must be fully characterised. 
Therefore, in this paper we present a simulation model 
which is being used to study and characterise the 
behaviour of power-line communication. 

1. Introduction 

Using power lines for communication is not a new 
idea [1]. Using an already deployed infrastructure eases 
communication costs, not only for energy-related tasks 
but also for providing new services, such as Internet 
access and “no-new-wires” home area networks [2]. 
Nonetheless, the peculiar physical layer of power-line 
for data communication introduces specific 
requirements, and the traditional communication 
technology must be revised to implement an efficient 
and reliable system [3].  

One of the goals of the REMPLI (Real-time Energy 
Management over Power-Lines and Internet) project [4] 
is to implement an infrastructure for real-time 
communication (Figure 1), in order to remotely access 
monitoring and control equipment [3]. Within the power 

lines, a two-level hierarchical system is used 
encompassing the medium-voltage (MV) and low-
voltage (LV) electrical power distribution systems. This 
hierarchical structure implies the development of new 
protocols for end-to-end communication with timing 
and reliability requirements. 

For this, and due to the inherent characteristics of 
power-line systems, special consideration must be given 
to, e.g., redundant path management, data fragmentation 
and real-time traffic processing. Therefore, within the 
project, models for traffic patterns and network structure 
are being set up to simulate the system, allowing 
developing the communication protocol details and 
evaluating their behaviour. For the case of end-to-end 
communication, special concern must be given to the 
underlying master-slave characteristics of the existent 
PLC MAC [5]. In order to study this behaviour, a 
modelling and simulation environment has been 
implemented, interfacing with the available emulator for 
the PLC physical layer [6].  

 
Fig. 1 – REMPLI Architecture 

This paper presents this model and some simulation 
results. The structure of the paper is as follows. Section 
2 presents a brief description of the REMPLI system 
model. Afterwards, in Section 3 we present the 



implemented simulation model, while in Section 4 we 
present and discuss some of its results Finally, Section 5 
provides a brief summary of the paper.  

2. System Architecture 

Figure 1 presents the architecture of the REMPLI 
infrastructure. The Access Points are the entry points on 
the PLC network. They forward requests from the 
TCP/IP-based network to the Nodes (via Bridges).  

The Bridges provide the connection between MV and 
LV networks. If needed in a particular installation they 
can also be used as redundant units providing alternative 
routes between an Access Point and a Node.  

Finally, a complete REMPLI Network can have 
thousands of REMPLI Nodes covering a large 
geographical area from a large city to a whole country. 
REMPLI Nodes have direct connection to/from the 
installed equipment. 

Although a tree-like topology is implied, due to the 
switching of network segments in the mid-voltage and 
the low-voltage power-line, nodes can be reached via 
multiple redundant paths both between Access Points 
and Bridges and between Bridges and Nodes. 
Furthermore, this switching is highly dynamic and 
unpredictable (a simple start of an engine can change 
dramatically the PLC links, with direct reflection on the 
communication topology). Therefore, it is also 
necessary to cope with temporarily not accessible 
connections. 

This two-level, dynamic, communication at the 
power line (MV and LV) together with the quality of 
service requirements of the system, are the main reasons 
for the need for a new protocol, able to provide an end-
to-end (Access Point-to-Node and vice-versa) reliable 
and predictable communication service. This protocol 
will reside at the Transport Layer of the REMPLI 
communication stack, but will have also to perform 
routing at the Bridges level, managing the dynamics of 
the paths between Access Points and Nodes. 

In order to develop this new protocol, one of the 
requirements is the integrated modelling and simulation 
of the underlying layers. Note that in this case, it is not 
important to model in detail the internal functioning of 
these layers, but to provide their behaviour and results 
(i.e. a “black-box” model) for the development of the 
upper layer protocol.  

Both the MV and LV PLC networks use a master-
slave MAC protocol [5] based in fixed length time slots. 
The link layer polls the slaves periodically so that data 
transfers from slaves to masters are possible even 
without a previous explicit request from the master side. 
This allows for alarms and asynchronous events to be 
transmitted and also eases the processing of 
request/response transactions.  

Due to wide distances it may be possible that packets 
cannot be directly relayed between the master and the 

slave. In these cases the link layer of the PLC network is 
responsible for forwarding packets through the slaves 
until they reach the destination [5]. As a consequence 
the master must pre-allocate several slots for the 
transaction with a slave (not only for the request but 
also for the slave response, if expected).  

Furthermore, due to the possible redundant paths, the 
network must cope with the existence of several 
masters. This can be done using different frequency 
bands for each network or through the division of the 
physical layer in time slots, with pre-allocated time-slots 
to the foreseen masters. Multiple masters are supported 
both at the MV and LV levels. The time-division 
method has several advantages including the possibility 
of concurrent transactions between a slave and several 
masters and fast change of parameters. 

3. Simulation Model 

The simulation environment was developed using the 
OMNeT++ [7] discrete event simulation platform. 
OMNeT++ is an object oriented modular discrete event 
simulator, which provides a reusable component 
framework, where the system components can be 
independently built and then characterized and 
assembled into larger components and models. The 
basic system components are built using the C++ 
language and then assembled into larger components 
and models using a high level language, named NED. 
An OMNeT++ model consists of hierarchically nested 
modules. Modules communicate with message passing, 
where messages can contain arbitrary data structures.  

In this implementation, the Simulator takes care of 
all Master-Slave communication, building up on the 
existent network management system [5].  

The main services to the development of the 
REMPLI Transport Layer are: 
- Master: Send Confirmed, Send Not Confirmed, 

Receive 
- Slave: Send, Receive 

These services enable data exchange between 
Masters and Slaves based on PLC addresses including 
error recovery and priority queue placement (for QoS 
support). The Send Confirmed service is intended for 
request-response master-slave communication since the 
confirmation frame can also include data. 

3.1 REMPLI devices modelling 
In the model (see Figure 2 for one example) there are 

three device modules and the Physical Layer Emulator 
module. The device modules are the REMPLI Access 
Point, the REMPLI Bridge and the REMPLI Node. 
Those modules are composed of sub-modules, which 
are the Slave and the Node Transport Layer in the 
REMPLI Node, the Master, the Slave and the Bridge 
Transport Layer in the REMPLI Bridge, and, the 



Master, the Access Point Transport Layer and the 
Driver in the REMPLI Access Point. 

 

Fig. 2 – Example of a REMPLI Model 

The REMPLI Bridge (Figure 3) uses both a Slave 
and a Master because it has to forward and (possibly) 
convert packets from two different network segments. 
The Slave is used in the communication with the Access 
Points, and the Master is used in the communication 
with the Nodes.  

Unlike the Transport Layer, which is tailored for 
each type of device, the Master and Slave modules are 
reusable in any device, i.e. the Master module in the 
Access Point is the same in the Bridge, and the Slave 
module in the Bridge is the same in the Node. 

 

Fig. 3 – Bridge Structure 

3.2 Physical Layer Emulator 
In order to simulate the physical layer of the system, 

an interface was made to the Physical Layer Emulator 
[6], which emulates a PLC time slot, calculating which 
stations receive which packets, and with which error 
status.  

The emulator itself consists of a set of C++ classes, 
which allows its simple integration in OMNeT++ 
projects. The emulator C++ classes receive information 
about the packets that were sent in a time slot and, when 
requested, calculate the transmission of those packets 
for a time slot and return the results. . 

To integrate the emulator on the OMNeT++ a 
module was created (PLEmulator) that uses an instance 
of the emulator. This module interfaces with the 
emulator, being responsible for:  
- Receiving OMNeT++ messages from REMPLI 

devices, reconstructing the REMPLI packets and 
schedule them in the emulator. 

- Triggering the emulation of a slot time. 

- Receiving the output from the emulator, using it to 
reconstruct the OMNeT++ messages, which are 
then sent to the respective REMPLI devices. 

This approach, where the physical topology of the 
network is totally emulated and integrated in a module, 
is very convenient as it permits the transparent use of 
the module independently of the actual physical 
topology implemented in the emulator. 

 

Fig. 4 –Example Scenario 

4. Simulation Example 

In order to allow discussing some preliminary 
results, a simulation run was made (for 60 minutes of 
simulated time, taking appr. 30 seconds in a 1.6 GHz 
Intel Pentium 4 computer), considering a scenario 
(Figure 4) with 2 Bridges and 3 Nodes, with the 
following characteristics: 
- 4 time slots in the cycle (each of 100 ms); 
- Bridge 2 uses the first time slot, while Bridge 4 

uses the remaining 3; 
- Each Bridge generates one high priority packet 

every second that is sent to Node 3 or Node 5; 
- Bridge 2 sends 75% of the traffic to Node 3, while 

Bridge 4 sends 75% of the traffic to Node 5; 
- 75% of the packets generated are confirmed 

requests; 
- Each device has two queues (high and normal 

priority) with space for 4 packets each; 
- Node 3 generates one normal priority packet to 

Bridge 2 every ten seconds; 
- Node 1 and Node 5 generate one normal priority 

packet to Bridge 4 also every ten seconds; 
- The necessary link layer slave forwarding levels is 

a random number between 0 and 2. 
Table 1 presents the results obtained in the Master of 

Bridge 2. We verify that Bridge 2 is discarding many 
packets. This means that the queue is filling quicker 
than it is able to send packets (remember that after a 
Master sends a packet it has to reserve up to more 5 
time slots for the worse case confirmed packets: 2 for 
the arrival of the packet at the Node, and 3 for the 
response).  



Table 1 – Bridge 2 Packets 

SendConfirmed service to Node 3 1473 
SendNotConfirmed sent to Node 3 506 
SendConfirmed sent to Node 5 493 
SendNotConfirmed sent to Node 5 171 
Discarded 984 
Confirmations Received 1478 

Concerning timing behaviour, we measured the time 
(in seconds) until this Master started receiving the 
confirmatiom packets (Table 2). The minimum and 
maximum confirmation times are the expected: 0.401 
(just 2 hops) and 2.001 (the maximum of 6 hops). 

Table 2 – Bridge 2 Time to Receive 

Minimum 0.401 
Maximum 2.001 
Mean 1.165 
Standard Deviation 0.649 
Variance 0.421 

Tables 3 and 4 provide the same results for the 
Bridge 4 Master. Contrarily to Bridge 2, Bridge 4 has 
no discarded packets, which can be explained by the 
fact that it can send 3 times more packets than Bridge 2 
(3 time slots out of 4). We can also observe that the 
number of packets sent is only about 2 times the packets 
sent by Bridge 2. This means that for Bridge 4, two time 
slots out of 4 would be probably enough, leaving an 
extra slot for Bridge 2 which is “starving”. 

Table 3 – Bridge 4 Packets 

SendConfirmed service to Node 3 680 
SendNotConfirmed sent to Node 3 226 
SendConfirmed sent to Node 5 2037 
SendNotConfirmed sent to Node 5 688 
Discarded 0 
Confirmations Received 2715 

Table 4 – Bridge 4 Time to Receive 

Minimum 0.401 
Maximum 2.001 
Mean 1.220 
Standard Deviation 0.648 
Variance 0.420 

Concerning the Slaves (Table 5), it is possible to see 
that in Node 1 all 359 packets generated are discarded, 
since none of the bridges includes the node in the poll 
cycle. Node 3 is receiving all packets from Bridge 2, 
and all but one from Bridge 4. 

However, Node 5 has a much lower receiving rate, 
since it receives only approximately 7% of the packets 

sent by Bridge 2. This makes the case of the problems in 
power line communication, where the dynamics of the 
network are highly unforeseen, thus requiring very 
adaptive and dynamic higher level protocols. 

Table 5 – Slaves’ Packets 

Nodes 1 3 5 
SendConfirmed - 1473 36 From Bridge 2 

SendNotConfirmed - 506 12 
SendConfirmed - 679 2036 From Bridge 4 

SendNotConfirmed - 226 688 
Discarded  359 0 0 
Confirmations Sent  - 2152 2072 

5. Summary 

This paper outlined the work which is being 
performed in order to support the development of a new 
Transport Layer for a particular power-line 
communication infrastructure. This layer must be 
capable of providing end-to-end communication with 
timing and reliability requirements.  

For this, we presented a simulation model, which is 
being used to understand the behaviour of Master-Slave 
communication in Power-Line Communication 
Networks. The preliminary results obtained were 
discussed, providing the required information for the 
development of the upper Transport Layer protocol. 

References 

[1] M. Lobashov, G. Pratl, T. Sauter, “Implications of 
Power-line Communication on Distributed Data 
Acquisition and Control System”, IEEE Conference on 
Emerging Technologies and Factory Automation, 
Lisbon, Portugal, 2003. 

[2] Dan Strassberg, “Home/automation buses - Protocols 
really hit home” - EDN Access - Design Feature - 
4/13/1995 

[3] A. Treytl, T. Sauter, G. Bumiller, “Real-time Energy 
Management over Power-lines and Internet”, 
Symposium of Power-Line Communication and its 
Applications, Zaragoza, Spain, 2004. 

[4] Real-time Energy Management over Power-Lines and 
Internet, NNE5-2001-00825, http://www.rempli.org 

[5] G. Bumiller, M. Sebeck, “Complete Power-Line Narrow 
Band System for Urban-Wide Communication”, 
Symposium of Power-Line Communication and its 
Applications, Malmö, Sweden, 2001. 

[6] G. Bumiller, “Power-Line Physical Layer Emulator for 
Protocol Development”, Symposium of Power-Line 
Communication and its Applications, Zaragoza, Spain, 
2004. 

[7] A. Varga, "OMNeT++ Discrete Event Simulation 
System", v2.3, 2004, http://www.omnetpp.org/ 




