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ABSTRACT

Preemptions via virtual channels have been proposed as a
means to introduce the notion of priorities and real-time con-
cepts in wormhole-switched NoC-based architectures. This
work presents a holistic approach, which utilises a novel
three-staged mapping method in order to assess what should
be the physical characteristics of the platform (and its in-
terconnect), such that real-time guarantees can be provided,
assuming a given workload. We estimate the "gap” between
platform characteristics required for the real-time analysis
and those of currently available many-core platforms and
propose to employ the existing feature of many-core plat-
forms in order to significantly reduce this gap. The ex-
periments demonstrate that virtual channels, an essential
prerequisite for the real-time analysis, are not the bottle-
neck. The approach presented in this paper can help system
designers to select/design the most suitable platform for a
given workload, such that all temporal constraints are met
and over-dimensioning is avoided.

1. INTRODUCTION

Many-core platforms are the new frontier technology in
the real-time embedded domain. These devices offer various
beneficial possibilities; e.g. to implement new or enhance ex-
isting functionalities or to perform energy/thermal manage-
ment and fault tolerance. However, the real-time analysis
of many-cores is a challenging topic, most prominently be-
cause of contention for shared resources, like memory con-
trollers and the interconnect medium. As the number of
integrated cores within many-core platforms increases, con-
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tentions for shared resources also increase, and consequently
latencies of operations involving those resources increase as
well. Thus, before these platforms can be incorporated into
the real-time embedded domain, analyses are needed which
(i) provide temporal guarantees with as little pessimism as
possible, (ii) allow the efficient utilisation of the underlying
platform.

Traditional real-time approaches mostly study many-core
platforms from the perspective of computational require-
ments. One well-established area is called scheduling theory,
where some of the end objectives are to organise the work-
load execution and provide real-time guarantees, while at
the same time minimising the required processing resources.
The benefits are that over-dimensioning can be avoided, and
a platform with the least possible resources can be selected
or designed, such that it meets the requirements (i.e. pro-
vides temporal guarantees) for a given workload. However,
very few works have explored the requirements regarding
the characteristics of the underlying interconnect medium,
which are necessary in order to derive end-to-end temporal
guarantees for many-core systems.

The Network-on-Chip architecture [2] (NoC) became a
prevailing interconnect medium and mainstream in many-
cores [11,25], due to its scalability potential [14]. Most NoCs
perform data transfer via wormhole switching technique [19],
due to its good throughput and small buffering require-
ments. Currently available NoC-based, wormhole-switched
many-cores employ a wide range of diverse strategies when
implementing a wormhole switching technique, e.g. differ-
ent sizes of basic transferable units — flits, different router
operating frequencies, different arbitration policies, a (lack
of) support for virtual channels, etc. These design trade-offs
have a significant impact on both, performance and analysis.

In this work we focus on the aforementioned aspect, and,
assuming a given workload, identify which are necessary
characteristics of the interconnect medium, such that real-
time guarantees can be derived. Specifically, we elaborate
on required number of virtual channels and link capacities.
The objective is to help system designers to select the plat-
form (and the interconnect medium) with sufficient char-
acteristics, and prevent over-dimensioning, which carries a
significant importance in the embedded domain, since more
resourceful systems usually consume more power. To fa-
cilitate this, we propose a heuristic-based, three-staged ap-
proach which maps application workload to the given plat-
form, with the dual objective of fulfilling the timing con-
straints of the communication and minimising the resources
of the interconnect architecture. The proposed mapping



method is used as a framework to conduct a comprehen-
sive study of different design-choices related to NoC-based,
wormbhole switched many-cores, and observe their influence
on the provided guarantees. The experiments demonstrate
that (i) allowing more than the minimal number of required
virtual channels during the mapping process in most cases
is not beneficial, which is highly counter-intuitive and di-
rectly answers the question posed in the title of the paper,
and (ii) mapping the workload with the primary objective of
minimising the number of virtual channels leads to a near-
optimal solution.

2. RELATED WORK

Contrary to the popular belief, a wormhole switching tech-
nique is not a novelty in academia, nor industry, but was
introduced more than 20 years ago. However, it was largely
neglected due to the fact that an alternative — store-and-
forward switching technique was providing satisfactory re-
sults. As the amount of data that has to be transferred kept
increasing, the buffering within routers became more and
more challenging, which lately brought wormhole switching
back into the focus. Nowadays, this technique is predom-
inantly employed in many-core architectures [11,25]. Fur-
thermore, these platforms mostly route the packets via a
static, dimension-ordered XY routing policy and a round-
robin arbitration is used in routers.

If a platform provides only a single virtual channel [25],
complex interference patterns may occur [15]. Several tech-
niques were proposed to obtain upper bounds on the worst-
case packet traversal delays [7—9], assuming the most com-
mon setup: a single virtual channel and a round-robin ar-
bitration. However, such platforms are by design not well-
suited for the real-time analysis, hence proposed methods
obtain either pessimistic results [8,9], or have complexity
and scalability issues [7]. Conversely, if multiple virtual
channels [5, 6] are provided within the platform [11], the
benefits are twofold: (i) by avoiding idle routers the effi-
ciency (throughput) of the wormhole switching is signifi-
cantly improved [5, 6], and (ii) a notion of packet priori-
ties can be introduced and packets can preempt each other
within the network. The second aspect is particularly im-
portant for the real-time domain. By employing the afore-
mentioned assumptions (i.e. distinctive per-packet priorities,
per-priority virtual channels and flit-level preemptions [24])
Shi and Burns proposed a real-time communication analy-
sis [21] with the objective to derive the worst-case traversal
delays of individual packets. The same authors extended
the analysis to allow several packets to share the same prior-
ity [22], known as priority-share policy. The latter approach
is useful in scenarios where the number of virtual channels
provided by the platform is less than the number of packets.

Assuming the aforementioned analysis with distinctive per-
packet priorities, Mesidis and Indrusiak [18] and Racu and
Indrusiak [20] proposed workload mapping approaches based
on genetic algorithms, which objective is to derive a map-
ping where all timing constraints posed on individual pack-
ets are fulfilled. Shi and Burns elaborated on the analysis
based on the priority-share policy and proposed a mapping
method [23], which besides temporal constraints also focuses
on minimising the number of consumed virtual channels.

This paper can be considered as the continuation of the
previously mentioned works. However, rather than perceiv-
ing the platform as a given, closed system and providing
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Figure 1: Example of contending packets

a simple ”yes/no” answer regarding the ability to fulfil all
temporal constraints, we explore different platform prop-
erties and characteristics and observe to what degree they
influence provided guarantees. This approach should help
system designer to select/design the platform with minimal
resources possible, such that all timing requirements are still
met. Together with the attempt of Shi and Burns to min-
imise the number of virtual channels [23], this is the pio-
neering work in the real-time domain addressing resource
minimisation for many-cores employing wormhole-switched
priority-aware NoCs.

3. BACKGROUND / PRELIMINARIES

In this section we will introduce the basic concepts, which
will help to subsequently describe the mapping algorithm
(Section 4).

3.1 Wormhole Switching

Unlike traditional store-and-forward switching, where an
entire packet indivisibly travels between consecutive routers
from the source to the destination, wormhole switching di-
vides a packet into small fixed-size elements called flits.
The first flit establishes the path, and the rest follows in
a pipeline manner, i.e. when the first flit progresses from
one router to the next, the rest of the flits may also progress
by one router. With this technique, each router on the path
of the packet needs to store only one of its flits at any time
instance, which significantly relaxes buffering requirements.

For wormhole-switched interconnects the XY routing tech-
nique became the predominant choice. The reason is twofold:
(i) XY routing is deadlock and livelock free [10] and (ii) the
paths are static and deterministic, which makes this policy
particularly suitable for the real-time domain. With this
policy flits of the packet travel firstly on the x-axis, and
upon reaching the x-coordinate of the destination continue
the traversal on the y-axis.

Traditional interconnects utilising the wormhole switch-
ing technique have only a single channel per direction per
link, or what is better known as single virtual channel. An
example is Tilera family of processors [25]. In this regime,
once flits occupy buffers in the routers located on the path
of the packet, other packets, which traverse the same path,
have to wait until buffers become empty, i.e. until the flits of
the existing packet leave contending buffers. This can cause
very complex contention scenarios [15], where a packet can
be blocked not only by packets with which it shares a part
of the path, but also by those with which it does not. Fig-
ure 1 gives an illustrative example. Packets p;, pj1, pj2 and
pi contend for some links on the path [/, and shaded rectan-
gles represent routers. The packet p; can be blocked by the
packet pj2, which in turn can be blocked by the packet py.
Thus, a packet p; can suffer blocking from p, even though
they do not have a common part of the path.



Assuming a single virtual channel, if a packet suffers block-
ing, all its flits stall within currently occupied routers and
prevent any packet from progressing in the same direction
until itself is able to progress again (i.e. it is not blocked any
more). This can cause poor performance and as a means to
overcome this problem multiple virtual channels have been
proposed [5,6]. A virtual channel is nothing more than an
additional buffer in the router, which allows to store stalled
flits of a blocked packet and offer the progress to some other
non-blocked packet. This implies that in an example illus-
trated in Figure 1, if p;2 is blocked by pg, p; can freely
progress utilising one virtual channel, while stalled flits of p;2
are stored in the other. Single-Chip-Cloud Computer [11]
(SCC) employs wormhole switching with virtual channels.
Notice that virtual channels have additional significance in
the real-time domain, as the same can be used for flit-level
preemptions [24] based on packet priorities.

3.2 Existing Real-Time Analyses

Shi and Burns proposed a real-time analysis [21] to com-
pute the worst-case delay of a packet, assuming that each
packet has an implicit or constrained deadline and a dis-
tinctive priority. An additional assumption is that there
exist per-priority virtual channels. The worst-case delay of
a packet p, noted down as R(p), consists of several terms
(Equation (1)), namely isolation delay C(p), lower-priority
blocking B(p) and higher-priority interference I(p).

R(p) = C(p) + B(p) + I(p) (1)

The first term is in the literature also known as basic net-
work latency. It is equal to the delay of the first flit to reach
the destination router, augmented by the processing delay
of all flits at the destination router (Equation (2)). dsw and
d¢ denote the latency to switch the crossbar and transfer
one flit from one router to another, respectively. nhops(p)
and size(p) symbolise the number of hops and the size of
the packet p, while size(f) represents the size of one flit.

C(p) = nhops(p) X (dsw + dt) + [:ZE?H % d )

A packet p can additionally suffer lower-priority blocking
within every router on its path. Equation (3) covers the
worst case, where, at the moment when the first flit of p
reaches any router on its path, a lower-priority packet just
started the transfer.

B(p) = nhops(p) X (dsw + dt) (3)

Finally, a packet can suffer interference from higher-priority
packets which share a part of the path with it, called directly
interfering packets. Let Pp(p) be a set of directly interfering
packets of p. Then, the higher-priority interference that p
can suffer is given with Equation (4), where T'(p’) denotes
the minimum inter-arrival period of a directly interfering
packet p’.
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Notice the additional term in the ceiling brackets: R(p’)—
C(p'). Tt covers the case where two consecutive occurrences
of p’ can be distanced by less than T'(p), that is, there might
exist a directly interfering packet of p’ termed p”’ € Pp(p’),
which can cause interference to the first occurrence of p’

and force it to appear as late as € + R(p’) — C(p'), while the
next (uninterfered) occurrence of p’ can happen as early as
€+ T(p'). Thus, as p’ can exhibit an aperiodic occurrence
pattern, considering its periodic occurrences can be an un-
safe assumption, and the additional term (R(p') — C(p"))
accounts for the worst-case. This is a well-known fact in
the wormhole switching and for more details an interested
reader is advised to consult the work of Shi and Burns [21].
Note, a packet can additionally suffer release jitter, which
is defined as the maximum deviation of successive packets
released from its period [21]. In this work we assume that
release jitters are equal to zero. As the interference com-
ponent (Equation (4)) gives a recursive notion to the worst-
case delay (Equation (1)), R(p) is computed iteratively, until
reaching a fixed point (if one exists).

The requirement of the aforementioned analysis is that
each packet has a distinctive priority and that the platform
provides per-priority virtual channels, which, in some cases,
may be very demanding. In order to decrease the number
of needed virtual channels, the same authors proposed the
analysis where multiple packets can share the same priority,
called a priority-share policy [22]. However, the existence of
packets with the same priority brings significant overheads
and more complex blocking and interference patterns, sim-
ilar to those involving a single virtual channel (see Subsec-
tion 3.1). In order to circumvent this problem the authors
propose to group all packets with the same priority into a
single entity called composite packet — p. Let Pc(p) be a set
of packets constituting p. Now, the isolation delay and the
blocking delay of a composite packet p are equal to the sum
of isolation and blocking delays of packets from Pc(p), i.e.
CH = > C@ and B = > B(p). Finaly,

VpEPc (P) VpePc (D)
let Pp(p) be a set of packets which can cause direct inter-
ference to any packet from Pc(p) and hence to p. Formally:

Vp:3p' € Pc(P) Ap € Pp(®') = p € Pp(P) (5)
Interference that p suffers is equal to the sum of interferences
caused by all packets from Pp(p) (Equation (6)).
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The worst-case delay of a composite packet: R(p) = C(p)+
B(p) + I(p) presents an upper-bound on the delays of all
packets from Pc(p), i.e. R(p) = R(p),Vp € Pc(p). No-
tice two potential sources of pessimism: (i) all same-priority
packets are grouped in one entity, although some of them
can be treated independently (ii) not all directly interfering
packets can cause interference during an entire period R(p).
We illustrate this with an example given in Figure 1 and
with the packet parameters given in Table 1. For the clarity
of the example, let us take a simplifying assumption that
lower-priority blocking does not exist, i.e. B(p) = 0, Vp.

Table 1: Example of packets

Packet | Priority | C | D=T | B
Pi P,' 1 3 0
Pk P, < P; 1 3 0
Pj1 P; < Py 1 10 0
Dj2 P; < Py 1 10 0

p; and py, do not suffer interference, hence R(p;) = C(p;)+
B(pi) = C(p:) = Land R(px) = C(pr)+B(pr) = C(px) = 1.



As p;1 and pj2 have the same priority, they can be grouped
within pj.

R(5) = C(pj1) + Clogz) + Bl + Blorsl” +
_ _ 0
> [R(p]Hf((,f)) c@)} y <C(p>+M )

vpe{p;,pk}
0+1—1 0+1—1
R(ﬁ})021+1+" * —‘x1+[+7—‘><1:2
: 3 3
241-1 241-1
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3 3
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However, by analysing the given example, it can be con-
cluded that the worst-case scenario for pj; occurs when it
gets blocked by pj2 which in turn gets preempted by both p;
and py. Hence R(p;1) = 4. Similarly, the worst-case scenario
for pj2 occurs when it gets preempted by p;, then blocked
by pj1, preempted by py and finally again preempted by p;.
Hence R(pj2) = 5.

The purpose of the aforementioned example is to show the
pessimism related to the priority-share policy and we recog-
nise this area as a potential topic for future work. However,
in this paper we elaborate on an alternative approach which
is described in the very next subsection. It exploits novel
features of current many-core platforms and allows to min-
imise the number of virtual channels, while still obtaining
the worst-case delays with the analysis based on per-packet
distinctive priorities.

3.3 Dynamically Changing Virtual Channels

The two aforementioned analyses assume that each packet
traverses its entire path through the same, statically as-
signed virtual channel. The SCC [11] platform provides 8
virtual channels, but also offers the possibility to dynami-
cally change virtual channels that one packet traverses [12].
This feature was described using an analogy about how cars
switch lanes on the highway. We propose to use this pos-
sibility in the following way: (i) each packet still maintains
its priority constant during an entire traversal, (ii) a packet
may occupy different virtual channels within routers on its
path, (iii) the virtual channel for a given packet at a given
router is decided by considering all packets contenting for
that router, and assigning a unique virtual channel to each
one of them. This approach still allows to perform the anal-
ysis based on distinctive priorities, and yet dramatically re-
duces the requirement for virtual channels, as illustrated
with an example given in Figure 2 assuming the parameters
given in Table 2.

Table 2: Example of packets

Packet | Priority | C | D=T | B
yo Pi 1 3 0
D) P; < P; 1 3 0
Pk P, < P; 1 10 0
Pm P <Py | 2 10 0

Now, let us consider 3 different techniques: (i) analysis
with distinctive priorities — DP, (ii) analysis with priority-
share policy (PS), where p; and p; are grouped within the
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Figure 2: Example of contending packets

same priority and the same is done with p, and p,,, and
(iii) analysis with distinctive priorities and the support for
dynamic changes of virtual channels (DDP). The worst-
case delays and the requirements for virtual channels are
given in Table 3. The calculation steps were omitted.

Table 3: Worst-case delays and needed virtual channels

Analysis | R(pi) | R(p;j) | R(Pr) | R(Pm) | VCmin
DP 1 1 3 3 4
PS 2 2 9 9 2

DDP 1 1 3 3 2

Notice that DDP approach performs the same analysis
as DP, but requests virtual channels equal to the maximum
number of contentions at any router, which is in this example
2. This is the first work that proposes the aforementioned
feature of SCC platform to be used for minimising virtual
channels and it raises two fundamental questions: (i) does
SCC provide enough virtual channels to satisfy the
requirements of present and future real-time embed-
ded applications, and if so, (ii) is priority-share policy
needed after all? We will try to answer these questions in
the sections dedicated to evaluations and conclusions.

4. PROPOSED APPROACH

This section presents an additional terminology (Subsec-
tion 4.1) that is essential for the full comprehension of the
system model. Then, a detailed description of the proposed
mapping algorithm is given (Subsections 4.3 - 4.6), as well
as main motives and objectives for developing such an ap-
proach (Subsection 4.2).

4.1 Terminology

The platform under consideration IT is a homogeneous
NoC-based wormhole-switched many-core system which con-
sists of n x mn tiles. Although some platforms allow the
tile to be shared by multiple cores [11], in this work we
assume that a tile consists of a single core and a single
router, like the system depicted in Figure 3 [25]. Thus,
I = {My,Msz,....M,2_1,M,2}. Horizontally and ver-
tically neighbouring cores are (via routers) connected by
two unidirectional links. All links have the same capacity
Blink = ;iiE(J;i’ expressed as the size of one flit, divided
by the time needed to transfer it between two neighbour-
ing routers. Furthermore, a platform consists of ¥j;, virtual
channels, such that 0j;,, > v, where U represents the maxi-
mum number of contentions occurring at any router.

The workload is described by a task-set 7 = {71,..., 72 }.
As the focus of this work is on the interconnect medium, the
execution parameters of individual tasks are out of scope of
this paper. We assume that an entire task-set 7 is by some
fully-partitioned [17] or semi-partitioned [4, 13] scheduling
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approach converted into a mega-task-set 7 = {71,..., T2},
where each mega-task 7, € T represents a union of entire
tasks and/or fractions of tasks from 7, such that 7; can be
scheduled on one core. Notice that there are as much mega-
tasks as there are cores in the system, hence each mega-task
should be mapped to a unique core.

Furthermore, each task 7; € 7 is characterised by a set
of outgoing packets destined towards other tasks. Packets
represent inter-task communication. Each mega-task 7; € 7
inherits the packets of tasks constituting it. A packet p; is
characterised by a unique priority — P;, a minimum inter-
arrival period T'(p;), a deadline D(p;) < T(p;), a packet
size — size(p;), a source mega-task — Ts, a destination mega-
task — 7p and a distance between them expressed by (i) a
number of hops — nhops(p;) and (ii) a set of traversed links
— path(p;). A packet has met its deadline if its worst-case
traversal delay R(p;) is less than or equal to the deadline,
ie. R(pj) < D(pj;). If all packets of all mega-tasks meet
their deadlines, the system is considered as feasible.

4.2 Mapping Objectives

The main objective of the mapping process is to efficiently
map a given mega-task-set to a given platform: 7 — II. A
method should be used by a system designer, and should ide-
ally derive a mapping plan (solution) which is feasible. In
cases where this requirement can not be fulfilled, the method
should provide information about the service that a given
platform II can provide to a given workload 7, e.g. assum-
ing initial packet sizes the system is not feasible, however,
assuming that each packet has a half of its initial size the
system is feasible. This information is useful for two reasons.
First, it gives system designer feedback on how close/far the
current configuration is from one that can guarantee the fea-
sibility. Consequently the system designer can reconfigure
the platform characteristics and repeat the mapping process
until finding the configuration which guarantees feasibility
with as less resources as possible. Second, variable packet
sizes are in some scenarios acceptable [3] and proportional
to the provided quality of service. Hence, when mapping
such a workload the system designer might find it more con-
venient to use a platform where a workload is feasible with
a certain quality (packet sizes), rather than buying a much
more expensive platform which will guarantee the best qual-
ity (feasible system with initial packet sizes). This approach
will also allow us to study the effect of different platform

characteristics on the provided guarantees and will help us
to identify the bottlenecks of interconnects in commodity
many-cores.

4.3 Mapping Method Overview

To achieve the aforementioned objectives, the proposed
approach is designed in a configurable way that allows to
analyse a wide range of different scenarios, arising from the
possibility to explore different platform configurations and
different workloads (as minutely explained in Section 5),
with the central motive of finding an adequate platform for
a given workload. The proposed method consists of three
mapping stages: (i) initial phase, (i) VC minimisation phase
and (iii) workload-exploration phase.

The initial phase is inspired by the mapping algorithm
of dataflow applications on many-core platforms [1], where
the objective is to map the mega-task-set 7 on the plat-
form II in such a way that heavily communicating mega-
tasks are mapped as close to each other as possible. This
strategy should help in reducing contentions and provide a
”good” starting point (initial solution) for further optimisa-
tions during subsequent phases. While mapping, the initial
phase does not consider packet nor platform properties (i.e.
packet sizes, timing constraints, link bandwidths, available
virtual channels).

The main goal of the VC minimisation phase is to take the
solution of the initial phase as an input, and optimise it in
such a way that the number of needed virtual channels v is
minimised. The VC minimisation phase is implemented as a
Simulated Annealing (SA) meta-heuristic [16]. As the single
objective of the VC minimisation phase is to minimise the
number of virtual channels, this phase also does not consider
packet nor platform properties.

The main role of the final, workload-exploration phase is
to discover and quantify the guarantees that can be provided
for a given workload 7 by a given platform II. It takes the
output of the VC minimisation phase as an input, which as-
sures that the starting point is the solution with the minimal
number of virtual channels ¥, and performs the optimisation
with the objective to derive a feasible solution (if possible),
assuming specific platform characteristics (i.e. link band-
widths Bjink and available virtual channels ¥y, > 0) and
workload temporal constraints. The workload-exploration
phase is also implemented as a SA meta-heuristic, and it
should ideally derive a feasible solution. In cases where it is
not possible, the workload-exploration phase investigates to
what percentage of initial sizes all packets have to be uni-
formly reduced, such that the feasibility can be guaranteed,
and consequently tries to find a solution where the reduction
is the least possible.

4.4 Initial Phase

The main criteria of the initial phase is to map communi-
cating mega-tasks near to each other by using a core selec-
tion methodology proposed by Ali et al. [1], that proved to
decrease communication overhead and response time of ap-
plications. This methodology consists of two main functions,
spiral_move and find_nearest_core, as shown in Figure 4. The
first function, spiral_move, defines a fixed spiral path on the
platform that is followed while mapping the mega-task-set 7.
The spiral_move function returns the next core on the spiral
path every time it is called, as shown in Figure 4a. The
second function, find_nearest_core, takes a reference core as
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an input and starts searching for a free core one hop away
from the reference core. If not possible, it searches for a free
core two hops away, and so on, until finding a possible core
to map the mega-task. The search criteria starts by finding
the nearest core in this order: North, South, East and West.
The first core that the find_nearest_core function finds is re-
turned for mapping. Figure 4b shows the searching regions,
classified according to the distance from the reference core.

Algorithm 1: Initial phase algorithm

7: unsorted mega-task-set , T = {?1, cee a"A'n2 }

;‘;o‘rd:

set of ordered 7.
:th: set of child mega-tasks of a mega-task 7;.
My core index.
begin
7ord = orderMegaTaskSet(7);
foreach 7; in 7°"%¢ do
if 7; is not mapped then
M, = spiral_move();
map(7y, My);
7¢" = getTaskChildSet(7;);
if 7¢" is not empty then
foreach 7; in 7¢" do
M. = find_nearest_core(7;);
map(7;, My);

end

The mapping algorithm of the initial phase (shown in Al-
gorithm 1), starts by sorting the mega-task-set in a non-
increasing order of total number of packets (sent and re-
ceived). Then, it picks the mega-tasks in order and checks
whether they are mapped or not. If the mega-task 7, was
already mapped, the algorithm checks the mapped mega-
task (parent) for its children (mega-tasks that either receive
or send packets to the mapped mega-task) and maps them
near to their parent using find_nearest_core function. On the
other hand, if the picked up mega-task was not mapped yet,
the algorithm calls the spiral_move function to determine the
next free core on the spiral path to map it. Then, it maps
its children mega-tasks using find_nearest_core function in
the same way as explained previously.

4.5 VC Minimisation Phase

The goal of this phase is to minimise the number of needed
virtual channels v, considering the solution produced by the
initial phase as a starting point. This phase is described with
Algorithm 2 and it is implemented with SA meta-heuristic.

Algorithm 2: Virtual channel minimisation algorithm

tmae: mMaximum temperature of SA.

tmin: mMinimum temperature of SA.

tstep: decremental step of temperature decrease.

teurr: current temperature.

c¢: constant representing the number of iterations in each tgstep.
Vnews Vold: new and old value of number of needed VCs.

Tnews Vold: new and old value of average number of contentions.
r: random number [0,1].

P,,: probability of making a transition from the current state.

begin
for (tcurr = tmaa; teurr 2 tmini teurr — = tstep) do
it = 0;
while it < ¢; do
{7s,7j : (Ts NTj) € T,T3 # 75} // randomly picked
Swap(7i, 75);
Upew = calculateMaxContentions();
if Upew < Uoiq then
if ('Dneu/ < 'Uold) \Y (T < Py, X tcurr/tmam) then
Vord = ﬁnew;
Vold = Unew;
else
L Swap(Ti, 75);
else
L Swap(7s, 75);
it++;

end

Through the exploration of the solution space, the algorithm
makes a transition from one solution to another with respect
to an acceptance test. This test consists of two conditions,
of which at least one must be satisfied in order to accept
the new solution. These two conditions are: (i) the average
number of contentions of the new solution is less than the old
one (Tnew < Uold), and (ii) the acceptance probability test
function (r < Py X teurr/t,...), where r is a random num-
ber between [0, 1], P, is the probability of accepting a new
transition, and (tcurr,tmaee) are the current and maximum
temperature of the algorithm, respectively. As is visible, the
acceptance probability test is a function of tcyrr. This means
that at high temperatures the algorithm has a higher ten-
dency to accept worse solutions in an attempt to transition
to a new solution space where it can find a better solution.
As the algorithm temperature cools down, this tendency de-
creases and the algorithm starts to lock on the best solution
in the current neighbourhood.

As shown in Algorithm 2, the algorithm starts its itera-
tions by setting the current temperature tc.,» to a high value
tmae €enough to be able to explore the solution space. Then,
it picks randomly two mega-tasks 7; and 7; and swaps them.
Consequently, the rerouting of their respective incoming and
outgoing packets is performed. If the number of needed VCs
for the new solution Unew is less than or equal to the num-
ber of needed virtual channels from the old solution V4,
i.€. Unew < Dold, the new solution is eligible to evaluate its
acceptance probability using the acceptance test previously
described, otherwise, it is rejected. In cases where the new
solution progresses to the acceptance test and it is proved to
be true, the algorithm accepts the new solution and updates
the values of U4 and To1q. Otherwise, it reverts back to the
old solution.

4.6 Workload-Exploration Phase

The goal of the workload-exploration phase is to maxi-
mize the size of all packets S traversing the NoC, such that
packets’ timing constraints are satisfied, and that the num-



ber of employed virtual channels does not exceed the limit —
Dim, which represents the number of channels provided by
the platform IT. Similar to the VC minimisation phase, this
phase is also based on a SA meta-heuristic, but with a differ-
ent goal, which is in this case to maximise S. This algorithm
also makes a transition from one solution to another with re-
spect to an acceptance test. However, the acceptance test of
the workload-exploration phase differs in the first condition,
where it compares the new and the old values of maximum
feasible packet sizes, (gnew > §old), in order to accept new
solutions.

Algorithm 3: Packet size optimisation algorithm

§new, Soia: new and old maximum feasible packet size.
Dyim: number of VCs provided by the platform.
begin
for
(tewrr = tmaz, Sotd = 0; tewrr > tmin; teurr
it = 0;
while it < ¢; do
{7:,7; : (7s NTj) € T,7; # 7;} // randomly picked
Swap(Ti, 75);
Upew = calcMaxContentions();
if pew < Diim then
§new = calcMaxPktSizes();
if (glw,ew > Sold) \ (T < Py X t‘”‘rr/f’m,aa:) then
SOLE = Snew;
if S,,eo == 1 then
[ exit;
else
L Swap(Ti, 75);

— = tstep) do

else
L Swap(7i, 75);
it

end

As shown in Algorithm 3, the algorithm starts its itera-
tions by setting all packet sizes §old to zero and the cur-
rent temperature ey, to a high value ¢, enough to be
able to explore the solution space. Then, it picks randomly
two mega-tasks 7; and 7; and swaps them. This also re-
quires the rerouting of their respective incoming and outgo-
ing packets. If the number of needed VCs of the new solution
Unew €xceeds the number of virtual channels provided by the
platform ¥y, the new solution is rejected. Otherwise, the
new solution is considered to calculate its §new value us-
ing calcMazPktSizes function. This function is responsible
for incrementing sizes of all packets of all mega-tasks uni-
formly, and consequently testing whether all packets’ timing
constraints are still satisfied. The function returns the value
Shnew, Which represents the maximum packet sizes, such that
the feasibility is preserved. After computing §new, the new
solution is ready to evaluate its acceptance probability using
the acceptance test. In cases where the new solution passes
the acceptance test, the algorithm accepts the new solution
and updates the value of §old. Otherwise, it reverts back to
the old solution and tries a different swap. After several iter-
ations, the maximum packet size §new can reach the value of
1. This means that the current mapping of the mega-task-
set 7 on the platform II is feasible with initial sizes of all
packets. If §new is less than 1, this means that the system
can guarantee the feasibility, but only assuming that sizes
of all packets are uniformly reduced to max{é'\old, §new}.
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Figure 5: Virtual channels do scale wrt packets

S. EVALUATIONS AND EXPERIMENTS

In this section we employ the proposed mapping approach
and test how platform characteristics influence the derived
feasibility guarantees. Specifically, we observe how guaran-
tees change with varying number of virtual channels and link
bandwidths. In order to provide a complete and comprehen-
sive study, and cover a wide range of scenarios ranging from
lightly to extremely loaded networks, different workloads are
generated and consequently analysed.

5.1 Experimental Setup

The analysis parameters are given in Table 4, where packet
sizes are randomly generated values, assuming a uniform
distribution. For each packet a source and a destination
mega-task Ts and 7p are randomly selected.

Table 4: Analysis parameters

Platform size — n X n 10 X 10
Mega-task-set size |T| 100
Router switch latency — dsq 1 cycle
Router transfer latency — d; 3 cycles
Flit size — size(f) 16B
Packet sizes — size(p) [32B - 32kB]

5.2 Experiment 1: Do Virtual Channels Scale?

As explained in Section 4, our approach is based on the
assumption that a platform provides at least ¥ number of
virtual channels, where 7 is equal to the maximum number
of contentions at any router. In this experiment we wanted
to test how (un)realistic that requirement is. In other words,
we identify the number of needed virtual channels for a given
workload, and observe the change of this value when the
number of packets increases. For that purpose, we generated
different workload categories, ranging from 50 to 1000 pack-
ets for an entire mega-task-set. Each category consists of
1000 mega-task-sets. For each mega-task-set we performed
the mapping (only initial and VC minimisation phases of the
proposed approach) and computed the minimum number of
virtual channels needed to support it — v. The results are
given in Figure 5, where a horizontal axis corresponds to the
number of packets and a vertical axis stands for the number
of virtual channels. The whiskers were set to 25" and 75"
percentile.

As already known, the NoC architecture is widely ac-
cepted due to its scalability potential related to traffic in
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Figure 6: Additional virtual channels do not help in feasibility guarantees

general, hence an intuitive guess would be that the number
of needed virtual channels also scales. Figure 5 confirms
that assumption with an almost-linear dependency between
the number of packets and virtual channels, and also gives
a quantitative estimate regarding how many channels are
needed for various workloads. In particular, currently avail-
able SCC platform, with its 8 virtual channels, can accom-
modate around 300 packets. On average, an addition of one
channel increases the potential of the platform to accept 50
new packets. Recall that the traditional distinctive-priority
approach requires that the number of virtual channels is
equal to the number of packets, and notice the reduction
achievable with our approach where packets are allowed to
dynamically change virtual channels, i.e for 1000 packets
our method requires, on average, only 23 channels. We fur-
ther elaborate on practical implications of these findings in
Section 5.5.

5.3 Experiment 2: Do Virtual Channels Help?

The previous experiment demonstrated that the proposed
approach efficiently maps the workload, such that the num-
ber of needed virtual channels is minimised to the level be-
yond any expectation we had. This implies that the map-
ping process evenly distributes the contentions across the
entire platform and avoids hotspots. However, as the min-
imisation of router contentions (i.e. virtual channels) is the
central criteria, this can result in solutions where some pack-
ets are forced to traverse long routes, which can in turn have
an impact on feasibility. Conversely, placing highly commu-
nicative mega-tasks close to each other would minimise the
packet routes and might potentially improve feasibility, but
would create hotspots and cause more contentions within
some routers. Thus, our intuitive guess was that feasibility
highly depends on the number of available virtual channels,
and we wanted to quantify the trade-off, that is, to what de-
gree can feasibility be improved by employing an additional
virtual channel.

We generated 3 workload categories containing 100, 300
and 500 packets. For each category we had 3 subcategories
with the following packet minimum inter-arrival periods:
T, € [1—-5]us, T> € [2—10]us and T3 € [5—20]us. For each
subcategory 200 mega-task-sets were generated and conse-
quently mapped. The results are given in Figure 6, where
a horizontal axis stands for the number of virtual channels
provided by the platform — Uy, and the vertical axis stands
for the provided feasibility guarantees, that is, to what per-
centage of initial sizes all packets have to be uniformly re-
duced, such that the system is feasible. A value VCiin

corresponds to the number of virtual channels obtained by
the VC minimisation phase, i.e. VCinin = 0.

This experiment reported highly unexpected and unintu-
itive results, which imply that adding virtual channels might
negatively impact the efficiency of the mapping process and
produce a solution which is worse than the one obtained
with minimum number of virtual channels v. Our initial
though was that these surprising results might be related to
specific workloads or the consequence of some parameters
and inherent properties of SA meta-heuristic itself. To rule
out those possibilities, we performed the experiment sev-
eral times with different SA parameters and, as described
above, with very diverse traffic loads. However, the re-
sults remained very similar and consistently demonstrated a
systematic decrease in feasibility guarantees as the number
of virtual channels increased. Thus, the only left expla-
nation for these unexpected findings is that virtual chan-
nels are not bottlenecks. We interpret this in the following
way: minimising virtual channels (contentions) indeed con-
tributes to feasibility. As this objective tends to distribute
the contentions on the grid as evenly as possible, it might
cause longer traversal paths of some packets. However, as
the load is equally spread across all the links, even assum-
ing those longer paths better guarantees can be provided.
Conversely, minimising packet distances causes hotspots and
even if some packet traverses a short distance, links it con-
sumes might be heavily loaded, hence highly impacting its
feasibility. Therefore, we believe that (i) the solution ob-
tained with the minimal number of virtual channels is one
of near-optimal solutions, and (ii) adding more virtual chan-
nels, in most cases, unnecessarily expands the solution space
which causes SA to drift away from the "good” solution space
and frequently conclude the search with a worse solution.
Of course, this can not be analytically and/or experimen-
tally proven as workload mapping is a NP-Hard problem,
which is computationally intractable even for small grids,
e.g. 4 x 4 [10]. However, small scale experiments with ex-
haustive enumeration and different meta-heuristics are the
possibilities to further support or deny our claims, and we
see these activities as potential future work. The implica-
tions of these surprising findings are further discussed in
Section 5.5.

5.4 Experiment 3: What is the Bottleneck?

As previous experiment provided experimental evidence
that virtual channels might not be the bottleneck, in or-
der to test the limits of the platform in this experiment we
focused on another parameter — link bandwidth. This char-



700

T,=6-20]u
40lKT, € [2-10]
T, € [1-5]u8

Feasible packet size
(in % of initial packet size)

Feasible packet size
(in % of initial packet size)

200 g__

=

i -

l
1

il
[}

T,< 5-20]
*T, < [2-10] S|
+7, < 11 -5]uS

-

IHJI

Feasible packet size
&

(in % of initial packet size)
3 8

Link bandwidth

(a) Number of packets = 100

64Gbps. 128Gbps 192Gbps 256Gbps 64Gbps 128Gbps
Link bandwidth

(b) Number of packets = 300

192Gbps 256Gbps 64Gbps 128Gbps 192Gbps 256Gbps,

Link bandwidth

(c) Number of packets = 500

Figure 7: Link bandwidths are the bottlenecks

acteristic is, as explained in Subsection 4.1 computed as the
size of one flit (in most cases equal to the width of the link)
divided by the time needed to transfer one flit between two
neighbouring routers, which is mostly dependant on the fre-
quencies on which routers operate. Individual link band-
width of SCC platform is around 256 Gbps, while Tilera
platforms provide around 166 Gbps. Assuming a variety of
network loads, in this experiment we analysed how different
link bandwidths influence provided feasibility guarantees.

We generated 3 workload categories consisting of 100,
300 and 500 packets. Each category has 3 subcategories,
which differ in packet minimum inter-arrival periods: T1 €
[1 — 5lus, T> € [2 — 10]us and T3 € [5 — 20]us. For each
subcategory 1000 mega-task-sets were generated and conse-
quently mapped, assuming that platform provides only the
minimal number of virtual channels, i.e. 0 = 0. The re-
sults are given in Figure 7, where the horizontal axis stands
for the link bandwidth, and the vertical axis represents the
provided feasibility guarantees, expressed as the maximum
percentage of initial packets sizes to which all packets have
to be reduced, such that the system is feasible.

This experiment reported results which are expected, sug-
gesting that the derived guarantees linearly depend on link
bandwidths. The trend is similar for scenarios which cover
moderately and extremely loaded networks. The only excep-
tions are cases for 100 packets and 71 as well as T» periods
(Figure 7a), where, due to lighter load, solutions can be
found for which the feasibility of initial packet sizes can be
guaranteed even with smaller bandwidths. Thus, in general,
link bandwidths can be perceived as the bottleneck of the
system, which coincides with the intuition.

5.5 Discussions

The proposed technique to employ the existing feature
of SCC platform in order to minimise the number of needed
virtual channels (see Subsection 3.3) significantly relaxes the
requirements for platform characteristics which are needed
for the real-time analysis. Through experiments we have
demonstrated that (i) the number of needed virtual chan-
nels linearly scales with the increasing traffic and (ii) the
number is not unreasonably high and should be achievable
with forthcoming generations of many-core platforms. We
have shown that limiting the number of channels to the min-
imum while mapping the workload is, in most cases, a ben-
eficial approach and leads to a near-optimal solution. The
aforementioned facts altogether answer the question posed
in the title of this paper. However, this answer raises an-
other question, "After all, is priority-share policy needed?”.

As we have seen in this paper, the distinctive-priority analy-
sis can be performed with little overheads in terms of needed
virtual channels, and we believe that the future real-time-
oriented interconnect mediums will provide sufficient virtual
channels to afford per-packet distinctive priorities and avoid
the priority-share policy and the pessimism related to it.

Furthermore, link bandwidths were recognised as the bot-
tleneck of the system. As this characteristic is equally im-
portant in high-performance and general-purpose comput-
ing, which are the main drivers for the advancements in
interconnect mediums, we believe that link bandwidths are
going to continue their increase in future years, which will
be also appreciated from the real-time perspective.

6. CONCLUSIONS

As many-core platforms slowly but steadily pave their
path into the real-time embedded domain, a quest for appro-
priate interconnect architectures still continues with an ever
increasing importance. NoCs with flit-level preemptions via
virtual channels have been proposed as one possible solution
to introduce priority-awareness and real-time concepts into
interconnect mediums. Consequently an adequate analysis
was proposed to compute the worst-case traversal delays of
individual packets.

In this paper we took a holistic approach and tried to es-
timate the ”gap” between the existing many-core platforms
and hypothetical many-core platforms suitable for the real-
time domain, in other words, to investigate how (un)realistic
are the requirements to make platforms suitable for the
real-time analysis. In that vain we proposed a technique
which utilises an existing feature of the SCC platform in
order to significantly reduce the number of needed virtual
channels. The experiments show that currently available
many-core platforms are not far away from the ”ideal” plat-
forms required by the real-time domain, and we believe that
in future years this difference will diminish. Furthermore,
we proposed a three-staged mapping process which employs
the existing analysis extended with the introduced resource
reduction technique and derives a workload mapping plan
which provides guarantees that all packets meet their dead-
lines. The mapping process served as a framework to ex-
plore the influence of different platform characteristics on
the derived guarantees. This helped us to (i) recognise the
bottleneck of the system, and (ii) minimise the resources of
the platform such that the guarantees still hold. The second
fact can be especially valuable for system designers, who can
test different platform characteristics when mapping a given



workload, in order to design/select the platform which fulfils
its purpose with as few resources as possible. This can re-
duce design costs, but also save the money both when buying
the platform and through reduced power consumption.

As directions for future work, we see several possibilities.
We plan to extend the approach to consider the on-core
schedulability and positions of individual tasks when map-
ping the workload, which was in this work simplified to the
level of mega-tasks. A mapping approach can be extended to
take into account and minimise power consumption on cores
as well as within the network. Finally, we plan to adapt the
approach for specific workloads, e.g. streaming applications,
dataflow applications.
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