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Abstract 

In the past decade, there has been a steady increase in the focus on green initiatives for data centers. Various 
energy efficiency measures have been proposed and adopted, however the optimal tradeoff between performance 
and energy efficiency of data centers is yet to be achieved. Addressing this issue, we present APEnergy, an 
Application Profile-based energy efficient framework for small to medium scale data centers. The proposed 
framework leverages information on the completed application with certain workloads in the data center to build 
profiles for workflows. The framework utilizes a novel scheduler to obtain a near-optimal mapping for placement of 
workflow tasks in the data center based on three criteria including CPU utilization, power cost and task completion 
time. We compare the performance of the proposed scheduler to similar RTC and HEFT schedulers. Extensive 
simulation studies are carried out to verify the scalability and efficiency of APEnergy framework. Results show that 
the proposed Scheduler is 2% and 14% more energy efficient than RTC and HEFT respectively. 
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Abstract—In the past decade, there has been a steady increase
in the focus on green initiatives for data centers. Various
energy efficiency measures have been proposed and adopted,
however the optimal tradeoff between performance and energy
efficiency of data centers is yet to be achieved. Addressing this
issue, we present APEnergy, an Application Profile-based energy
efficient framework for small to medium scale data centers. The
proposed framework leverages information on the completed
application with certain workloads in the data center to build
profiles for workflows. The framework utilizes a novel scheduler
to obtain a near-optimal mapping for placement of workflow
tasks in the data center based on three criteria including CPU
utilization, power cost and task completion time. We compare
the performance of the proposed scheduler to similar RTC and
HEFT schedulers. Extensive simulation studies are carried out
to verify the scalability and efficiency of APEnergy framework.
Results show that the proposed Scheduler is 2% and 14% more
energy efficient than RTC and HEFT respectively.

Index Terms—Cloud computing, Energy efficiency, workload
optimization, Scheduling

I. INTRODUCTION

In the age of Big Data, the Software as a Service (SaaS)

cloud computing model, provides a heterogeneous multi-

tenant virtual environment in the data centers [1]. The ever-

growing demand for SaaS services is escalating the surge of

data centers predictably intensifying the demand for energy

utilization, thus raising the operational costs of data centers

operations. A recent report [2] shows that 1.1% to 1.5% of

the global energy usage accounts to the data centers. In one

year, 416.2 Tera watt-hours of electricity was utilized by data

centers worldwide. To this day, energy efficiency in executing

services on data centers remains a challenge.

Since 2013, various energy efficiency measures have been

considered to address the challenge. Some of these mea-

sures include the design of energy-efficient data centers [4]–

[7], energy efficient placement of servers in data centers

[8] [12]–[15], efficient deployment workflows in virtualized

data centers [16]–[19], and the effective use of resources

and virtualization technology in data centers [24] [25]. Most

of these enhancements are being put to practice in various

hyper-scale data centers maintained by the likes of Facebook,

Google, Amazon etc. Small to medium scale data centers

are generally possessed by small enterprises, universities etc.

Only 5% of data center related power consumption worldwide

accounts to the hyper-scale data centers, the remaining 95%

relates to the small and medium scale data centers [4]. The

energy management in small-medium scale data centers with

the steady workload is more noteworthy than the dynamic

nature of workload in hyper-scale data centers.

In small-medium scale data centers, server consolidation

works towards efficient utilization of resources [8], [9]; how-

ever, energy-aware deployment of tasks with varying work-

loads in virtualized environments is challenging [22] and is an

ongoing research area. Researchers in [21], [24] have devised

the concept of Application Profiles (AP) where information

on each individual application executing in the small-medium

scale data center is stored and regularly updated. APs consist

of information on the application type, workload, start time,

execution time, finish time, resources utilized (CPU, memory,

IO) etc. Information within an AP was used to improve the

efficiency of clusters in data centers.

In this paper, we focus on small to medium scale data

centers due to the low variability and high certainty in ap-

plication workloads resulting in a near constant number of

Virtual machines (VMs). We present APEnergy, a power aware

energy efficient framework based on APs. In contrast to the

scheduler algorithm in [24], we include energy utilization

parameters in addition to resource usage (CPU, memory) etc

within the APs. A system model for the workflows assign-

ment based on task execution times and energy consumption

parameters is developed. A novel power-aware task scheduling

algorithm is presented with a focus on reducing the number

of active physical servers and VM migrations in data cen-

ters whereas maintaining the overall workload performance.

The performance efficiency of the proposed Scheduler is

validated through extensive simulation studies. We compare

the proposed APEnergy Scheduler with two scheduling algo-

rithms namely Stochastic Heterogeneous Earliest Finish Time

(HEFT) [10] and Robust Time Cost (RTC) [11]. Results show

that the APEnergy scheduler is 2% and 14% more energy

efficient than RTC and HEFT respectively.

The rest of the paper is organized as follows. Related works

are presented in section 2. Section 3 details the APEnergy

framework for Scheduling and placement of applications in

the data center. Section 4 presents detailed experimental eval-

uations followed by conclusions in section 5.

II. RELATED WORKS

Researchers in [4]–[7] focus on design of energy-efficient

data centers. Dayarathna et.al in [5] provide a survey on data
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center energy consumption models. Wan et.al in [6] present

a framework that optimizes data center energy consumption

by controlling the cooling units. Authors in [3], [4] present

a novel approach to reduce energy consumption in a data

center by optimizing the network traffic. This is achieved by

strategically locating servers based on network traffic. Authors

in [8] detail energy efficient placement strategies of Linux

based software routers in software defined networks. They

present an energy-aware multi-level control system and discuss

design and implementation issues.

Varasteh in [12] present a survey on server consolidation

techniques. Authors in [13] discuss a scheduling technique

based on trading inspired approach for dynamic server con-

solidation in data centers. The proposed approach in [14] con-

siders energy conservation mechanisms to migrate overloaded

physical machines (PM) based on power utilization threshold

strategy. Shaw et.al in [15] discuss the energy performance

tradeoff for VM consolidation in cloud data centers by restrict-

ing the repeated migration of the same VMs. They present a

heuristic based algorithm that utilizes a threshold to restrict

migration in the data center.

Efficient deployment of workflows in virtualized data cen-

ters is the focus of [?], [16]–[19]. Hossain et. al in [16] present

a belief rule based expert system to predict Power Usage Effec-

tiveness (PUE) for uncertain workloads in data centers. They

evaluate the system using real world data from a data centers.

Poola et. al. in [17] presented a robust scheduling algorithm

with resource allocation policies that schedules workflow tasks

on heterogeneous Cloud resources while trying to minimize

the total elapsed time and the cost. Xiangming Dai in [18]

proposes algorithms to reduce energy consumption in data

centers by considering the placement of VMs onto the servers

intelligently. Hilman et. al. in [19] focus on cost of scheduled

workflows in IaaS clouds. They propose a budget-distribution

algorithm that assigns a part of the workflow budget to the

individual tasks. This task-level budget guides the scheduling

process to avoid incurring unexpected costs. Qureshi et.al. in

[25] consider the role of power profiles in determining the

power consumption in scheduling various applications in data

centers by conducting experiments on Hadoop based clusters

and measuring power consumption for different workloads.

Chen et.al. [22] present an energy-efficient workload aware

task Scheduler using online profiling that collects workload

information of tasks for CPU-bound parallel applications. The

aforementioned related works concur, the energy efficiency

and the performance of the data center are correlated.

In this work, we present a framework for power-aware,

energy-efficient placement of workloads in a data center

by leveraging the concept of APs presented in [23], [24].

The proposed APEnergy framework considers various runtime

parameters to build and update APs. A novel APEnergy

Scheduler is developed that considers application-profile pa-

rameters for energy-efficient placement of VM in the data

center hardware. The proposed framework achieves energy

efficiency by scheduling near optimal mapping and placement

of application workflows in the data center.

III. THE AP-ENERGY FRAMEWORK

In small to medium scale data centers, typically, a finite

set of applications with definite workloads are executed. The

APEnergy framework leverages the availability of an applica-

tions data, including expected run time, power requirements,

the frequency of multi tenancy of VMs per PMs, resource

allocation to VMs etc. to build APs. Before the initiation and

deployment of an application on the cluster, the information

available in the AP is used by the APEnergy framework

to optimally schedule the task placement by considering

the expected run times and power consumption parameters.

An AP consists of data including the energy consumption

for an application, its resource requirements including CPU,

memory, Network I/O, the power consumption of underlying

PMs, expected completion times and frequency of applications

initiated per unit time. The profiles are periodically updated

to maintain the ever-changing energy efficiency requirements

in the clusters. We define VM profile and AP as data struc-

tures within the framework to support power aware workflow

scheduling in data centers. A VM Profile consists of a PM

id; a VM id; CPU resource requested by the VM, memory

requested, and power attributes. In this work, we assume that

power is directly correlated to the CPU utilization. Power

attributes of a PM are used for optimization purposes. Finally,

task id in a workflow, contains the task assigned to a VM. An

AP consists of the following parameters:

• Workflow ID (Wk). At the initiation, the application

manager would initiate a workflow that contains various

applications/tasks to be executed on the cluster. A work-

flow identifier is a unique identifier.

• Task ID (Tki). A workflow consists of multiple applica-

tions with certain number of tasks to be executed. The

task id is a unique identifier.

• Arrival Time (aki). The arrival time is the instant in

seconds when the task arrived. This time is utilized in

a tasks assignment to a VM.

• Completion time (eki). Based on the cost of executing a

task, an expected completion time is computed.

• Requested resources. This is a combination of two pa-

rameters, requested CPU and memory workload in bytes.

The requested resources are used in the assignment of

VMs to tasks.

• Power profile. This contains information about the power

consumption at various time intervals. These values are

used in conjunction with the power attributes defined in

VM profile for placement of tasks in the data center.

Fig. 1 shows the application and VM profiles data struc-

tures. As a new workflow arrives (algorithm 1) with multiple

tasks, individual tasks are registered by the Scheduler in the

framework. If an AP exists for this task, the status information

is pulled; based on workflow parameters, resources requested

including CPU, memory etc. are determined. Information

related to task initialization such as task arrival time, workload,

expected completion time and power consumption is analyzed.

Once the cost analysis is completed, the task is assigned to a
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Fig. 1. APEnergy Scheduling model with VM and APs

VM, and the VM profile is updated. As the task executes,

runtime status parameters such as completion rate, power

consumption, starting time, completion time etc. are recorded.

In case, when an AP for a task does not exist, the scheduler

estimates the runtime based on the workflow size using general

distribution. Over a period of time, with larger data availability,

the cost analysis normalizes the overall efficiency of the

framework.

A. System Model

As the workflow arrives, the scheduler controller commu-

nicates with the workflow analyzer and resource manager to

determine number of tasks, types of tasks, resources required

by each task by querying information in application and

VM profiles. The scheduler using a power-aware scheduling

algorithm, determines the optimal cost of efficiently exe-

cuting the workflow with minimal power requirements by

producing a mapping. Once the Price / Cost of executing

the workflow is determined, the tasks are assigned to VMs.

We assume that the workflows W = {w0, w1, . . . , wk} are

continually submitted. Each workflow wk consists of a list

of tasks Tki = {T0, T1, . . . , Ti}; Tki ∈ wk; with arrival

time aki; expected completion time eki; and a power-profile

Pki. The expected arrival time aki is the system time at

initiation of a task in the workflow ki, the power-profile is

determined from a vector containing the power consumption

levels PTki
= {p0, p1, . . . , pj} of a task i in the workflow k;

where p0, p1, . . . , pj are the power consumption levels for a

task at various times during its execution. Tasks defined in a

workflow are assigned to a set of VMs V such that only one

task is executed per VM. A pool of VMs V = {v0, v1, . . . , vx}
is available, VMs can be gained and released by any task Tki

in a workflow. Each VM has a Price(vx) associated with it

which indicates the cost to execute a task on this VM for a time

frame ∆t = teki − taki where taki is the arrival time for task

Tki in Workflow wk and teki is the expected completion time

for this task. The variable mTki,x
reflects mapping between

tasks and VMs. The value of mTki,x
is 1 if task Tki is mapped

to VM and 0 otherwise.

mT ki,x =

{

1 when Tki is assigned to vx

0 otherwise
(1)

The real starting times STki,x
and completion times fTki,x

on vx become available as the task progresses. We give the

completion time as:

fTki,x
≥ STki,x

+ tmki,x
(2)

where tmki,x
gives the time for placement of task in a VM.

Equation 2 gives the actual completion time of all tasks in a

workflow.

maxz∈T {fTz
} ≤ fk (3)

where maxz∈T is the actual completion time fk of the

workflow wk.

If we assume D = {d0, d1, . . . , dy} PMs are available in the

cluster, then n
mTki,x
y gives the mapping of tasks Tki in a VM

vx to PM dy . Here, the optimization objective is to i) minimize

the cost of task execution in the workflow and ii) maximize

the utilization of PM by optimizing the multi-tenancy of VM

placement on servers. This can be determined as:

minimize

x
∑

t=1

Price(vt).∆tki (4)

where vt is the total number of VMs deployed, wk, Price(vt)
represents the price associated with this VM and ∆tki is the

time to completion. The optimal placement of VMs per PM is
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determined by the minimization of power consumption cost of

a VM. We give the average for executing a VM with mapping

mT ki,x on server dy as:

Price
mT ki,x
y = 1/j

j
∑

t=0

pTki,x
.∆tki (5)

where pTki,x
is the power consumption level at the time

interval ∆tki and 0 < Price
mT ki,x
y < 1. To obtain an optimal

n
mTki,x
y we need to maximize the placement of r number of

VMs on a PM y such that:

n
mTki,x
y = maxy∈D

x
∑

r=1

Price
mT ki,x
y (6)

The maximum CPU utilization θy threshold on a PM dy where

θy ∈ [0, 1].

B. APEnergy Scheduler

Two criterion are considered for ranking the tasks, i) earliest

finishing time of a task, ii) Lowest Price of tasks available

in the scheduling queue. The proposed scheduling algorithm

continually creates and updates new and existing mappings of

tasks, VMs and PMs based on the profiles. Algorithm 1 shows

the process for a workflow arrival in the framework. It analyzes

every task considering its expected completion time and Price

which is available in the AP. The TaskList queue is frequently

updated considering the tasks processed in a workflow. Once

a TaskList queue is completed, the scheduler is called given

in algorithm2. All the remaining tasks that were rejected, are

appended to the Taskpool queue for the next cycle of workflow

processing. An example of a rejected task is a task that may

not have been completed after ∆t. The scheduler initiates the

VMs, tasks and PMs mapping mk for a workflow wk. The

tasks time and prices is periodically updated in the TaskList.

An appropriate VM is selected with minimal expected runtime

and lowest Price and is added to the VM map mk. Once a

mapping is produced, the tasks are removed from the TaskList.

The scheduler also computes the cost of executing the VM in

PMs, considering the frequency of multi tenancy on a PM and

the load factor, the scheduler determines the minimal price of

executing VMs on a PM using equations (5) and (6) where

as considering the limit for θy . PMs satisfying the criterion

isvalid(n
mTki,x
y ), receive the VMs and the task is initiated. As

an alternative, the next PM satisfying the criterion is sought

from the pool of available PMs. Consequently, the load factor

and the price of the selected PM is updated in the profiles

defined in the framework.

IV. PERFORMANCE EVALUATION

In this section, we detail the experimental evaluation of

APEnergy based on simulation studies. We compare the pro-

posed scheduling algorithm with two scheduling algorithms;

Stochastic Heterogeneous Earliest Finish Time (HEFT) [11]

and Robust Time Cost (RTC) [12]. CloudSim framework [9]

is extended to simulate a cloud computing cluster environ-

ment. We assume that the number of VMs for each type is

infinite, the VM instances can be acquired at any time. Two

workflow templates are created for evaluation based on real-

world scientific application workflows obtained from Pegasus

Workflow repository [20]. We consider small and medium

data-sets with about 30 and 60 tasks per workflow respectively.

For experimental evaluation, we assume that the VM boot time

is 2 seconds. Two different test setups 1 and 2 are used. Test

setup 1 is used to verify the feasibility and Task completion

efficiency for the three scheduling algorithms. Test setup 2 is

used to compare the energy efficiency of the APEnergy against

HEFT and RTC. Various simulation parameters can be seen

in table 1.

TABLE I
TEST SETUP PARAMETERS

A. CPU utilization and task placement efficiency

In order to determine the efficient utilization of resources,

we consider the task placement efficiency of the proposed

scheduler. This can be determined by analyzing the ratio of

CPU resources requested by a VM versus the actual utilization

of the CPU at the PM. The CPU utilization efficiency ηCPU(j)

is given as:

ηCPU(j) =

∑x

i=0 vi,CPU

µdj

; v ∈ V, dj ∈ D, ηCPU(j) < 1 (7)

where µdj
is the CPU utilization at the server, and

∑x

i=0 vi,CPU is the sum of the requested CPU resources of

all VMs placed on PM dj . The value of ηCPU(j) is computed

at task placement time before the actual execution of the

workload in the cluster. We compare the task placement effi-

ciency in terms of CPU utilization efficiency of the proposed

scheduler against the HEFT and RTC. Table 2 shows the

average CPU utilization for Scenarios 1 to 4 for Test Setup
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1. We observe a high variance in the average CPU utilization

efficiency of the proposed scheduler when compared to HEFT

and RTC in Scenario 1. However, as the ratio of the number

of applications and VMs increases per PM, the efficiency

also increases. In Scenario 4, we observe an average CPU

efficiency of 0.719 compared to 0.778 and 0.701 for HEFT

and RTC, respectively. The proposed Scheduler in this work

achieves results that are close to the utilization efficiency

to the RTC and HEFT Schedulers with the increase in the

problem size. Due to a low number of VMs per PM, the

APEnergy scheduler increases the ratio of the number of

VMs per PMs. This reflects in increased number of PMs with

near zero load. On the other hand, the HEFT and RTC are

comparatively not very efficient with only 1 and 3 VMs per

PM. Consequently, the average CPU utilization efficiency for

scenario 1 is lower for the APEnergy scheduler in comparison

with HEFT and RTC. As the workload increases, in scenario

3 and 4, the APEnergy scheduler maintains 8 and 3 PMs

with zero VM placements, however, HEFT and RTC manage

0. This observation provides evidence that, with the smaller

workload, the APEnergy scheduler tends to be more efficient

in terms of workload placement in the cluster.

B. Energy Efficiency

We analyze the energy efficiency by providing variations

in three parameters,i) increasing the number of physical and

TABLE II
COMPARISON OF SCHEDULERS

VMs, ii) increasing the applications and consequently in-

creasing the total workload, and iii) tweaking the maxload

and threshold θy . The objective of this experimentation is to

analyze the effect of larger workloads, increased number of

resources, and the threshold of the energy efficiency in the

proposed scheduler. We assume that the cluster is composed

of PMs similar in characteristics in terms of processor archi-

tecture, frequency, physical memory size, etc. We assume the

power usage at idle time for a server to be 150 W. In Test

Setup 2, the number of PMs is increased to 150, with the CPU

availability threshold increased to 0.35 < θy < 0.85 and the

maxload set to 20. We observe the average CPU utilization

efficiency and number of idle servers at the initiation of

workflows for all three schedulers, as seen in Table 3. We

notice the average CPU utilization efficiency for HEFT is

better compared to the RTC and the proposed scheduler.

This clearly shows that, on average, HEFT performs better

in terms of average CPU utilization; however, we also note

that the number of idle PMs for the proposed scheduler is

better compared to HEFT. The APEnergy scheduler on average

consumes less power compared to the RTC and the HEFT for

Scenarios 5, 6, and 7 as can be seen in table 3; however,

its power consumption is comparable for Scenarios 8 and 9

with larger workloads. We interpret from this experimentation

that the APEnergy scheduler increases the multi-tenancy per

physical server compared to the RTC, consequently increasing

the number of idle machines. In Scenarios 5 and 6, where

the workload is comparatively lower, the APEnergy scheduler

with 802.1 and 825.6 kWh is 2% and 14% more efficient than

the RTC and HEFT, respectively. We concur that the effect of

increasing the number of idle machines by efficient placement

of VMs in the cluster improves the power efficiency of the

cluster.
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TABLE III
COMPARISON OF THE ENERGY CONSUMPTION

Fig. 2. Comparison of power consumption among the schedulers

V. CONCLUSIONS

In this paper, we present APEnergy, a profile based energy

efficient framework with a novel Scheduler that makes a good

trade-off considering various parameters consisting of cost

of VM placement, power usage, CPU utilization and PMs

load factor. The performance of the APEnergy Scheduler is

compared to RTC and HEFT Schedulers extensively through

simulation studies. Results show that the APEnergy scheduler

dominates the benchmarked Schedulers in energy efficiency

and exploits the data center resources by increasing the multi

tenancy of VMs per PM, therefore, increasing the number

of idle machines in the cluster. For smaller workloads, the

APEnergy Scheduler is comparatively 2% and 14% more

energy efficient than RTC and HEFT, however, for larger

workloads, the energy efficiency is only slightly better.
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