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Abstract 

The paper addresses the problem of assigning robots to target locations in the context of a disaster management 
scenario, while minimizing a set of pre-defined objectives. The problem is formulated as a Multi-objective Multiple 
Traveling Salesman Problem. A three-phase mechanism based on Analytical Hierarchy Process (AHP) is proposed. 
In the first phase, AHP is used to systematically define weights for each objective. In the second phase, the robots 
contend for the allocation of available targets using three different approaches. In the third phase, an 
improvement phase is carried out to refine the targets' allocation. A Matlab simulation studies is used to examine 
the performance of the proposed solutions with three objective functions namely the total traveled distance, the 
maximum tour and the deviation rate. The comparison between the three proposed approaches shows that, for 
large scenario, the marketbased approach gives the best solution over the RTMA and the Balanced approach. 
Moreover, the comparison of the proposed multi-objective approach with the mono-objective one shows that our 
proposed approach outperforms the mono-objective one in the global cost when considering the three objectives. 
A slightly additional cost in the specific objective is considered in the monoobjective approach. 
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Abstract—The paper addresses the problem of assigning robots
to target locations in the context of a disaster management
scenario, while minimizing a set of pre-defined objectives. The
problem is formulated as a Multi-objective Multiple Traveling
Salesman Problem. A three-phase mechanism based on Analyt-
ical Hierarchy Process (AHP) is proposed. In the first phase,
AHP is used to systematically define weights for each objective.
In the second phase, the robots contend for the allocation of
available targets using three different approaches. In the third
phase, an improvement phase is carried out to refine the targets’
allocation. A Matlab simulation studies is used to examine
the performance of the proposed solutions with three objective
functions namely the total traveled distance, the maximum tour
and the deviation rate. The comparison between the three
proposed approaches shows that, for large scenario, the market-
based approach gives the best solution over the RTMA and the
Balanced approach. Moreover, the comparison of the proposed
multi-objective approach with the mono-objective one shows that
our proposed approach outperforms the mono-objective one in
the global cost when considering the three objectives. A slightly
additional cost in the specific objective is considered in the mono-
objective approach.

I. INTRODUCTION

Today, the use of multiple unmanned aerial vehicles (UAVs)

in the context of disaster management [1] is attracting increas-

ing interest with the emergence of low-cost drones. One of

the most challenging underlying problem is how to assign the

UAVs to specific areas affected by a disaster event such as fire

earthquakes or water floods, while minimizing several metrics

of interests, also known as objectives. In its abstract form,

the problem can be mapped to multiple traveling salesman

problem (MTSP), where a set of agents have to visit a set of

locations. Several studies addressed this problem by minimiz-

ing a single objective, such as the total traveled distance or the

maximum traveled distance using centralized approaches [2],

distributed approaches [3, 4], and auction-based approaches

[5]. The limitation of the above mentioned works pertains to

only focusing on one objective and ignores others that can

be crucial to the application, such as the mission time or the

consumed energy.

In the literature various works addressed the MTSP prob-

lem with multiple objectives optimization using different ap-

proaches. In this kind of problem, more than one optimal

solution can be presented to optimize simultaneously all the

objectives, referred to as Pareto optimal solutions. Most

approaches are based on evolutionary computations algorithms

such as [6, 7, 8]. Genetic algorithms (GA), local search,

and Ant Colony Optimization (ACO) are the most common

evolutionary methods used in the literature to find a set

pareto-optimal solutions that provide the best trade-off among

all objectives. However, these approaches have extensive

computation overheads, and their convergence is challenging

especially when applied for large problem instances. Some

other approaches are proposed using mathematical models

[9, 10], to represent the multi-objective optimization problem.

In this paper, we proposed a different approach that lever-

ages the use of the Analytic Hierarchy Process (AHP) [11]

to systematically determine the optimized weights for the

different objectives. The benefit of the use of AHP is to

effectively assign weight to objective functions based on their

degree of critically in the application, and not just be common

sense. In addition, we assess three different approaches to

solve the multi-objective MTSP problem and select the best

solution as the final output. Compared to the existing proposed

approaches, especially, the evolutionary one, our solution

presents a low computation overhead. Moreover, the choice

of weights based on the AHP offers better results compared

to the mono-objective results as shown in the performance

evaluation section.

The remainder of the paper is organized in the following

way. In Section 2, we provide some related works. Section 3

describes the problem formulation. In Section 4 we proposed

our three-phase mechanism based on Analytical Hierarchy

Process (AHP). A performance evaluation of the proposed so-

lution is detailed in Section 5. We conclude with a discussion

and future direction work in Section 6.

II. RELATED WORKS

In [12] authors proposed a new non-numerical method for

Multiobjective Traveling Salesman called two-phase Pareto

local search (2PPLS). In first phase each single-objective

problem is solved separately using one of the best heuristics

2016 International Conference on Autonomous Robot Systems and Competitions

978-1-5090-2255-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ICARSC.2016.26

179

2016 International Conference on Autonomous Robot Systems and Competitions

978-1-5090-2255-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ICARSC.2016.26

130

2016 International Conference on Autonomous Robot Systems and Competitions

978-1-5090-2255-7/16 $31.00 © 2016 IEEE

DOI 10.1109/ICARSC.2016.26

130



for the single-objective. In the second phase two Pareto local

search is applied to every solutions of the initial phase using

a 2-opt neighborhood with candidate lists. It is important to

note that there is a need to solve a high number of weighted

single-objective problems, before applying the Pareto local

search, which may cause efficiency degradation. Also the

integration of 2-opt process may achieve poor effectiveness

with low efficiency when the number of feasible objective

vectors is small, whereas it obtains desired effectiveness with

low efficiency when the number of feasible objective vectors

is large.

In [7] authors integrated ant colony optimization (ACO) to

local search technique in order to resolve the multi-objective

Knapsack problems (MOKPs) and the multi-objective travel-

ing salesman problem (MTSPs). MOEA/D-ACO decomposes

a multiobjective optimization problem into various single-

objective optimization problems. Each ant is assigned to a

sub problem, and each ant has several neighboring ants. A

heuristic information matrix is maintained by each ant. The

main issue related to this approach is the uncertain of the time

convergence and the implementation complexity.

Shim et al. presented in [10] a mathematical formulation

of the multi-objective multiple traveling salesman problems

(MOmTSP). The proposed approach is not required to differ-

entiate between the dominated and nondominated solutions.

it’s objective is to determine m cycles and cover a set of poten-

tial customers in order to maximize the corresponding benefit

and minimizing the total traveled distance. An estimation of

distribution algorithm (EDA) with a gradient search is used

for the solution of the considered problem. The proposed

approach works well when the users have prior knowledge

about the problem to assign weights.

In [6] authors presented a detailed comparison between

MOEA/D, and NSGA-II. The paper focus on the performance

of the multiobjective travelling sales-man problem and studies

the effect of local search on the performance of MOEA/D.

Compared to MOEA/D, NSGA-II has no bias in searching any

particular part of the Pareto front. All non-dominated solutions

in the current population have equal chance to be selected

for reproduction. However, this might not be efficient when

sampling offspring solutions due to the following reasons.

First, the non-dominated solutions might have very different

structures in the decision space. Therefore, the possibility

of generating high-quality offspring solutions by recombining

these solutions is low. Second, the design of recombination

operators is often problem-dependent. Efficient recombination

operators for some combinatorial optimization problems are

not always readily available. In MOEA/D, weight vectors and

aggregate functions play a very important role to solve various

kinds of problems. Overall MOEA/D has shown much better

algorithmic improvement than NSGA-II. Again the weight

process is considered an issue in this work.

Authors in [9] proposed a multi-objective mathematical

programming approach that is capable of producing of ac-

curate Pareto set. In this approach all Pareto optimal solu-

tion are divided into two popular problem, multi-objective

travelling salesman problem (MOTSP) and multi-objective

coverage problem (MOSCP). The Pareto set cannot guarantee

a best solution for non-convex problems where the number of

feasible objective vectors is small, and may waster the search

effort. However the approach is very simple and easy to use

especially for convex problems.

Most of the existing proposed approaches have been criti-

cized mainly for their computational complexity, necessity for

prior system knowledge to define weight for each objective

and the lack of specifying sharing parameters. In this work

we followed a three-phase mechanism based on Analytical

Hierarchy Process (AHP) to define weights systematically for

each objective depending on the application characteristics.

III. PROBLEM FORMULATION

We consider the multi-objective multiple depot multiple

traveling salesman problem, where a set of m robots, located

at different depots, must visit a set of n target locations and

return to their depots after mission completion.

The main objective is to find an efficient assignment of the

target locations to the team of robots such that all the targets

are covered by exactly one robot, and the cost is minimal. The

cost is a function of multiple objectives such as minimizing

the total traveled distance by all the robots, minimizing the

maximum tour length of all robots, minimizing the mission

time, minimizing the consumed energy, balancing the targets

allocation, etc.

It is important to mention that a multi-objective optimization

problem considers several conflicting objectives. This means

that an efficient solution for one of the objectives could be

an inefficient solution for another objective. In particular, the

traditional optimization methods do not provide solutions that

are good for all the objectives of the considered problem.

A multi-objective optimization problem can be formulated

through a mathematical model defined by a set of p objective

functions, which must be minimized or maximized simulta-

neously. Formally, a multi-objective problem can be defined

as

min/max f 1(X)

min/max f 2(X)

.

.

.

min/max f p(X)

(1)

where X is the decision space.

Regarding the multi-objective multiple depot multiple trav-

eling salesman problem, we consider a set of m robots

{R1, ...,Rm}, which are initially located at m start locations

or depots {T1, ...,Tm}. These m robots must repeatedly visit n

targets’ locations {Tm +1, ...,Tm +n}, where each target must

be visited exactly once. Each robot Ri starts from its depot Ti,

then visits the list of ni allocated targets {Ti1 , ...,Tini
} in that

order, and finally returns back to its depot. The cost to travel
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from target Ti to target Tj is denoted as C(Ti,Tj), where cost

can be euclidean distance, consumed energy, time, etc.

Moreover, the objective functions can be classified into three

categories. The first category includes objective functions that

minimize the sum of the costs of all robots, such as minimizing

the total traveled distance, minimizing the total consumed

energy, etc. This category of objective functions is defined

as:

minimize
m

∑
k=1

n+m

∑
i=1

n+m

∑
j=1

xi jkC(Ti,Tj) (2)

subject to :

m

∑
k=1

n+m

∑
i=1

xi jk = 1;∀ j = 1, ..,n+m (3)

m

∑
k=1

n+m

∑
j=1

xi jk = 1;∀i = 1, ..,n+m (4)

n+m

∑
i=1

xkik = 1;∀k = 1, ..,m (5)

n+m

∑
i=1

xikk = 1;∀k = 1, ..,m (6)

xi jk ∈ {0,1};∀i, j = 1, ..,n+m and k = 1, ..,m (7)

Equation (3) and (4) ensure that each node is visited only

once by a single robot. Equation (5) and (6) ensure that each

robot starts from each corresponding depot and returns back

to it. Finally, constraints (7) impose that the decision variables

are binary.

The second category includes objective functions that mini-

mize the maximum cost among all robots such as to minimize

the maximum tour, minimize the mission time, which corre-

sponds to the maximum time, etc. This category of objective

functions can be modeled as:

minimize max
k∈1..m

(
n+m

∑
i=1

n+m

∑
j=1

xi jkC(Ti,Tj)) (8)

subject to same constraints defined in equations (3) to (7).

The third category of objective functions is related to

balancing the workload among the robots, such as balancing

the tours’ length, the mission times, the number of allocated

targets, etc. This category of objective functions can be

modeled as:

minimize
m

∑
k=1

|Ck −Cavg|

Ck = (
n+m

∑
i=1

n+m

∑
j=1

xi jkC(Ti,Tj)),k ∈ [1,m]

Cavg =
∑

m
k=1 ∑

n+m
i=1 ∑

n+m
j=1 xi jkC(Ti,Tj)

m

(9)

Ck represents the tour cost for robot k. As already men-

tioned, the cost can refer to time, traveled distance, energy,

etc. Cavg represents the average of tours cost.

In our system model, we assume that each robot has a

global knowledge of the set of targets that must be visited

and their locations. Moreover, each robot can estimate the

cost between its current location and each target, such as the

euclidean distance, the time, the energy, etc.

IV. PROPOSED SOLUTION

A. General description

The proposed solution is a weighted-based approach, which

means we assign to the objectives to be optimized different

weights using the AHP process [11]. More precisely, we

define the global cost as the sum of the weighted costs of

the different objective functions under consideration.

Formally, let W = (w1, ...,wp) be a weight vector, where

0 < wi < 1 ∀i = 1, ..., p and ∑
p
i=1 wi = 1. Then, the problem

consists in optimizing the following function:

minimize g(x|W ) =
p

∑
i=1

wi fi(x)

subject to : x ∈ Ω

(10)

where Ω is the decision (variable) space and fi() is an

objective function.

To generate the weight vector W , the Analytical Hierarchy

Process (AHP) is used.

Figure 1 shows the general idea of the approach.First, the

user introduces as input to the algorithm a comparison matrix

indicating the importance (priority) of each objective function.

Based on this comparison matrix, the AHP generates a weight

vector. This weight vector is then used to compute the global

cost as in Equation 10.

Then, three different approaches are executed as illustrated

in Algorithm 1. Finally, the best solution from these three

approaches are selected.

Algorithm 1 Proposed Solution General Algorithm

Input: Comparison matrix, Targets, Robots

Output: Best tours assignment

1: Begin

2: Generate weight vector using AHP

3: Market Based approach

4: RTMA approach

5: Balanced approach

6: Select the best solution

7: End

B. The Analytical Hierarchy Process

The Analytical Hierarchy Process (AHP) is a multi-criteria

decision-making approach, which can be used to solve com-

plex decision problems [11]. The pertinent data are derived

by using a set of pairwise comparisons. These comparisons

are used to obtain the weights of the objectives, and the

relative performance measures of the alternatives in terms

of each individual decision criterion. If the comparisons

181132132
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Figure 1: The proposed solution flowchart

are not perfectly consistent, the AHP provides a mechanism

for improving consistency. Regarding a disaster management

application, we consider three objective functions namely, the

total traveled distance (TTD), the maximum tour (MT), and

the deviation rate of tours lengths (DR). Indeed, in applications

such as fire disaster the most important factor is the mission

time, which is proportional to the maximum tour. Moreover,

minimizing the total traveled distance and the deviation rate

permits to minimize the total energy consumption and to bal-

ance the vehicles workload. Then, we consider the following

comparison matrix.

Ai, j =









T T D MT DR

T T D 1 1/2 1/3

MT 2 1 1/2

DR 3 2 1









(11)

Which means that the MT has two times more priority

than the TTD and the DR has three times more priority

than the TTD and two times more priority than the MT.

Note that, the values of the comparison matrix describes the

user preferences and are generally related to the applications

use case. For example, in case of a disaster management

application, the main priority criteria is the mission time which

is proportional to the maximum tour. Some characteristics of

the comparison matrix is that ai, j =
1

a j,i
,∀i, j and ai,i = 1. From

the comparison matrix we compute the eigenvalue λ and the

eigenvector W that satisfy: Ai, jW = λW . In this work, we

use the eig() Matlab function to compute the eigenvector. We

obtained W = {0.2565,0.4660,0.8468}, the three numbers in

Step Robots Bidding Server side
Winner

Target Tour TTD MT Global
Cost

1
R1 T1 280 280 280 280

R1
R2 T5 486 486 486 486

2
R1 T5 537 537 537 537

R1
R2 T5 486 766 486 673

3
R1 T6 748 748 748 748

R1
R2 T6 562 1099 562 920

4
R1 T2 1254 1254 1254 1254

R1
R2 T2 1316 2065 1316 1815

Table I: Step by step execution of the market-based approach

the eigenvector are proportional to the relative weights of the

three criteria. Because relative weights must sum up to 1, we

have to normalize the eigenvector W by dividing each number

in it by the sum of all numbers. The corresponding weight

vector is W = {0.1634,0.2970,0.5396}.

C. Market Based Approach

In the market-based approach, the different robots compete

to visit the available targets. More precisely, each robot selects

the best target, i.e, the target that has the minimum local

cost. The local cost is defined as the weighted sum of the

objective function costs for that robot. After the selection of

a target, the robots send a bid to a central machine. The

bid contains the selected target and the corresponding costs

for each objective function. Upon receiving the different bids

from robots, the central machine computes the global cost for

each corresponding bid and then assigns the best target to its

corresponding robot. Best target refers to the target with the

minimum global cost.

Unlike local cost, the global cost considers all tour costs,

such as the sum of all tours’ length, the maximum of the tours’

length, and the tours’ length deviation rate. Robots continue

the process of bidding until all targets are assigned. To

illustrate the market based approach, we consider in Figure 2a

a scenario with 2 Robots and 6 Targets, and two objective

functions TTD and MT with the weight vector W={0.66,

0.33}, i.e TTD is 2 times more priority than MT. The different

steps of the execution of the market based approach are cited

in Table I. First R1 selects T 1 and R2 selects T 5. As the

global cost when assigning T 1 to R1 is less than the global

cost when assigning T 5 to R2, the assignment will be make

to R1. The assignment process continues until all targets are

allocated (Figure 2a).

D. RTMA-based Approach

The second proposed solution is inspired from [13], which

we extended to take into account the multi-objective nature

of our problem. In fact, the Robot and Task Mean Allocation

Algorithm (RTMA) method proposed in [13] is restricted to

single objective optimization. To illustrate these scenarios let’s

consider the example shown in Figure 2.

In this example, it is shown that the market-based approach

does not give the best solution and that the RTMA approach

outperforms the market-based one in this particular scenario.
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Figure 2: Example of specific scenario (2 robots and 6 Tasks)

Indeed, in the market-based approach the global cost is 2033,

however, in the RTMA approach the global cost is 1979, where

the weight vector is W = {0.66,0.33}.

The idea of the RTMA approach is to make robot choose the

target that gives the best cost for the group instead of choosing

the one that gives minimum cost for the robot itself. In other

words, in RTMA the robot selects the target that seems to

give optimized global cost instead of choosing the target that

would give an optimized local cost. For this purpose, the cost

is computed as the difference between the cost of the robot

to visit a target minus the mean of the costs to visit all the

targets by this robot. Formally, for a given robot, the RTMA

cost to move from target Ti to target Tj is:

CostRT MA(Ti,Tj) =C(Ti,Tj)−
∑

n
t=1 C(Ti,Tt)

n
(12)

where C(Ti,Tj) is the (normal) cost to move robot from

Ti to Tj and n is the number of targets. To better illustrate

the RTMA cost, consider as example the Euclidean distance

between two targets as the value of cost. The RTMA cost is:

CostRT MA(Ti,Tj) = D(Ti,Tj)−
∑

n
t=1 D(Ti,Tt)

n
(13)

where D(Ti,Tj) is the Euclidean distance between Ti and Tj.

In our work, for each robots, we compute the RTMA cost

from its depot to each target. Then, each target is assigned to

the robot having the low RTMA cost.

Returning to the example shown in Figure 2, the euclidian

RTMA cost of robots R1 and R2 to each targets, starting from

their corresponding depots is shown in Table II.

E. Balanced Approach

The idea of the balanced approach is to uniform or balance

the number of assigned targets to each robots. More precisely,

if we have m Robots and n Targets, each robot will be assigned

approximately n
m

targets.

The behavior of robots in the balanced approach is close

to the market-based one, except that a robot exit the bidding

process when it was assigned a sufficient number of targets.

Targets
RTMA cost

Winner
R1 R2

T1 -147.1609 -173.9680 R2

T2 38.0983 134.7985 R1

T3 14.5316 249.0928 R1

T4 129.5453 313.1256 R1

T5 -24.0174 -280.4695 R2

T6 -10.9970 -242.5793 R2

Table II: RTMA assignment

The sufficient number of targets is no more than the number

of targets divided by the number of robots, i.e n
m

targets. This

ensures that targets are uniformly divided between robots and

help in balancing tour lengths. This is illustrated in Figure 3

that shows an example of scenario where the balanced ap-

proach outperforms the market-based one and give a better

solution. As shown in this figure, using the market-based

approach all targets will be assigned to robot R1, which leads

to a global cost superior to the one resulted from the balanced

approach, where targets are assigned uniformly between robot

R1 and R2. More precisely, in the market-based approach,

tour lengths of R1 and R2 are 3362.5 and 0, respectively.

However, in the balanced approach they are 1978.16 and

1271.33, respectively.

F. The improvement Phase

Each of the approach described previously are followed

by an improvement phase that tries to optimize the obtained

result, i.e, in our case minimize the global cost. The word

improvement can have different forms and can be obtained

based on different criteria. In this work, the improvement is

done based on the bidding on the worst target. More precisely,

each robot, say Ri, computes its worst target, i.e, the target that

introduces the biggest cost, and then bids with other robots on

this target. If a robot, say R j, can visit this worst target with

lower global cost, the target will be removed from Ri tour and

assigned to R j.
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(a) Initial configuration (b) Market based approach (c) Balanced based approach

Figure 3: Example of specific scenario (2 robots and 16 Tasks)

0 10 20 30 40 50 60 70
1000

1500

2000

2500

3000

3500

4000

4500

Nbre of Targets

G
lo

b
a
l 
c
o
s
t,
 W

=
{0

.2
6
, 
0
.1

9
, 
0
.5

4
}

Market Based (Before Improvement)

Market Based (After Improvement)

RTMA (Before Improvement)

RTMA (After Improvement)

Balanced (Before Improvement)

Balanced (After Improvement)

Figure 4: Comparison between the three proposed approaches

and impact of the improvement phase

V. PERFORMANCE EVALUATION

In this section, we present the performance evaluation of the

above three described approaches. We consider three objective

functions, namely, the total travelled distance, the maximum

tour, and the deviation rate. Therefore the considered global

cost is:

Globalcost = w1

m

∑
k=1

Ck +w2 max
k∈1..m

(Ck)+w3

m

∑
k=1

|Ck −Cavg|

where Ck, Cavg are those of Equation 9, and C(Ti,Tj) is

the euclidian distance between the two targets Ti and Tj.

Moreover, the following results are obtained using number

of targets = 3 x number of robots, and number of robots

varies in nr=[3 5 10 15 20]. In addition, targets coordinations

are randomly chosen from a 1000 x 1000 space. For each

configuration of number of robots and number of targets we

generate randomly 30 scenarios and then we plot the mean of

the obtained results from these 30 scenarios.

Figure 4 presents the comparison between the three pro-

posed approaches and the impact of the improvement phase.

In this figure, the weight vector is w = {0.26,0.19,0.54}. It is

noted from the figure that, in large scenario, the Market-based

approach shows a better result compared to the RTMA and the

Balanced approaches. Moreover, it is clear from the figure that

the improvement phase enhances the results and minimize the

global cost especially for the Balanced and RTMA approaches.

In Figure 5, the proposed multi-objective approaches, where

three objective functions were considered, was compared

with the mono-objective approach, where a single objective

function was considered. For the multi-objective approach,

we used a weight vector w = {0.26,0.19,0.54}. Moreover, to

consider a single objective function namely the total traveled

distance, the maximum tour and the deviation rate, we used

the following weight vector w = {1,0,0}, w = {0,1,0} and

w= {0,0,1}, respectively. Figure 5a, Figure 5b and Figure 5c

present the comparison results of the the proposed multi-

objective approach to the mono-objective approach, where we

consider the TTD, the MT and the DR respectively. Regarding

the global cost considering the three objective functions, it is

clear from these sub-figures that the multi-objective approach

outperforms the mono-objective one and gives a minimal

global cost (plot in black color with circle). However, the

single objective approach gives better results only in the

specific objective function considered. More precisely, taking

the example where the mono-objective approach considers the

TTD (Figure 5a), in this case, it gives a minimum TTD cost

than the multi-objective approach. This is obvious as the

mono-objective approach favor only one criteria and omits

others.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we considered the problem of Multi-objective

Multiple Traveling Salesman Problem. Three approaches

where proposed, namely, a Market-based approach, an RTMA

approach and a Balanced approach. Simulation results shows

that the market-based approach outperforms the RTMA and

the Balanced approach when large scenario is applied. More-

over, the comparison of the proposed multi-objective approach
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Figure 5: Benefit of the multi-objectives approach

with mono-objective solutions highlighted the benefit of our

proposed approach. for further improvement we plan to

compare the proposed approach with available multi-objective

approach using existing benchmarks.
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