

Analysing TDMA with Slot Skipping

Björn Andersson
Nuno Pereira
Eduardo Tovar

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-081103

Version: 0

Date: 10-18-2008

Technical Report HURRAY-TR-081103 Analysing TDMA with Slot Skipping

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Analysing TDMA with Slot Skipping
Björn Andersson, Nuno Pereira, Member, Eduardo Tovar

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail:

http://www.hurray.isep.ipp.pt

Abstract
Distributed real-time systems, such as factory automation systems, require that computer nodes communicate with a
known and low bound on the communication delay. This can be achieved with traditional Time-Division-Multiple-
Access (TDMA). But improved flexibility and simpler upgrades are possible through the use of TDMA with Slot-
Skipping (TDMA/SS), meaning that a slot is skipped whenever it is not used and consequently the slot after the skipped
slot starts earlier. We propose a schedulability analysis for TDMA/SS. We assume knowledge of all message streams in
the system, and that each node schedules messages in its output queue according to Deadline Monotonic. Firstly, we
present a non-exact (but fast) analysis and then, at the cost of computation time, we also present an algorithm that
computes exact queuing times.

Analysing TDMA with Slot Skipping

Abstract

Distributed real-time systems, such as factory automation systems, require that computer nodes

communicate with a known and low bound on the communication delay. This can be achieved with

traditional Time-Division-Multiple-Access (TDMA). But improved flexibility and simpler upgrades

are possible through the use of TDMA with Slot-Skipping (TDMA/SS), meaning that a slot is skipped

whenever it is not used and consequently the slot after the skipped slot starts earlier. We propose a

schedulability analysis for TDMA/SS. We assume knowledge of all message streams in the system,

and that each node schedules messages in its output queue according to Deadline Monotonic. Firstly,

we present a non-exact (but fast) analysis and then, at the cost of computation time, we also present

an algorithm that computes exact queuing times.

1. Introduction

A fundamental problem in distributed real-time systems is the sharing of a communication medium

between message streams on different nodes such that real-time requirements are satisfied. Time division

multiple access (TDMA) communication protocols solve this problem by assigning messages to time slots

in a way that no two nodes transmit at the same time and messages’ queuing delays are bounded.

Typically, these communication protocols operate on the basis of TDMA cycles, where a node is assigned

one or many time slots. Usually, each slot has a fixed length and the number of slots per cycle is also

fixed. Hence, a TDMA cycle has fixed and known time duration, and upper bounds on messages’ queuing

delays can be proved.

The majority of research work on TDMA communications addresses the problem of finding

appropriate schedules (TDMA frames/templates) for guaranteeing timeliness of real-time message

1

streams. This is the case for analysis over time-triggered protocols such as TTP [1]. It is also the case of

work addressing distance constraints (maximum timing interval between two adjacent messages of the

same message stream) as an additional temporal restriction [2, 3]. Unfortunately, an unused slot is wasted

and cannot be used for other hard real-time traffic. In order to meet all deadlines, it may be necessary that

a message stream with periodic messages uses a specific time slot in a TDMA cycle only in a few cycles,

while in most cycles that time slot is not used, hence wasted. One way to overcome this waste is to have a

larger TDMA cycle serving several messages of a message stream. Unfortunately, in the extreme case, the

length of a TDMA cycle may need to be the least common multiple of periods, to avoid wasted slots.

In contrast, however, consider TDMA protocols with slot skipping (TDMA/SS); that is, a slot is

skipped when it is not used. Hence, the next slot can start earlier in benefit of hard real-time traffic. This

model is applicable to P-NET, a commercial-off-the-shelf (COTS) technology [4], defined in an

International Fieldbus Standard. For this generic class of TDMA networks, a schedulability analysis that

takes slot skipping into account is still missing.

In this paper we present a schedulability analysis for TDMA networks with slot skipping (TDMA/SS).

We assume that all message streams are known, and that each node schedules messages in its output

queue according to deadline monotonic (DM). We present two complementing analyses, (i) an analysis

which is fast but not exact and (ii) an analysis which is exact but with a larger time-complexity.

As already mentioned, the analysis of TDMA/SS is applicable to COTS technology, in particular the P-

NET standard [4]. This paper advances the state-of-art in two ways. First, both of our analyses are tighter

than any other previous analysis on TDMA networks that skips slots [5]. Second, we also consider the

case where a node can be assigned a fixed number of slots, whereas previous work [5] only considered the

case of a single slot per TDMA cycle.

The remainder of this paper is organised as follows. Section 2 illustrates the basics of operation of the

TDMA/SS network and provides an understanding of key ideas for analyzing TDMA/SS. Section 3

presents a non-exact analysis; it presents an algorithm for finding an upper bound on the queuing delay of

2

a message. Section 4 presents an exact analysis; it presents an algorithm for finding the maximum

queuing delay that a message can experience. Section 5 compares our approach to other approaches in

real-time communications, and finally, in Section 6, conclusions are drawn.

2. Preliminaries

In this section, the problem of analysing TDMA/SS networks is introduced. We start by defining the

network and message models and proceed to present a simple network example that allows us to better

illustrate our model. This example also allows for demonstrating the reason why the schedulability

analysis of TDMA/SS networks is not trivial. We then discuss the problem of finding worst-case queuing

times, introducing concepts that will help us in Section 3 and Section 4, where the new schedulability

analysis techniques are presented.

2.1. Network and Message Models

Our network is composed of n nodes, communicating messages via a shared medium. Contention

access between nodes is resolved by a time division multiple access (TDMA) control schema. The

access to the medium is ordered by time, such that each node is assigned one or more time slots, each

of length TMS, in a cyclic schedule – the TDMA cycle. When a node observes its turn to access the

shared medium, it may transmit messages up to the number of time slots assigned to it. To signal that

the node will not transmit any more messages during the current TDMA cycle, a node transmits a

protocol slot of length TPR (typically TPR << TMS). In a concrete setting, such as the P-NET standard [4],

nodes can implement this protocol slot simply by staying silent during a TPR time span.

Our network model can be described as follows:

{ }()PRMS
n TTNNNnnet ,,,,,, 21 …= (1)

Associated with each node k (k ranging from 1 to n), there is a set {S1
k, S2

k, …, Sk
nsk} of nsk message

streams. A node k is permitted to transmit at most mpck (messages per cycle) in a TDMA cycle. Hence, a

3

node k is defined as follows:

{ }()kk
ns

kkkk mpcSSSnsN k ,,,,, 21 …= (2)

A message stream with index i (i ranging from 1 to nsk) associated to node k is denoted as Si
k. Each

message stream is characterised by Ti
k and Di

k. Ti
k is the periodicity at which a message related to Si

k is

queued to be transmitted to the network. Di
k is the relative deadline of Si

k.

Every message needs to be queued before being transmitted. We consider the use of deadline

monotonic (DM) scheduling in all network nodes to serve the output queue of message streams. Let qi
k

denote the maximum queuing time of messages belonging to Si
k. Let ri

k denote the maximum response

time of all messages belonging to Si
k, ri

k = qi
k + TMS. If ri

k ≤ Di
k then we say that Si

k meets its deadlines. We

are interested in finding out whether all messages meet their deadlines. Hence, we will find Qi
k , an upper

bound on qi
k. Let Ri

k denote an upper bound on the response time; that is, Ri
k = Qi

k + TMS. If Ri
k ≤ Di

k then

we say that Si
k is deemed to meet its deadlines according to our analysis technique. Our analysis assumes

that Di
k ≤ Ti

k. Therefore, a message from Si
k must finish its transmission before a new message from Si

k

arrives to the node’s output queue. We assume that all messages in the network have the length TMS.

When describing the TDMA/SS protocol and related time analysis, some shorthand notations are

useful. The next and the previous nodes are given by circularly incrementing the current address k:

⎩
⎨
⎧

=
−≤≤+

=

⎩
⎨
⎧

≤≤−
=

=

 if ,1
 11 if 1,

)(

2 if ,1

 1 if ,
)(

nk
nkk

knext

nkk
kn

kprev

(3)

Because we use DM, the notations hpk(Si
k) and lpk(Si

k) are useful to denote the subset of message

streams on node k with higher or lower priority than Si
k respectively, and are defined as:

{ } () (){ }() : :k k k k k k k k
i j j i j j ihp S S D D S D D j i= < ∪ = ∧ <

{ } () (){ }() : :k k k k k k k k
i j j i j j ilp S S D D S D D j i= > ∪ = ∧ > (4)

We will now describe the operation of the network protocol being used. During the operation of the

protocol, all nodes maintain at all time a variable − address_counter − that keeps track of the node

4

holding the right to transmit. address_counter has the same value on all nodes, and thus in the

discussion we treat it as a single variable. When address_counter makes the transition to k, then node

k will dequeue and transmit up to mpck messages from its output queue. If the output queue contains

0 ≤ x < mpck messages, then only those x messages are transmitted (we say that node k skips

mpck − x slots). After the transmission of those x messages, a protocol slot is transmitted (this takes TPR

time units). As a consequence, the above mentioned system-wide variable will change as follows:

address_counter := next(address_counter). When a node does not transmit, it listens to the

network to update address_counter consistently with the other nodes. For this, we assume that all

nodes hear the same state of the network.

2.2. Network Example and Operation

As an instantiation of the network and message models, consider the following network:

{ }()51, 1, ,,,3 321 NNNnet =

{ }() { }() { }()1 1 1 1 1 2 2 3 3
1 2 3 4 1 1

1 1 2 2 3 3
1 1 1 1 1 1
1 1

2 2
1 1

3 3

1 1
4 4

4, , , , ,1 1, ,1 1, ,1

7.0 5.3 7.0
 12.0

13.4

21.0

N S S S S N S N S

T D T D T D
T D
T D

T D

⎧ ⎧ ⎧= = =⎪ ⎪ ⎪
⎪ ⎪ ⎪= = = = = =⎪ ⎪ ⎪
⎨ ⎨ ⎨= =
⎪ ⎪ ⎪

= =⎪ ⎪ ⎪
⎪ ⎪ ⎪= = ⎩ ⎩⎩

Figure 1. Example network scenario.

Consider that the arrival pattern of messages to the output queues is as illustrated in Figure 2a. For this

scenario, the timeline for message transmissions and address counter evolution in the network is as

illustrated in Figure 2b. The events at time 0 require further explanation. We assume:

i) a message from S4
1 arrives marginally before time 0;

ii) the address_counter changes from 3 to 1 at time 0;

iii) and messages from S1 , S2
1 and S3

1 arrive at time 0. 1

We also assume that a message is only allowed to be transmitted by node k, if and only if it has been

queued before address_counter changes to the value k. (This assumption is true in P-NET, a

commercial-off-the-shelf (COTS) technology [4].) As a result, for the exemplified scenario, the messages

5

from S1
1, S2

1 and S3
1 are not transmitted at time 0. Instead, a message from S4

1, which has lower priority, is

transmitted at time 0, since this was the only message ready in the output queue of node 1 at the time

address_counter changes to 1.

 -1 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Time
(units)T

...

S1
1

S1
2

S2
1

S3

Addr. Counter

3

S1
3

MS

...

Time
(units)TMS

3

TPR TMS

a) Arrival pattern of messages to the three outgoing queues

b) Message transfers in the network and address counter evolution

Queuing time for the message of queued at time 0 ()S q

S1
4

Figure 2. Arrival times and schedule of the example network scenario.

Observe for time t > 0, that every time a message is transmitted it takes 1 time unit, and after there is a

protocol slot of 1/5 time units. However, in some of the illustrated TDMA cycles, only a protocol slot is

transmitted. This occurs because, at the time the node was granted the right to transmit, its output queue

was empty (for example, the output queue of node 2 is empty at time instant 4.8).

Consider the message of S3
1 that was placed in the output queue at time 0. This message is queued

during [0,10.4) and hence q3
1 is 10.4. The message of S3

1 is blocked during the time interval [0,3.6)

because some messages, a lower priority message S4
1 and other messages S1

2 and S1
3, cause S3

1 to be queued

although it has higher priority. The message of S3
1 suffers from interference during [3.6,10.4).

6

In order to see why the schedulability analysis of this system is non-trivial, look at time instant 10.2.

At this time instant, a message from S3
1 (queued at time 0) is still in the output queue, and a message from

another message stream, S1
2, arrives. However, this message from S1

2 does not have any effect on the

queuing time of the message from S3
1, transmitted at time instant 10.4. In general, when finding the

queuing time of a message from message stream Si
k, we clearly need to find out if another node y skipped

a slot (and if so how many slots) during this queuing time. In order to find how many slots were used and

how many were skipped on node y, it is required that we consider a time window on node y. Finding this

time window on node y is a major challenge that we will deal with in this paper.

2.3. Finding Worst-Case Queuing Times

To characterize the critical instant under DM scheduled output queues in TDMA/SS, it is tempting to

reuse the condition for the critical instant used in DM on a single processor; just that blocking needs to be

considered. One might believe that the critical instant of a message of message stream Si
k occurs when it

arrives simultaneously with all other message streams, except that one message of a message stream with

the lowest priority on the same node as Si
k arrives marginally before and this message is transmitted

causing blocking. However, consider the example shown in Figure 2 and analyze the queuing delay of the

message from S3
1 that arrived at time 0. It can be seen that a message on node 3 (in this case message from

message stream S1
3) can arrive at time -TPR and still cause as much interference on S3

1
 as if S1

3 would have

arrived at time 0. This is due to the way address_counter is incremented and it has no parallel in DM

on a single processor.

However, we can use a shifting argument similar to the one used in [6] to show how early should a

message arrive at on node y to cause Qi
k to be maximized. Let t0 denote the time instant when a message

of Si
k of maximum queuing time arrives. Consider the message stream Sj

y on node y, with y = prev(k).

This message stream Sj
y has a message which arrived before t0 or at t0. Let us call this message M. At

which time should M arrive to generate the maximum number of transmissions that cause a delay on the

message from Si
k? It should arrive late enough to make sure that its entire transmission time TMS occurred

7

after t0 or at t0, but it should arrive as early as possible to maximise the number of transmissions of Sj
y that

cause a delay on the message from Sj
k. This occurs when M arrives at time t0 - TPR. We can repeat this

argument with node prev(prev(k)), node prev(prev(prev(k))), and so on. Let Φy→k denote the amount

of time which messages from nodes y should arrive earlier in order to delay the queuing times of the

messages in node k the most. Φy→k is given as:

⎩
⎨
⎧

≠Φ+
=

=Φ →
→

kyifT
kyif

kynext
PR

ky
)(

0 (5)

We are now in position to say that a critical instant of an arbitrary message stream Si
k is at time t under

the following conditions:

1. Si
k releases a message at time t;

2. if lpk(Si
k)≠∅ then a message stream in lpk(Si

k) released a message infinitesimally before time t;

3. all other message streams in each node y (∀y : 1 ≤ y ≤ n y≠k) are synchronously activated

Φ y→k time units before t (where Φy→k is given by (5)).

As in [7], for non-premptive uniprocessor DM scheduling, and [8] for the CAN bus, the maximum

queuing time for message stream Si
k is found within the length Lbpk of the busy period (for convenience,

we do not consider the concept of level-i busy period; note that our calculated busy periods will always be

no less than a level-i busy period). Specifically, we can find the maximum queuing time for a message

stream Si
k by analysing the schedule patterns resulting from the different activation times a ∈ Ai

k:

{ }0
1

: 0,
kns

k k
i j

j
)kA c T c Lbp

=

⎡= × ∈ ∩ ⎣`∪ (6)

(N0 represents the set of non-negative integers) and the queuing time is given by:

{ }max ()k
i

k k
i ia A

q q
∀ ∈

a a= − (7)

where qi
k(a) is the time of the start of the transmission of the message from Si

k with arrival time a.

Now, we are left with the problem of finding the length Lbpk of the busy period. One simple option is

to consider that Lbpk = lcm (∀Tj
k on nodek). For some sets of streams (for example, a set of streams with

periods that are prime numbers) this will be very long, resulting in a great amount of activation times to

8

be tested. In Section 4, we will exploit the idea of using an algorithm that simulates TDMA/SS networks

over time to compute the length of the busy period. This solution allows finding the exact length of the

busy period, at the cost of higher time complexity.

In our non-exact analysis (Section 3), instead of trying to find the maximum queuing time of a message

within the length Lbpk of the busy period, we adapt a simple technique proposed in [8] for our setting. It

results in a more pessimistic analysis, but greatly reduces the complexity by avoiding the computation of

multiple queuing times for the same message stream.

3. Non-Exact Analysis

In this section we derive an upper bound on the queuing time for message streams. We will first (in

Section 3.1) present the schedulability analysis assuming a lower bound on the number of skipped slots is

known and then (in Section 3.2) compute such a lower bound.

3.1. Queuing Time Equation

Response time equations [9] for static-priority scheduling on a uniprocessor can be extended to the

problem of finding the queuing delay in communication networks. This is carried-out in many analyses

such as [10-12]. Inspired by this, and the technique proposed in [8] to avoid situations where previous

analysis would be optimistic, we can compute Qi
k of a message stream considering that nodes never skip

slots by reasoning as follows. Clearly, Qi
k depends on the number of time slots needed by message

streams of higher priority than Si
k. For this reason, let us define

()
()k k k

j i

k
k k i
i i k

jS hp S

Qslots Q
T∈

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎢ ⎥
∑ .

If node k needs to transmit x messages, it takes ⎣ x / mpck ⎦ TDMA cycles, and it also needs to wait for

x mod mpck message slots. Therefore, Qi
k can be computed as:

9

{ } ()
max ,

k k
i ik k

i i MS PR TDMAk

slots Q
Q B T T T

mpc

⎢ ⎥
⎢ ⎥= + + × +
⎢ ⎥⎣ ⎦

()()modk k k
i i MSslots Q mpc T× (8)

where TTDMA corresponds to the TDMA cycle duration when no slots are skipped. The term

max{Bi
k, TMS + TPR} in (8) is needed to account for blocking due to the non-preemptive nature of message

transmissions and the TDMA mechanism.

Equation (8) can be refined to include the effect of slot skipping. This gives us:

{ } () ()() ()
1,

max , mod ,
k k n
i ik k k k k y k k

i i MS PR TDMA i i MS i MSk
y y k

slots Q
Q B T T T slots Q mpc T nss Q i T

mpc
→

= ≠

⎢ ⎥ ⎡ ⎤
⎢ ⎥= + + × + × − ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

∑ × (9)

where nssy→k(Qi
k, i) denotes a lower bound on the number of skipped slots on node y when the queuing

time of Si
k is at most Qi

k. The term TMS in (9) represents the amount of time saved when a slot is skipped.

In the next subsection we will provide the reasoning for the analysis on the number of skipped slots.

We must now define TTDMA and the blocking factor Bi
k. The term TTDMA can be interpreted as the

maximum time interval that can elapse between two consecutive accesses to the network by one particular

node. In our network model, TTDMA and Bi
k are given by:

PRMS

n

l

l
TDMA TnTmpcT ×+×⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=1

 (10)

(){ }
1,

min ,
n

k l k k k
i i

l l k
B mpc mpc lp S T n

= ≠

⎡ ⎤⎛ ⎞
= + × +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑ MS PRT× (11)

3.2. Determining the Number of Skipped Slots

The number of skipped slots on node y is the difference between the number of slots that were

available to node y and the actual number of slots used by node y. Computing these quantities exactly is

however not trivial, and therefore we will use upper and lower bounds on them. A quantity that starts with

LB stands for a lower bound and, analogously, UB stands for an upper bound. Using these bounds and

observing that any lower bound on the number of messages must be non-negative, we can state that:

10

{
}

max 0,yLBnumber of unused slots on N LBnumber of slots that were available to node y

UBnumber of slots that was used by node y

= −

Since each TDMA cycle makes available mpck slots on node k, we can compute the number of TDMA

cycles during Qi
k. We also know that every time node y has the right to transmit, node y has mpcy slots

available. This gives us:

()k k
i i y

k

slots Q
LBnumber of slots that were available to node y mpc

mpc

⎢ ⎥
⎢ ⎥= ×
⎢ ⎥⎣ ⎦

Recall from the discussion in Figure 2 that when considering the effect of unused slots at another

node y on Si
k, we should not consider the time window of the queuing time for Si

k, instead we must

consider a time window that starts earlier and ends earlier. Recall from Section 2 that Φy→k denotes how

much earlier it starts. We let X y→k denote how much earlier it ends. It is difficult however to compute

X y→k, so instead we find Ω y→k such that Ω y→k ≤ X y→k. Based on this, we can state that:

()
y y
j

k y k y k k
i iy

y
S on N j

Q Q
UBnumber of slots that was used by node y ns

T

→ →

∀

⎢ ⎥+Φ −Ω
⎢ ⎥= +
⎢ ⎥⎣ ⎦

∑

Combining these equations gives us:

() () ()
, max 0,

y y
j

k k k y k y k k
i i i iy k k y y

i k y
S on N j

slots Q Q Q
nss Q i mpc ns

mpc T

→ →
→

∀

⎧ ⎫⎛ ⎞⎢ ⎥ ⎢ +Φ −Ω⎪ ⎪⎜ ⎟⎢ ⎥ ⎢= × − +⎨ ⎬⎜ ⎟⎢ ⎥ ⎢⎪ ⎪⎣ ⎦ ⎣⎝ ⎠⎩ ⎭
∑

⎥
⎥
⎥⎦

 (12)

In order to calculate nssy→k(Qi
k, i) using (12) we need to calculate Ω y→k . To understand the notion of

Ω y→k, let us consider the special case Ω prev(k)→k. Let u denote the time of the transmission of the message

from Si
k. Also, let v denote the latest time such that (i) at time v it holds that address_counter

transitions to prev(k) and (ii) v<u. It is clear that any messages that arrive on node prev(k) after time v

cannot affect the queuing time of the message from Si
k. Because of that we have Ω prev(k)→k=u-v. Note that

u-v is the time that node prev(k) had address_counter = prev(k) and hence Ω prev(k)→k depends on how

many messages node prev(k) transmitted. Therefore, we have:

11

() ()()() prev k kprev k k k k
i MS slots i PRQ T n Q T

→→Ω = × +

where np
s
r
l
e
o

v
ts
(k)→k is a lower bound on the number of messages sent by node prev(k) last time this node had

the right to transmit before the time window of duration Qi
k ended. Reasoning in the same way, we obtain

the more general expression:

() () ()()

0,

,
y k

y k k
i k next y k k

MS slots i PR i

if y k
Q

T n Q T Q if y k
→

→
→

=⎧⎪Ω =⎨ × + +Ω⎪⎩ ≠
 (13)

where ny
s
→
lot

k
s is a lower bound on the number of messages sent by node y at the last time node y held the

right to transmit before the time window of duration Qi
k ended. In order to find ny

s
→
lot

k
s (Qi

k) we compute a

lower bound on the length of the output queue of node y at the last time node y held the right to transmit

before the time window of duration Qi
k ended. LBql y→k denotes this lower bound. If we know LBql y→k,

we can compute ny
s
→
lot

k
s:

() (){ }{ }min ,max 0,y k k y y k k
slots i in Q mpc LBql Q→ →= (14)

A lower bound on the queue length must be 0 or more, hence the term max{0, LBql y→k(Qi
k)} in (14). It

represents another lower bound on the queue length. If, however, this would be greater than mpcy, then

ny
s
→
lot

k
s = mpcy, because no more than mpcy messages can be transmitted in the last TDMA cycle.

We will now focus on computing LBql y→k. Let ql y denote the length of the output queue of node y at

time L y→k(Qi
k) after the message from Si

k was put in the output queue. L y→k(Qi
k) is given by:

() ()()()max 0,y k k k next y k k y
i i i MSL Q Q Q mpc T T→ →⎧ ⎫

= − Ω + × +⎨ ⎬
⎩ ⎭

PR
 (15)

As a message from Si
k was in the queue at the end of the time window Qi

k, clearly it must have been in

the queue earlier. Hence, we know that 1 ≤ ql k. Since the queue length of node k depends on the number

of arrived messages and on the number of transmitted messages, we obtain:

12

()
k k
j

y k k
k ki

k
S on N j

L Qql ntransmitted
T

→

∀

⎡ ⎤
≤ −⎢ ⎥

⎢ ⎥⎢ ⎥
∑ (16)

where ntransmittedk denotes the number of messages transmitted during the time window of length L y→k.

Using a similar reasoning we obtain:

()
y y
j

y k k
y i

y
S on N j

L Qql ntransmitted
T

→

∀

⎢ ⎥
≥ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ y (17)

Observe that (16) and (17) offer a lower/upper bound on the output queue length, and that they refer to

the queue length at different nodes.

Consider those TDMA cycles such that node y transmitted at least one message during the time interval

of length L y→k. Let nTDMArounds y denote the number of those TDMA cycles. We know that the network

is fair, in the sense that the difference between the number of TDMA cycles received by any two nodes is

at most one. Hence:

1+≤ ky snTDMAcyclesnTDMAcycle (18)

Since node k used all its messages in all its time slots during the window of length Qi
k, it also used all

its time slots in the window of length L y→k(Qi
k). This implies that all its TDMA cycles transmitted mpck

messages. Therefore:

⎥
⎥

⎤
⎢
⎢

⎡
≤ k

k
k

mpc
edntransmittsnTDMAcycle (19)

On node y, we do not know whether slots are skipped or not and how many slots are skipped. We do

know however that every TDMA cycle can transmit at most mpcy messages. Hence, we have:

yyy mpcsnTDMAcycleedntransmitt ×≤ (20)

Combining (18), (19) and (20) yields:

y
k

k
y mpc

mpc
edntransmittedntransmitt ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎥

⎤
⎢
⎢

⎡
≤ 1 (21)

13

We have already seen that 1 ≤ qlk. Combining it with (16), (17) and (21) leads to (22).

()
()

1

() 1
k k
j

y y
j

y k k
i

ky k k
S on N jiy k k y

i y k
S on N j

L Q
TL Q

LBql Q mpc
T mpc

→

→
∀

→

∀

⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥ −
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎝ ⎠⎜ ⎟⎢ ⎥⎢ ⎥= − +
⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎢ ⎥⎝ ⎠

∑
∑ ×

(22)

The expression for LBql y→k in (22) can be used in (14) and then in (13) to obtain the value of Ω y→k.

Note that Ω y→k can be computed without circular dependencies because Ω k→k is computed from (13) and

then Ω prev(k)→k is computed based on Ω k→k. Ω prev(prev(k))→k is computed based Ω prev(k)→k, and so on.

4. Exact Analysis

We will now develop an exact analysis of TDMA/SS. The approach is to use results from Section 2 to

find the worst-case queuing time of a message stream and simulate scheduling in order to decide if the

system meets all deadlines. We will describe the algorithm to determine the length Lbpk of the busy

period, and the queuing time for a given stream.

The length Lbpk of the busy period is found by developing the timing behaviour, departing from the

time instant that maximizes the amount of interference caused by higher-priority message streams.

The queuing time is found similarly by developing the timing behaviour of the network, departing

from an initial state such that the maximum queuing time from of the given stream is found. For this

initial state, it employs the critical instant definition as described in Section 2. Thus, the queuing time

resulting from the time evolution of the protocol departing from this instant, found within the length Lbpk

of the busy period will be the maximum queuing time.

4.1. Overview

Algorithm 1 shows how to develop the timing behaviour of the network. This straightforward

algorithm introduces the main steps necessary to do this. We start by setting up the initial state of the

14

network. Then we establish, for now, that the node starting to access the network is node 1, and enter a

loop where the simulated time is developed according to the medium access rules. At each step of the

loop, we will check for messages that where activated until the current time, delivering messages of these

message streams to the respective node’s output queue and maintain the state of the different output

queues. By checking the current state of the queues, we decide how to make the time evolve.

In this case, Algorithm 1 will develop the timing behaviour of the network for a pre-defined amount of

time (defined by MAX_TIME). Algorithm 1 conveys the main idea we will employ. In the following

sections we present the same basic structure of the algorithm, with the necessary changes to find the

length of the busy period and the queuing time for a given stream.

Algorithm 1. Develop the timing behaviour of the network departing from a defined initial state

1. begin
2. Setup initial state of the network;
3. time ← 0;
4. address_counter ← 1;
5. loop
6. Put messages from streams activated until current time in the respective output queue;
7. Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue;
8. Increase time according to message queue state and medium access rules;
9. address_counter ← next(address_counter);

10. until time ≥ MAX_TIME;
11. end

Algorithm 2. Find the length Lbpk of the busy period

1. input
2. k – the index of the node;
3. begin
4. Setup initial state of the network;
5. time ← 0;
6. address_counter ← next(k);
7. Lbpk← 0;
8. loop
9. Put messages from streams activated until current time in the respective output queue;

10. if address_counter = k and the output queue of node k is empty then
11. Lbpk ← time;
12. else
13. Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue;
14. Increase time according to message queue state and medium access rules;
15. address_counter ← next(k);
16. end if
17. until Lbpk > 0 or time ≥ lcm(∀T k on nodek) ; i
18. if Lbpk > 0 then return Lbpk; else return lcm (∀Ti

k on nodek); end if
19. end

4.2. Algorithm to Find the Length of the Busy Period

To find the length Lbpk of the busy period we will follow the general structure of Algorithm 1. In this case, we

have a different stopping condition. Recalling the definition of busy period: for the most demanding arrival pattern,

15

the length of the busy period will be from t = 0 up to the first idle time. So we merely have to develop the timing

behaviour of the network, until we find a turn of node k where its message queue is empty, as shown by Algorithm 2.

To setup the initial state of the network, we follow Condition 2) from Section 2 and also consider the

case where all message streams on node k arrive simultaneously, which maximizes the amount of

interference caused by higher-priority streams. Looking at line 17 from Algorithm 2, we can see that the

loop will run until a value for Lbpk is found or, to protect from cases where there is no idle time, the loop

stops when the simulated time is more than the least common multiple (lcm) of the periods from all

streams in node k.

Algorithm 3. Compute the queuing time of Si
k

1. input
ing time; 2. k – the node index where the stream for which we will compute the queu

the index of the stream for which we will compute the queuing time; 3. i –
4. begin
5. max_queuing_time ← FAILURE;
6. Compute the set of activation times Ai

k;
7. for all activation_time ∈ Ai

k
8. Setup initial state of the network;
9. Set activation time of Si

k to activation_time
10. time ← 0;
11. address_counter ← k;
12. loop
13. if (Si

k is activated in this cycle) then
14. Compute blocking time Bi

k;
15. time ← time + Bi

k;
16. address_counter ← next(k);
17. end if
18. Put messages from streams activated until current time in the respective output queue;
19. Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue;
20. Increase time according to message queue state and medium access rules;
21. address_counter ← next(address_counter);
22. until (current_time – activation_time) > deadline of Si

k or a message from Si
k is removed from node k’s output queue

23. if a message from Si
k was removed from Nk’s output queue and (current_time–activation_time)>max_queuing_time then

24. max_queuing_time ← current_time – activation_time;
25. end if
26. end for
27. return max_queuing_time;
28. end

4.3. Algorithm to Find the Maximum Queuing Time

To determine the maximum queuing time of a stream we can adopt a similar approach. To do this, we

simply determine the set of activation times Ak to test and add a loop that will execute for each of these

activation times (Algorithm 3, lines 7 to 26). In line 23 of Algorithm 3 we check if the obtained queuing

time is the maximum so far, so that, when we have tried all the activation times in set Ak, we will have the

maximum queuing time.

16

In Algorithm 3, the stopping condition for the development of the timing behaviour (line 22) was also

modified. Now this loop is run until a message from the stream for which we will compute the queuing

time is sent, or until its deadline is exceeded. Another difference introduced was that the insertion of

blocking time. The blocking time must be introduced in the time instant preceding the activation of the

stream for which we will compute the queuing time. The blocking time is computed by Equation (11).

The blocking time is inserted by increasing the simulated time and changing address_counter to the

next node.

Algorithm 4. Increase time according to message queue state and medium access rules
1. input
2. address_counter – the node index of the node currently holding the right to access the medium
3. k – the node index where the stream which we will compute the queuing time
4. i – the index of the stream which we will compute the queuing time
5. begin
6. for all messages M from node’s Naddress_counter message queue up to mpcaddress_counter
7. Remove highest priority message M from current node’s output queue;
8. if M is not a message from Sik then
9. time ← time + TMS;

10. end if
11. end for
12. time ← time + TPR;
13. end

4.4. Detailing the Algorithms

This section will present further details for the most important components of the algorithms presented

previously.

Compute the set of activation times Ai
k – The first component we will detail here is the step to

compute the set of activation times Ai
k. This set will depend on the scheduling employed to the output

queues. The activation times set will be defined according to Equation (6).

Setup initial state of the network – To setup the initial state of the network, we employ the critical

instant as defined previously. Remember that our definition of Φ in Equation (5) returns the amount of

time that messages must be synchronously released in each node.

Note that, in Algorithm 3, the activation time of the stream for which we will compute the queuing

time is set again for each activation time.

17

Put messages from streams activated until current time in the respective output queue – This is

done by checking all streams in the network for which the activation time has elapsed. Streams in this

condition will generate a message to be put in the respective node’s output queue. Additionally, the

activation time of the stream is set to its next period.

Increase time according to message queue state and medium access rules – To develop time, the

state of the output queue from the node currently holding the right to access the medium is verified. For

each message in the output queue, up to mpcaddress_counter, the time is increased by TMS. At the end of the

node’s turn, the time is increased by TPR. Algorithm 4 illustrates this procedure.

Figure 5. Example of a network scenario (1).

{ }()51, 1, ,,,,,5 54321 NNNNNnetwork = (23)

{ }() { }() { }()
4

1 1 1 1 1 2 2 2 2 3 3 3
1 2 3 4 1 2 3 1 2

1 1 2 2 3 3
1 1 1 1 1 1
1 1 2 2 3 3

2 2 2 2 2 2
1 1 2 2

3 3 3 3
1 1

4 4

5,
4, , , , , 2 3, , , ,1 2, , ,1

8 12 9
 16 35 50

25 140
100

N S
N S S S S N S S S N S S

T D T D T T
T D T D T T
T D T D
T D

=
⎧ ⎧ ⎧= = =⎪ ⎪ ⎪
⎪ ⎪ ⎪⎧ = = ⎧ = = ⎧ = =⎪ ⎪ ⎪⎪ ⎪ ⎪⎨ ⎨ ⎨= = = = = =⎪ ⎪ ⎪
⎪ ⎪ ⎪⎨ ⎨ ⎨

= = = =⎪ ⎪ ⎪⎪ ⎪ ⎪
⎪ ⎪ ⎪⎪ ⎪ ⎪= = ⎩⎩ ⎩⎩ ⎩⎩

{ }() { }()4 4 4 4 4 5 5 5
1 2 3 4 5 1 2

4 4 5 5
1 1 1 1
4 4 5 5

2 2 2 2
4 4

3 3
4 4

4 4
4 4

5 5

, , , , , 2 2, , ,1

15 33
20 56
30

100

150

S S S S N S S

T D T D
T D T D
T D

T D

T D

⎧ ⎧ =⎪ ⎪
⎪ ⎪⎧ = = ⎧ = =⎪ ⎪⎪ ⎪⎪ ⎪= = = =⎪ ⎪⎨ ⎨⎪ ⎪= =⎪ ⎪⎨ ⎨
⎪ ⎪⎪ ⎪= =⎪ ⎪⎪ ⎪
⎪ ⎪⎪ ⎪= = ⎩⎩⎩⎩

(24)

4.5. Numerical Example

Let us put forward a demonstration scenario that will enable us to better grasp the algorithm behaviour.

Equations (23) and (24) in Figure 5 describe this demonstration scenario.

Figure 6 presents the network schedule for node2. It is also possible to observe the evolution of the

node’s queue and the queuing time for S2
2.

This network schedule depicts exactly the algorithm’s behaviour. When the stream given as input for

the algorithm is S2
2, the algorithm will develop time by simulating the network schedule and produce the

exact time evolution as depicted in Figure 6, when the activation time to be tested for S2
2 is 0, which is the

activation time leading to the maximum queuing delay.

18

The algorithm will perform from time 0 to time 30. At time 30, the algorithm will verify that the S2
2

given as input was scheduled to be sent, and therefore it will exit returning the current time value.

Using an implementation of the algorithm, we can obtain the resulting queuing times. Table 1 presents

the queuing times for all messages in this scenario resulting from the algorithm presented (column

labelled q). The column labelled Q contains the calculated queuing times using the analysis in Section 3.

We can see that our algorithm for the exact analysis presents tighter results than the non-exact analysis.

This is expected.

2
1S
2
2S
2
3S

q =23.002
2

2
3

3
1

4
1

4
2

5
1

1
1

1
2

3
1

4
1

4
3

5
2

1
1

1
3

2
1

3
2

4
2

4
1

1
2

1
1

2
2

3
1

4
1

4
2

1
1

1
2

2
1S S

2
1S
2
2S
2
3S

2
2S
2
3S

2
1S
2
3S

Figure 6. Network schedule for demonstration scenario (1).

Table 1. Queuing times for demonstration scenario (1).

Node Stream Q
(time units)

q
(time units)

 Node Stream Q q
(time units) (time units)

S1
1 8 8 S1

4 8 8
S2

1 16 9 S2
4 16 9

S3
1 16 16 S3

4 17 16
N1

S4
1 45 40 S4 4 24 16

S1
2

N4

8 8 S5
4 29 27

S2
2 24 23 S1

5 8 8 N2
N5

S3
2 57 35 S2

5 15 15
S1

3 8 8 N3
S2

3 45 32

19

5. Discussion and Related Work

TDMA/SS has the following advantages. First, TDMA/SS does not require sensing-while-transmitting.

Second, TDMA/SS relies on nodes that are equipped with a real-time clock, but it does not depend on

them being synchronised; nodes only need to listen for the protocol slot of length TPR to update the

address_counter. This is a relevant practical aspect that facilitates the acceptance of TDMA/SS for

small, inexpensive embedded devices with bare hardware resources. Implementations of TDMA/SS only

require this timer, as opposed to other TDMA protocols that typically need more timers. This was also

one of the advantages of the design of BuST [13], a token protocol with hard real-time characteristics and

budget sharing, with the features related to TDMA/SS, Third, TDMA/SS is resilient to crashes if nodes

are fail-silent. (One way to implement TDMA/SS, as was done in P-NET standard [4], is that a node

transmitting a protocol slot keeps silent for TPR time units. Then, if a node y crashes, this idle time will

cause, address_counter to become next(y) after TPR time units, and hence the operation of the other

nodes are unaffected).

As already mentioned, a TDMA/SS-like protocol was studied in [5] but it had the drawbacks of

(i) assuming FIFO scheduling on each node, (ii) lacking an accurate calculation of Ω, and (iii) lacking the

opportunity to transmit multiple messages per TDMA cycle.

The TDMA/SS protocol is similar to the ARINC 629 protocol in that ARINC 629 is a TDMA protocol

which does not need synchronized clocks. Nodes are given time slots in a pre-specified order; they have a

terminal gap (TG) specifying an idle time interval between nodes (similar to our TPR) and they permit slot

skipping. Unfortunately, the only available analysis of ARINC 629 [12] is not accurate in the sense that it

does neither take into account effects like the Φ and the Ω, nor the local scheduling of output queues.

Scheduling messages in TDMA without slot skipping [1-3] is well studied but, as we have already

mentioned, they may require long TDMA cycles. Usually they create schedules before run-time.

However, one recently proposed protocol [14] creates the schedule at run-time in a distributed fashion.

20

First, it selects periods (shorter than required) to make sure that periods are harmonic. Then, at run-time,

when a collision is detected, a winner of the colliding nodes is elected. The winning node will transmit

and it is assigned an offset so future collisions cannot occur. Such an approach is efficient in the sense

that no time is wasted on protocol slots. However, synchronized clocks are required.

The timed token protocol is similar to TDMA/SS, and it has been used in FDDI rings and IEEE 802.5.

Schedulability analysis techniques and algorithms to assign Hk (similar to our mpck) have been developed

[15-17]. These protocols differ from TDMA/SS in that they explicitly pass a token while TDMA/SS does

not. Timed token networks have a target token circulation time. This is similar to our TTDMA, but there is

one important difference though. If the token circulates faster in one circulation, then this time can be

used on a node to transmit soft real-time messages (this is called asynchronous). In TDMA/SS however,

the address_counter will actually change faster, and hence there will be more capacity for hard real-

time traffic. Hence, there are hard real-time message streams that can be scheduled with TDMA/SS but

that cannot be scheduled with the timed token protocol. The analysis of timed token protocols performed

in holistic scheduling [10, 11] addresses a problem similar to ours (the Sp in [10] is equivalent to our

mpcp; in [11] mpck is more restricted, it is assumed to be 1). However, neither [10] nor [11] take the Φ and

Ω y→k into account or something similar (issues due the fact that this is a distributed system).

Real-time scheduling on IEEE 802.5 networks was studied in [18]. It uses explicitly message passing

where a token must circulate and nodes announce their priority before transmitting. That is unlike

TDMA/SS which only prioritises messages on each node.

Real-time scheduling on networks with explicit token bus was also studied in [19]. Each node is given

a budget and if the hard real-time traffic (called synchronous traffic) on a node requests less than the

budget then the remaining capacity is made available for non-real-time traffic. The analysis of TDMA/SS

that we present in this paper is different however in that in TDMA/SS, an unused slot makes capacity

available for hard real-time traffic at another slot and the amount of that capacity made available is

calculated with our analysis ot TDMA/SS.

21

Implicit EDF is a TDMA MAC protocol proposed for wireless channels [20, 21]. Although its

operation is very different from TDMA/SS, Implicit EDF shares many of the advantages offered by

TDMA/SS in that (i) both of them are collision-free yet they do not need to store the entire TDMA

schedule, (ii) they do not depend on synchronized clocks and (iii) they can operate even in the presence of

certain node failures (crash failures). One key difference however is that the operation of the TDMA/SS

MAC protocol does not require nodes to know all messages streams in the system and consequently it is

easy to add new message streams and/or nodes to the system. In fact, this was one of the main motivation

for the P-NET standard [4]; a standard that uses TDMA/SS with SMTC.

An important feature of our analysis of TDMA/SS in this paper is that a node k can have mpck>1. This

feature (mpck >1) is useful because it reduces the amount of time that the network spends on sending a

protocol slot. But naturally, this feature begs the question: How should mpc:s be assigned to nodes such

that all deadlines are met? A simple approach is as follows. Initially assign mpck =1 to each node k.

Perform a schedulability test and record which nodes had a message stream that missed a deadlines. For

those nodes, increase mpc by one. As long as there is a deadline miss and TTDMA does not exceed the

minimum Di of all message streams then continue to perform schedulability tests and increase mpck for

those nodes that missed a deadline. An interesting aspects of this simple algorithm to assign mpck is that it

can be performed by replacing the schedulability test by run-time monitoring of deadline misses and this

makes the algorithm for assigning mpc:s to nodes fully decentralized.

6. Conclusions and Future Work

TDMA/SS represents an important class of TDMA networks, implemented in COTS hardware, and it

is suited for real-time applications. We have presented an analysis of TDMA/SS for DM scheduled output

queues and also an algorithm that computes exact queuing times for TDMA/SS. The algorithm was based

on simulation. We left open the questions (i) whether it is possible to formulate exact schedulability

22

conditions as a set of inequalities and (ii) how to perform approximate schedulability [22] analysis for

TDMA/SS and in that way achieve a polynomial time-complexity.

References

[1] H. Kopetz and G. Grunsteidl, "TTP-a protocol for fault-tolerant real-time systems," IEEE Computer, vol. 27, pp. 14-24, 1994.
[2] L. Dong, R. Melhem, and D. Mossé, "Scheduling Algorithms for Dynamic Message Streams with Distance Constraints in TDMA

protocol," in 12th Euromicro Conference on Real-Time Systems (ECRTS'00), 2000, pp. 239-246.
[3] C.-C. Han, K.-J. Lin, and C.-J. Hou, "Distance-constrained scheduling and its applications to real-time systems," IEEE

Transactions on Computers, vol. 45, pp. 814 -826, 1996.
[4] IPUO, "The P-NET Standard," International P-NET User Organisation, 1994.
[5] E. Tovar, F. Vasques, and A. Burns, "Communication Response Time in P-NET Networks: Worst-Case Analysis Considering the

Actual Token Utilisation," Real-Time Systems Journal, Kluwer Academic Publishers, vol. 22, pp. 229-249, May 2002.
[6] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment," Journal of the

ACM (JACM), vol. 20, pp. 46-61, 1973.
[7] L. George, N. Rivierre, and M. Spuri, "Preemptive and Non-Preemptive Real-Time UniProcessor Scheduling," INRIA, Technical

Report RR-2966, September 1996.
[8] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, "Controller Area Network (CAN) schedulability analysis: Refuted, Revisited

and Revised," Real-Time Systems, vol. 35, pp. 239-272, 2007.
[9] M. Joseph and P. Pandya, "Finding Response Times in a Real-Time System," The Computer Journal, British Computer Society,

vol. 29, pp. 390-395, October 1986.
[10] K. Tindell, "Analysis of Hard Real-Time Communications," Real-Time Systems Journal, vol. 9, pp. 147 - 171, 1995.
[11] M. Spuri, "Holistic Analysis for Deadline Scheduled Real-Time Distributed Systems," INRIA, Technical Report RR-2873, April

1996.
[12] N. Audsley and A. Grigg, "Timing analysis of the ARINC 629 databus for real-time application," Microprocessors and

Microsystems, vol. 21, pp. 55-61, 1997.
[13] G. Franchino, G. C. Buttazzo, and T. Facchinetti, "BuST: Budget Sharing Token protocol for hard real-time communication," in

Emerging Technologies & Factory Automation, 2007. ETFA. IEEE Conference on, 2007, pp. 1278-1285.
[14] T. W. Carley, M. A. Ba, R. Barua, and D. B. Stewart, "Contention-Free Periodic Message Scheduler Medium Access Control in

Wireless Sensor / Actuator Networks," in 24th IEEE International Real-Time Systems Symposium (RTSS'03), 2003, p. 298.
[15] S. Zhang and A. Burns, "An Optimal Synchronous Bandwidth Allocation Scheme for Guaranteeing Synchronous Message

Deadlines with the Timed-Token MAC Protocol," IEEE/ACM Transactions on Networking (TON), vol. 3, pp. 729 - 741,
December 1995 1995.

[16] G. Agrawal, "Guaranteeing Synchronous Message Deadlines with the Timed Token Medium Access Control Protocol," IEEE
Transactions on Computers, vol. 43, pp. 327 - 339, March 1994 1994.

[17] N. Malcolm and W. Zhao, "The timed-token protocol for real-time communications," IEEE Computer, vol. 27, pp. 35-41, 1994.
[18] J. K. Strosnider, T. Marchok, and J. Lehoczky, "Advanced Real-time Scheduling Using the IEEE 802.5 Token Ring," in 9th IEEE

International Real-Time Systems Symposium (RTSS'88), Huntsville, Alabama, USA, 1988, pp. 42-52.
[19] G. Franchino, G. Buttazzo, and T. Facchinetti, "BuST: Budget Sharing Token Protocol for Hard Real-Time Communication," in

12th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2007), Patras, Greece, 2007.
[20] M. Caccamo and L. Y. Zhang, "An Implicit Prioritized Access Protocol for Wireless Sensor Networks," in 23rd IEEE

International Real-Time Systems Symposium (RTSS'02), Austin, Texas, 2002, pp. 39-48.
[21] T. L. Crenshaw, A. Tirumala, S. Hoke, and M. Caccamo, "A Robust Implicit Access Protocol for Real-Time Wireless

Collaboration," in 17th Euromicro Conference on Real-Time Systems (ECRTS'05), Palma de Mallorca, Balearic Islands, Spain,
2005, pp. 177 - 186.

[22] S. Chakraborty, S. Künzli, and L. Thiele, "Approximate Schedulability Analysis," in 23rd IEEE International Real-Time Systems
Symposium (RTSS'02), Austin, Texas, 2002.

23

24

Appendix A – List of Symbols

Symbol Meaning
TMS Time slot corresponding the transmission of one message

TPR Time slot corresponding to a message signaling that the node will not transmit any more messages during the
current TDMA cycle

net A TDMA/SS network
Nk A node k, of the TDMA/SS network
Si

k A message stream i at node k
nsk Number of message streams in node k
sched_policyk Policy adopted for scheduling messages at node k’s local queue
msg_queuek Message queue of node k
mpck Messages per (TDMA) cycle allowed for node k
Ti

k Periodicity at which a message related to a stream Si
k is queued

Di
k Relative deadline of Si

k.
qi

k Actual or obtained with the exact analysis maximum queuing time of messages belonging to Si
k

ri
k Maximum response time of messages belonging to Si

k
Qi

k Upper bound on the queuing time of messages belonging to Si
k

Ri
k Upper bound on the response time of messages belonging to Si

k
prev(k) Previous node (obtained by circularly incrementing the current address)
next(k) Next node (obtained by circularly incrementing the current address)
hpk(Si

k) Subset of messages streams on node k with higher priority than Si
k

lpk(Si
k) Subset of messages streams on node k with lower priority than Si

k
address_counter Variable that keeps track of the node holding the right to transmit

Φy→k Amount of time which messages from nodes y should arrive earlier in order to delay the response times of the
messages in node k the most

Lbpk Length of the busy period of a node k
TTDMA TDMA cycle duration when no slots are skipped
Bi

k Blocking factor due to the non-preemptable nature of message transmissions and TDMA cycle
nssy→k(t, i) Lower bound on the number of skipped slots on node y during a time interval of length t
sloti

k(Qi
k) Number of time slots needed during Qi

k by message streams of higher priority than Si
k

Ω y→k(t) Lower bound on the amount that the window of node y should be shrunk at the end of time t (in order to avoid
considering more messages than those that actual cause interference)

LBql y→k(t) Lower bound on the queue length at node y during a time interval of duration t
ny

s
→
lot

k
s (t) Lower bound on the number of messages transmitted during a time interval of duration t

Ly→k(t) Amount of time after the message from Si
k was put in the output queue

ql y Length of the output queue of node y at time Ly→k
ntransmittedk Number of messages transmitted during the time window of length Ly→k

	1. Introduction
	2. Preliminaries
	2.1. Network and Message Models
	2.2. Network Example and Operation
	2.3. Finding Worst-Case Queuing Times

	3. Non-Exact Analysis
	3.1. Queuing Time Equation
	3.2. Determining the Number of Skipped Slots

	4. Exact Analysis
	4.1. Overview
	4.2. Algorithm to Find the Length of the Busy Period
	4.3. Algorithm to Find the Maximum Queuing Time
	4.4. Detailing the Algorithms
	4.5. Numerical Example

	5. Discussion and Related Work
	6. Conclusions and Future Work
	References
	Appendix A – List of Symbols

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00167
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00167
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings to create PDF documents suitable for IEEE Xplore. Created 15 December 2003.)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

