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Abstract 
Distributed real-time systems, such as factory automation systems, require that computer nodes communicate with a 
known and low bound on the communication delay. This can be achieved with traditional Time-Division-Multiple-
Access (TDMA). But improved flexibility and simpler upgrades are possible through the use of TDMA with Slot-
Skipping (TDMA/SS), meaning that a slot is skipped whenever it is not used and consequently the slot after the skipped 
slot starts earlier. We propose a schedulability analysis for TDMA/SS. We assume knowledge of all message streams in 
the system, and that each node schedules messages in its output queue according to Deadline Monotonic. Firstly, we 
present a non-exact (but fast) analysis and then, at the cost of computation time, we also present an algorithm that 
computes exact queuing times. 

 



Analysing TDMA with Slot Skipping 

Abstract 

Distributed real-time systems, such as factory automation systems, require that computer nodes 

communicate with a known and low bound on the communication delay. This can be achieved with 

traditional Time-Division-Multiple-Access (TDMA). But improved flexibility and simpler upgrades 

are possible through the use of TDMA with Slot-Skipping (TDMA/SS), meaning that a slot is skipped 

whenever it is not used and consequently the slot after the skipped slot starts earlier. We propose a 

schedulability analysis for TDMA/SS. We assume knowledge of all message streams in the system, 

and that each node schedules messages in its output queue according to Deadline Monotonic. Firstly, 

we present a non-exact (but fast) analysis and then, at the cost of computation time, we also present 

an algorithm that computes exact queuing times. 

1. Introduction 

A fundamental problem in distributed real-time systems is the sharing of a communication medium 

between message streams on different nodes such that real-time requirements are satisfied. Time division 

multiple access (TDMA) communication protocols solve this problem by assigning messages to time slots 

in a way that no two nodes transmit at the same time and messages’ queuing delays are bounded. 

Typically, these communication protocols operate on the basis of TDMA cycles, where a node is assigned 

one or many time slots. Usually, each slot has a fixed length and the number of slots per cycle is also 

fixed. Hence, a TDMA cycle has fixed and known time duration, and upper bounds on messages’ queuing 

delays can be proved.  

The majority of research work on TDMA communications addresses the problem of finding 

appropriate schedules (TDMA frames/templates) for guaranteeing timeliness of real-time message 
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streams. This is the case for analysis over time-triggered protocols such as TTP [1]. It is also the case of 

work addressing distance constraints (maximum timing interval between two adjacent messages of the 

same message stream) as an additional temporal restriction [2, 3]. Unfortunately, an unused slot is wasted 

and cannot be used for other hard real-time traffic. In order to meet all deadlines, it may be necessary that 

a message stream with periodic messages uses a specific time slot in a TDMA cycle only in a few cycles, 

while in most cycles that time slot is not used, hence wasted. One way to overcome this waste is to have a 

larger TDMA cycle serving several messages of a message stream. Unfortunately, in the extreme case, the 

length of a TDMA cycle may need to be the least common multiple of periods, to avoid wasted slots.  

In contrast, however, consider TDMA protocols with slot skipping (TDMA/SS); that is, a slot is 

skipped when it is not used. Hence, the next slot can start earlier in benefit of hard real-time traffic. This 

model is applicable to P-NET, a commercial-off-the-shelf (COTS) technology [4], defined in an 

International  Fieldbus Standard. For this generic class of TDMA networks, a schedulability analysis that 

takes slot skipping into account is still missing.  

In this paper we present a schedulability analysis for TDMA networks with slot skipping (TDMA/SS). 

We assume that all message streams are known, and that each node schedules messages in its output 

queue according to deadline monotonic (DM). We present two complementing analyses, (i) an analysis 

which is fast but not exact and (ii) an analysis which is exact but with a larger time-complexity. 

As already mentioned, the analysis of TDMA/SS is applicable to COTS technology, in particular the P-

NET standard [4]. This paper advances the state-of-art in two ways. First, both of our analyses are tighter 

than any other previous analysis on TDMA networks that skips slots [5]. Second, we also consider the 

case where a node can be assigned a fixed number of slots, whereas previous work [5] only considered the 

case of a single slot per TDMA cycle. 

The remainder of this paper is organised as follows. Section 2 illustrates the basics of operation of the 

TDMA/SS network and provides an understanding of key ideas for analyzing TDMA/SS. Section 3 

presents a non-exact analysis; it presents an algorithm for finding an upper bound on the queuing delay of 
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a message. Section 4 presents an exact analysis; it presents an algorithm for finding the maximum 

queuing delay that a message can experience. Section 5 compares our approach to other approaches in 

real-time communications, and finally, in Section 6, conclusions are drawn.  

2. Preliminaries 

In this section, the problem of analysing TDMA/SS networks is introduced. We start by defining the 

network and message models and proceed to present a simple network example that allows us to better 

illustrate our model. This example also allows for demonstrating the reason why the schedulability 

analysis of TDMA/SS networks is not trivial. We then discuss the problem of finding worst-case queuing 

times, introducing concepts that will help us in Section 3 and Section 4, where the new schedulability 

analysis techniques are presented. 

2.1. Network and Message Models 

Our network is composed of n nodes, communicating messages via a shared medium. Contention 

access between nodes is resolved by a time division multiple access (TDMA) control schema. The 

access to the medium is ordered by time, such that each node is assigned one or more time slots, each 

of length TMS, in a cyclic schedule – the TDMA cycle. When a node observes its turn to access the 

shared medium, it may transmit messages up to the number of time slots assigned to it. To signal that 

the node will not transmit any more messages during the current TDMA cycle, a node transmits a 

protocol slot of length TPR (typically TPR << TMS). In a concrete setting, such as the P-NET standard [4], 

nodes can implement this protocol slot simply by staying silent during a TPR time span.  

Our network model can be described as follows: 

{ }( )PRMS
n TTNNNnnet ,,,,,, 21 …=  (1)

Associated with each node k (k ranging from 1 to n), there is a set {S1
k, S2

k, …, Sk
nsk} of nsk message 

streams. A node k is permitted to transmit at most mpck (messages per cycle) in a TDMA cycle. Hence, a 
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node k is defined as follows: 

{ }( )kk
ns

kkkk mpcSSSnsN k ,,,,, 21 …=  (2)

A message stream with index i (i ranging from 1 to nsk) associated to node k is denoted as Si
k. Each 

message stream is characterised by Ti
k and Di

k. Ti
k is the periodicity at which a message related to Si

k is 

queued to be transmitted to the network. Di
k is the relative deadline of Si

k.  

Every message needs to be queued before being transmitted. We consider the use of deadline 

monotonic (DM) scheduling in all network nodes to serve the output queue of message streams. Let qi
k 

denote the maximum queuing time of messages belonging to Si
k. Let ri

k denote the maximum response 

time of all messages belonging to Si
k, ri

k = qi
k + TMS. If ri

k ≤ Di
k then we say that Si

k meets its deadlines. We 

are interested in finding out whether all messages meet their deadlines. Hence, we will find Qi
k , an upper 

bound on qi
k. Let Ri

k denote an upper bound on the response time; that is, Ri
k = Qi

k + TMS. If Ri
k ≤ Di

k then 

we say that Si
k is deemed to meet its deadlines according to our analysis technique. Our analysis assumes 

that Di
k ≤ Ti

k. Therefore, a message from Si
k must finish its transmission before a new message from Si

k 

arrives to the node’s output queue. We assume that all messages in the network have the length TMS. 

When describing the TDMA/SS protocol and related time analysis, some shorthand notations are 

useful. The next and the previous nodes are given by circularly incrementing the current address k: 

⎩
⎨
⎧

=
−≤≤+

=

⎩
⎨
⎧

≤≤−
=

=

              if           ,1
   11 if      1,

)(

                
2 if    ,1

      1 if         ,
)(

nk
nkk

knext

nkk
kn

kprev
 

(3)

Because we use DM, the notations hpk(Si
k) and lpk(Si

k) are useful to denote the subset of message 

streams on node k with higher or lower priority than Si
k respectively, and are defined as:  

{ } ( ) ( ){ }( ) : :k k k k k k k k
i j j i j j ihp S S D D S D D j i= < ∪ = ∧ <  

{ } ( ) ( ){ }( ) : :k k k k k k k k
i j j i j j ilp S S D D S D D j i= > ∪ = ∧ >  (4)

We will now describe the operation of the network protocol being used. During the operation of the 

protocol, all nodes maintain at all time a variable − address_counter − that keeps track of the node 
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holding the right to transmit. address_counter has the same value on all nodes, and thus in the 

discussion we treat it as a single variable. When address_counter makes the transition to k, then node 

k will dequeue and transmit up to mpck messages from its output queue. If the output queue contains 

0 ≤ x < mpck messages, then only those x messages are transmitted (we say that node k skips  

mpck − x slots). After the transmission of those x messages, a protocol slot is transmitted (this takes TPR 

time units). As a consequence, the above mentioned system-wide variable will change as follows: 

address_counter := next(address_counter). When a node does not transmit, it listens to the 

network to update address_counter consistently with the other nodes. For this, we assume that all 

nodes hear the same state of the network. 

2.2. Network Example and Operation 

As an instantiation of the network and message models, consider the following network: 

{ }( )51, 1, ,,,3 321 NNNnet =  

{ }( ) { }( ) { }( )1 1 1 1 1 2 2 3 3
1 2 3 4 1 1

1 1 2 2 3 3
1 1 1 1 1 1
1 1

2 2
1 1

3 3

1 1
4 4

4, , , , ,1 1, ,1 1, ,1

7.0 5.3 7.0
     12.0

13.4

21.0
    

N S S S S N S N S

T D T D T D
T D
T D

T D

⎧ ⎧ ⎧= = =⎪ ⎪ ⎪
⎪ ⎪ ⎪= = = = = =⎪ ⎪ ⎪
⎨ ⎨ ⎨= =
⎪ ⎪ ⎪

= =⎪ ⎪ ⎪
⎪ ⎪ ⎪= = ⎩ ⎩⎩

 

Figure 1. Example network scenario. 

Consider that the arrival pattern of messages to the output queues is as illustrated in Figure 2a. For this 

scenario, the timeline for message transmissions and address counter evolution in the network is as 

illustrated in Figure 2b. The events at time 0 require further explanation. We assume: 

i) a message from S4
1 arrives marginally before time 0; 

ii) the address_counter changes from 3 to 1 at time 0; 

iii) and messages from S1 , S2
1 and S3

1 arrive at time 0.  1

We also assume that a message is only allowed to be transmitted by node k, if and only if it has been 

queued before address_counter changes to the value k. (This assumption is true in P-NET, a 

commercial-off-the-shelf (COTS) technology [4].) As a result, for the exemplified scenario, the messages 
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from S1
1, S2

1 and S3
1 are not transmitted at time 0. Instead, a message from S4

1, which has lower priority, is 

transmitted at time 0, since this was the only message ready in the output queue of node 1 at the time 

address_counter changes to 1. 

            -1         0          1          2         3          4          5          6          7         8         9         10        11       12        13    

Time
(      units)T

...

S1
1

S1
2

S2
1

S3

Addr. Counter

3

S1
3

MS

...

Time
(      units)TMS

3

TPR TMS

a) Arrival pattern of messages to the three outgoing queues

b) Message transfers in the network and address counter evolution

Queuing time for the message of queued at time 0 (  )S  q

S1
4

  

Figure 2. Arrival times and schedule of the example network scenario. 

Observe for time t > 0, that every time a message is transmitted it takes 1 time unit, and after there is a 

protocol slot of 1/5 time units. However, in some of the illustrated TDMA cycles, only a protocol slot is 

transmitted. This occurs because, at the time the node was granted the right to transmit, its output queue 

was empty (for example, the output queue of node 2 is empty at time instant 4.8).  

Consider the message of S3
1 that was placed in the output queue at time 0. This message is queued 

during [0,10.4) and hence q3
1 is 10.4. The message of S3

1 is blocked during the time interval [0,3.6) 

because some messages, a lower priority message S4
1 and other messages S1

2 and S1
3, cause S3

1 to be queued 

although it has higher priority. The message of S3
1 suffers from interference during [3.6,10.4).  
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In order to see why the schedulability analysis of this system is non-trivial, look at time instant 10.2. 

At this time instant, a message from S3
1 (queued at time 0) is still in the output queue, and a message from 

another message stream, S1
2, arrives. However, this message from S1

2 does not have any effect on the 

queuing time of the message from S3
1, transmitted at time instant 10.4. In general, when finding the 

queuing time of a message from message stream Si
k, we clearly need to find out if another node y skipped 

a slot (and if so how many slots) during this queuing time. In order to find how many slots were used and 

how many were skipped on node y, it is required that we consider a time window on node y. Finding this 

time window on node y is a major challenge that we will deal with in this paper. 

2.3. Finding Worst-Case Queuing Times  

To characterize the critical instant under DM scheduled output queues in TDMA/SS, it is tempting to 

reuse the condition for the critical instant used in DM on a single processor; just that blocking needs to be 

considered. One might believe that the critical instant of a message of message stream Si
k occurs when it 

arrives simultaneously with all other message streams, except that one message of a message stream with 

the lowest priority on the same node as Si
k arrives marginally before and this message is transmitted 

causing blocking. However, consider the example shown in Figure 2 and analyze the queuing delay of the 

message from S3
1 that arrived at time 0. It can be seen that a message on node 3 (in this case message from 

message stream S1
3) can arrive at time -TPR and still cause as much interference on S3

1
 as if S1

3 would have 

arrived at time 0. This is due to the way address_counter is incremented and it has no parallel in DM 

on a single processor.  

However, we can use a shifting argument similar to the one used in [6] to show how early should a 

message arrive at on node y to cause Qi
k to be maximized. Let t0 denote the time instant when a message 

of Si
k of maximum queuing time arrives. Consider the message stream Sj

y on node y, with y = prev(k). 

This message stream Sj
y has a message which arrived before t0 or at t0. Let us call this message M. At 

which time should M arrive to generate the maximum number of transmissions that cause a delay on the 

message from Si
k? It should arrive late enough to make sure that its entire transmission time TMS occurred 
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after t0 or at t0, but it should arrive as early as possible to maximise the number of transmissions of Sj
y that 

cause a delay on the message from Sj
k. This occurs when M arrives at time t0 - TPR. We can repeat this 

argument with node prev( prev(k) ), node prev( prev( prev(k) ) ), and so on. Let Φy→k denote the amount 

of time which messages from nodes y should arrive earlier in order to delay the queuing times of the 

messages in node k the most. Φy→k is given as:  

⎩
⎨
⎧

≠Φ+
=

=Φ →
→

kyifT
kyif

kynext
PR

ky
)(

0  (5)

We are now in position to say that a critical instant of an arbitrary message stream Si
k is at time t under 

the following conditions: 

1. Si
k releases a message at time t; 

2. if lpk(Si
k)≠∅ then a message stream in lpk(Si

k) released a message infinitesimally before time t; 

3. all other message streams in each node y (∀y : 1 ≤  y ≤ n  y≠k) are synchronously activated 

Φ y→k time units before t (where Φy→k is given by (5)). 

As in [7], for non-premptive uniprocessor DM scheduling, and [8] for the CAN bus, the maximum 

queuing time for message stream Si
k is found within the length Lbpk of the busy period (for convenience, 

we do not consider the concept of level-i busy period; note that our calculated busy periods will always be 

no less than a level-i busy period). Specifically, we can find the maximum queuing time for a message 

stream Si
k by analysing the schedule patterns resulting from the different activation times a ∈ Ai

k: 

{ }0
1

: 0,
kns

k k
i j

j
)kA c T c Lbp

=

⎡= × ∈ ∩ ⎣`∪  (6)

(N0 represents the set of non-negative integers) and the queuing time is given by:  

{ }max ( )k
i

k k
i ia A

q q
∀ ∈

a a= −  (7)

where qi
k(a) is the time of the start of the transmission of the message from Si

k with arrival time a. 

Now, we are left with the problem of finding the length Lbpk of the busy period. One simple option is 

to consider that Lbpk = lcm ( ∀Tj
k on nodek ). For some sets of streams (for example, a set of streams with 

periods that are prime numbers) this will be very long, resulting in a great amount of activation times to 
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be tested. In Section 4, we will exploit the idea of using an algorithm that simulates TDMA/SS networks 

over time to compute the length of the busy period. This solution allows finding the exact length of the 

busy period, at the cost of higher time complexity. 

In our non-exact analysis (Section 3), instead of trying to find the maximum queuing time of a message 

within the length Lbpk of the busy period, we adapt a simple technique proposed in [8] for our setting. It 

results in a more pessimistic analysis, but greatly reduces the complexity by avoiding the computation of 

multiple queuing times for the same message stream. 

3. Non-Exact Analysis  

In this section we derive an upper bound on the queuing time for message streams. We will first (in 

Section 3.1) present the schedulability analysis assuming a lower bound on the number of skipped slots is 

known and then (in Section 3.2) compute such a lower bound. 

3.1. Queuing Time Equation 

Response time equations [9] for static-priority scheduling on a uniprocessor can be extended to the 

problem of finding the queuing delay in communication networks. This is carried-out in many analyses 

such as [10-12]. Inspired by this, and the technique proposed in [8] to avoid situations where previous 

analysis would be optimistic, we can compute Qi
k of a message stream considering that nodes never skip 

slots by reasoning as follows. Clearly, Qi
k depends on the number of time slots needed by message 

streams of higher priority than Si
k. For this reason, let us define 

( )
( )k k k

j i

k
k k i
i i k

jS hp S

Qslots Q
T∈

⎡ ⎤
= ⎢ ⎥

⎢ ⎥⎢ ⎥
∑ . 

If node k needs to transmit x messages, it takes ⎣ x / mpck ⎦ TDMA cycles, and it also needs to wait for 

x mod mpck message slots. Therefore, Qi
k can be computed as:  
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{ } ( )
max ,

k k
i ik k

i i MS PR TDMAk

slots Q
Q B T T T

mpc

⎢ ⎥
⎢ ⎥= + + × +
⎢ ⎥⎣ ⎦

( )( )modk k k
i i MSslots Q mpc T×  (8)

where TTDMA corresponds to the TDMA cycle duration when no slots are skipped. The term 

max{Bi
k, TMS + TPR} in (8) is needed to account for blocking due to the non-preemptive nature of message 

transmissions and the TDMA mechanism.  

Equation (8) can be refined to include the effect of slot skipping. This gives us: 

{ } ( ) ( )( ) ( )
1,

max , mod ,
k k n
i ik k k k k y k k

i i MS PR TDMA i i MS i MSk
y y k

slots Q
Q B T T T slots Q mpc T nss Q i T

mpc
→

= ≠

⎢ ⎥ ⎡ ⎤
⎢ ⎥= + + × + × − ⎢ ⎥
⎢ ⎥ ⎣ ⎦⎣ ⎦

∑ × (9)

where nssy→k(Qi
k, i) denotes a lower bound on the number of skipped slots on node y when the queuing 

time of Si
k is at most Qi

k. The term TMS in (9) represents the amount of time saved when a slot is skipped. 

In the next subsection we will provide the reasoning for the analysis on the number of skipped slots. 

We must now define TTDMA and the blocking factor Bi
k. The term TTDMA can be interpreted as the 

maximum time interval that can elapse between two consecutive accesses to the network by one particular 

node. In our network model, TTDMA and Bi
k are given by: 

PRMS

n

l

l
TDMA TnTmpcT ×+×⎟

⎠

⎞
⎜
⎝

⎛
= ∑

=1

 (10)

( ){ }
1,

min ,
n

k l k k k
i i

l l k
B mpc mpc lp S T n

= ≠

⎡ ⎤⎛ ⎞
= + × +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦
∑ MS PRT×  (11)

3.2. Determining the Number of Skipped Slots 

The number of skipped slots on node y is the difference between the number of slots that were 

available to node y and the actual number of slots used by node y. Computing these quantities exactly is 

however not trivial, and therefore we will use upper and lower bounds on them. A quantity that starts with 

LB stands for a lower bound and, analogously, UB stands for an upper bound. Using these bounds and 

observing that any lower bound on the number of messages must be non-negative, we can state that: 
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{
}

max 0,yLBnumber of unused slots on N LBnumber of slots that were available to node y

UBnumber of slots that was used by node y

= −  

Since each TDMA cycle makes available mpck slots on node k, we can compute the number of TDMA 

cycles during Qi
k. We also know that every time node y has the right to transmit, node y has mpcy slots 

available. This gives us: 

( )k k
i i y

k

slots Q
LBnumber of slots that were available to node y mpc

mpc

⎢ ⎥
⎢ ⎥= ×
⎢ ⎥⎣ ⎦

 

Recall from the discussion in Figure 2 that when considering the effect of unused slots at another 

node y on Si
k, we should not consider the time window of the queuing time for Si

k, instead we must 

consider a time window that starts earlier and ends earlier. Recall from Section 2 that Φy→k denotes how 

much earlier it starts. We let X y→k denote how much earlier it ends. It is difficult however to compute 

X y→k, so instead we find Ω y→k such that Ω y→k ≤ X y→k. Based on this, we can state that: 

( )
y y
j

k y k y k k
i iy

y
S on N j

Q Q
UBnumber of slots that was used by node y ns

T

→ →

∀

⎢ ⎥+Φ −Ω
⎢ ⎥= +
⎢ ⎥⎣ ⎦

∑  

Combining these equations gives us: 

( ) ( ) ( )
, max 0,

y y
j

k k k y k y k k
i i i iy k k y y

i k y
S on N j

slots Q Q Q
nss Q i mpc ns

mpc T

→ →
→

∀

⎧ ⎫⎛ ⎞⎢ ⎥ ⎢ +Φ −Ω⎪ ⎪⎜ ⎟⎢ ⎥ ⎢= × − +⎨ ⎬⎜ ⎟⎢ ⎥ ⎢⎪ ⎪⎣ ⎦ ⎣⎝ ⎠⎩ ⎭
∑

⎥
⎥
⎥⎦

 (12)

In order to calculate nssy→k(Qi
k, i) using (12) we need to calculate Ω y→k . To understand the notion of 

Ω y→k, let us consider the special case Ω prev(k)→k. Let u denote the time of the transmission of the message 

from Si
k. Also, let v denote the latest time such that (i) at time v it holds that address_counter  

transitions to prev(k) and (ii) v<u. It is clear that any messages that arrive on node prev(k) after time v 

cannot affect the queuing time of the message from Si
k. Because of that we have Ω prev(k)→k=u-v. Note that 

u-v is the time that node prev(k) had address_counter = prev(k) and hence Ω prev(k)→k depends on how 

many messages node prev(k) transmitted. Therefore, we have: 
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( ) ( )( )( ) prev k kprev k k k k
i MS slots i PRQ T n Q T

→→Ω = × +  

where np       
s
r
l
e
o

v
ts
(k)→k is a lower bound on the number of messages sent by node prev(k) last time this node had 

the right to transmit before the time window of duration Qi
k ended. Reasoning in the same way, we obtain 

the more general expression:  

( ) ( ) ( )( )

0,

,
y k

y k k
i k next y k k

MS slots i PR i

if y k
Q

T n Q T Q if y k
→

→
→

=⎧⎪Ω =⎨ × + +Ω⎪⎩ ≠
 (13)

where ny
s
→
lot

k
s  is a lower bound on the number of messages sent by node y at the last time node y held the 

right to transmit before the time window of duration Qi
k ended. In order to find ny

s
→
lot

k
s (Qi

k) we compute a 

lower bound on the length of the output queue of node y at the last time node y held the right to transmit 

before the time window of duration Qi
k ended. LBql y→k denotes this lower bound. If we know LBql y→k, 

we can compute ny
s
→
lot

k
s: 

( ) ( ){ }{ }min ,max 0,y k k y y k k
slots i in Q mpc LBql Q→ →=  (14)

A lower bound on the queue length must be 0 or more, hence the term max{0, LBql y→k(Qi
k)} in (14). It 

represents another lower bound on the queue length. If, however, this would be greater than mpcy, then 

ny
s
→
lot

k
s = mpcy, because no more than mpcy messages can be transmitted in the last TDMA cycle. 

We will now focus on computing LBql y→k. Let ql y denote the length of the output queue of node y at 

time L y→k(Qi
k) after the message from Si

k was put in the output queue. L y→k(Qi
k) is given by: 

( ) ( )( )( )max 0,y k k k next y k k y
i i i MSL Q Q Q mpc T T→ →⎧ ⎫

= − Ω + × +⎨ ⎬
⎩ ⎭

PR
 (15)

As a message from Si
k was in the queue at the end of the time window Qi

k, clearly it must have been in 

the queue earlier. Hence, we know that 1 ≤ ql k. Since the queue length of node k depends on the number 

of arrived messages and on the number of transmitted messages, we obtain: 
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( )
k k
j

y k k
k ki

k
S on N j

L Qql ntransmitted
T

→

∀

⎡ ⎤
≤ −⎢ ⎥

⎢ ⎥⎢ ⎥
∑  (16)

where ntransmittedk denotes the number of messages transmitted during the time window of length L y→k. 

Using a similar reasoning we obtain: 

( )
y y
j

y k k
y i

y
S on N j

L Qql ntransmitted
T

→

∀

⎢ ⎥
≥ −⎢ ⎥

⎢ ⎥⎣ ⎦
∑ y  (17)

Observe that (16) and (17) offer a lower/upper bound on the output queue length, and that they refer to 

the queue length at different nodes. 

Consider those TDMA cycles such that node y transmitted at least one message during the time interval 

of length L y→k. Let nTDMArounds y denote the number of those TDMA cycles. We know that the network 

is fair, in the sense that the difference between the number of TDMA cycles received by any two nodes is 

at most one. Hence:  

1+≤ ky snTDMAcyclesnTDMAcycle  (18)

Since node k used all its messages in all its time slots during the window of length Qi
k, it also used all 

its time slots in the window of length L y→k(Qi
k). This implies that all its TDMA cycles transmitted mpck 

messages. Therefore: 

⎥
⎥

⎤
⎢
⎢

⎡
≤ k

k
k

mpc
edntransmittsnTDMAcycle  (19)

On node y, we do not know whether slots are skipped or not and how many slots are skipped. We do 

know however that every TDMA cycle can transmit at most mpcy messages. Hence, we have: 

yyy mpcsnTDMAcycleedntransmitt ×≤  (20)

Combining (18), (19) and (20) yields: 

y
k

k
y mpc

mpc
edntransmittedntransmitt ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎥

⎥

⎤
⎢
⎢

⎡
≤ 1  (21)
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We have already seen that 1 ≤ qlk. Combining it with (16), (17) and (21) leads to (22).  

( )
( )

1

( ) 1
k k
j

y y
j

y k k
i

ky k k
S on N jiy k k y

i y k
S on N j

L Q
TL Q

LBql Q mpc
T mpc

→

→
∀

→

∀

⎛ ⎞⎡ ⎤⎛ ⎞⎡ ⎤
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥ −
⎜ ⎟⎢ ⎥⎜ ⎟⎢ ⎥ ⎢ ⎥⎢ ⎥⎝ ⎠⎜ ⎟⎢ ⎥⎢ ⎥= − +
⎜ ⎟⎢ ⎥⎢ ⎥⎣ ⎦ ⎜ ⎟⎢ ⎥
⎜ ⎟⎢ ⎥
⎢ ⎥⎝ ⎠

∑
∑ ×

 
(22)

The expression for LBql y→k in (22) can be used in (14) and then in (13) to obtain the value of Ω y→k. 

Note that Ω y→k can be computed without circular dependencies because Ω k→k is computed from (13) and 

then Ω prev(k)→k is computed based on Ω k→k. Ω prev(prev(k))→k is computed based Ω prev(k)→k, and so on. 

4. Exact Analysis 

We will now develop an exact analysis of TDMA/SS. The approach is to use results from Section 2 to 

find the worst-case queuing time of a message stream and simulate scheduling in order to decide if the 

system meets all deadlines. We will describe the algorithm to determine the length Lbpk of the busy 

period, and the queuing time for a given stream. 

The length Lbpk of the busy period is found by developing the timing behaviour, departing from the 

time instant that maximizes the amount of interference caused by higher-priority message streams. 

The queuing time is found similarly by developing the timing behaviour of the network, departing 

from an initial state such that the maximum queuing time from of the given stream is found. For this 

initial state, it employs the critical instant definition as described in Section 2. Thus, the queuing time 

resulting from the time evolution of the protocol departing from this instant, found within the length Lbpk 

of the busy period will be the maximum queuing time. 

4.1. Overview 

Algorithm 1 shows how to develop the timing behaviour of the network. This straightforward 

algorithm introduces the main steps necessary to do this. We start by setting up the initial state of the 
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network. Then we establish, for now, that the node starting to access the network is node 1, and enter a 

loop where the simulated time is developed according to the medium access rules. At each step of the 

loop, we will check for messages that where activated until the current time, delivering messages of these 

message streams to the respective node’s output queue and maintain the state of the different output 

queues. By checking the current state of the queues, we decide how to make the time evolve. 

In this case, Algorithm 1 will develop the timing behaviour of the network for a pre-defined amount of 

time (defined by MAX_TIME). Algorithm 1 conveys the main idea we will employ. In the following 

sections we present the same basic structure of the algorithm, with the necessary changes to find the 

length of the busy period and the queuing time for a given stream. 

Algorithm 1. Develop the timing behaviour of the network departing from a defined initial state 

1. begin  
2.   Setup initial state of the network;  
3.   time ← 0; 
4.   address_counter ← 1; 
5.   loop 
6.    Put messages from streams activated until current time in the respective output queue; 
7.    Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue; 
8.    Increase time according to message queue state and medium access rules; 
9.    address_counter ← next(address_counter ); 

10.   until time ≥ MAX_TIME; 
11. end 

 

Algorithm 2. Find the length Lbpk of the busy period 

1. input 
2.   k – the index of the node;  
3. begin 
4.   Setup initial state of the network; 
5.   time ← 0; 
6.   address_counter ← next( k ); 
7.   Lbpk← 0; 
8.   loop 
9.    Put messages from streams activated until current time in the respective output queue; 

10.    if address_counter  = k and the output queue of node k is empty then 
11.     Lbpk ← time; 
12.    else 
13.     Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue; 
14.     Increase time according to message queue state and medium access rules; 
15.     address_counter ← next( k ); 
16.    end if 
17.   until Lbpk > 0 or time ≥ lcm(∀T k on nodek ) ; i
18.   if Lbpk > 0 then return Lbpk; else  return lcm (∀Ti

k on nodek ); end if 
19. end 

4.2. Algorithm to Find the Length of the Busy Period  

To find the length Lbpk of the busy period we will follow the general structure of Algorithm 1. In this case, we 

have a different stopping condition. Recalling the definition of busy period: for the most demanding arrival pattern, 
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the length of the busy period will be from t = 0 up to the first idle time. So we merely have to develop the timing 

behaviour of the network, until we find a turn of node k where its message queue is empty, as shown by Algorithm 2.  

To setup the initial state of the network, we follow Condition 2) from Section 2 and also consider the 

case where all message streams on node k arrive simultaneously, which maximizes the amount of 

interference caused by higher-priority streams. Looking at line 17 from Algorithm 2, we can see that the 

loop will run until a value for Lbpk is found or, to protect from cases where there is no idle time, the loop 

stops when the simulated time is more than the least common multiple (lcm) of the periods from all 

streams in node k.  

 

Algorithm 3. Compute the queuing time of Si
k 

1. input  
ing time; 2.   k  – the node index where the stream for which we will compute the queu

the index of the stream for which we will compute the queuing time; 3.   i   – 
4. begin 
5.   max_queuing_time ← FAILURE; 
6.   Compute the set of activation times Ai

k; 
7.   for all activation_time ∈ Ai

k 
8.    Setup initial state of the network;  
9.    Set activation time of Si

k to activation_time 
10.    time ← 0; 
11.    address_counter ← k;   
12.    loop 
13.     if (Si

k is activated in this cycle) then  
14.       Compute blocking time Bi

k; 
15.      time ← time + Bi

k; 
16.      address_counter ← next( k ); 
17.     end if 
18.     Put messages from streams activated until current time in the respective output queue; 
19.     Try to take up to mpcaddress_counter messages from nodeaddress_counter output queue; 
20.     Increase time according to message queue state and medium access rules; 
21.     address_counter ← next( address_counter  ); 
22.    until (current_time – activation_time) > deadline of Si

k or a message from Si
k is removed from node k’s output queue 

23.    if a message from Si
k was removed from Nk’s output queue and (current_time–activation_time)>max_queuing_time then 

24.     max_queuing_time ← current_time – activation_time; 
25.    end if 
26.   end for 
27.   return max_queuing_time; 
28. end 

 

4.3. Algorithm to Find the Maximum Queuing Time 

To determine the maximum queuing time of a stream we can adopt a similar approach. To do this, we 

simply determine the set of activation times Ak to test and add a loop that will execute for each of these 

activation times (Algorithm 3, lines 7 to 26). In line 23 of Algorithm 3 we check if the obtained queuing 

time is the maximum so far, so that, when we have tried all the activation times in set Ak, we will have the 

maximum queuing time. 
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In Algorithm 3, the stopping condition for the development of the timing behaviour (line 22) was also 

modified. Now this loop is run until a message from the stream for which we will compute the queuing 

time is sent, or until its deadline is exceeded. Another difference introduced was that the insertion of 

blocking time. The blocking time must be introduced in the time instant preceding the activation of the 

stream for which we will compute the queuing time. The blocking time is computed by Equation (11). 

The blocking time is inserted by increasing the simulated time and changing address_counter to the 

next node. 

Algorithm 4. Increase time according to message queue state and medium access rules 
1. input 
2. address_counter  – the node index of the node currently holding the right to access the medium 
3. k     – the node index where the stream which we will compute the queuing time 
4. i     – the index of the stream which we will compute the queuing time 
5. begin 
6.  for all messages M from node’s Naddress_counter message queue up to mpcaddress_counter 
7.   Remove highest priority message M from current node’s output queue; 
8.   if M is not a message from Sik then 
9.    time ← time + TMS; 

10.   end if 
11.  end for 
12.  time ← time + TPR;  
13. end 

 

4.4. Detailing the Algorithms 

This section will present further details for the most important components of the algorithms presented 

previously.  

Compute the set of activation times Ai
k – The first component we will detail here is the step to 

compute the set of activation times Ai
k. This set will depend on the scheduling employed to the output 

queues. The activation times set will be defined according to Equation (6). 

Setup initial state of the network – To setup the initial state of the network, we employ the critical 

instant as defined previously. Remember that our definition of Φ in Equation (5) returns the amount of 

time that messages must be synchronously released in each node.  

Note that, in Algorithm 3, the activation time of the stream for which we will compute the queuing 

time is set again for each activation time.  
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Put messages from streams activated until current time in the respective output queue – This is 

done by checking all streams in the network for which the activation time has elapsed. Streams in this 

condition will generate a message to be put in the respective node’s output queue. Additionally, the 

activation time of the stream is set to its next period. 

Increase time according to message queue state and medium access rules – To develop time, the 

state of the output queue from the node currently holding the right to access the medium is verified. For 

each message in the output queue, up to mpcaddress_counter, the time is increased by TMS. At the end of the 

node’s turn, the time is increased by TPR. Algorithm 4 illustrates this procedure.  

Figure 5. Example of a network scenario (1). 
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(24)

4.5. Numerical Example 

Let us put forward a demonstration scenario that will enable us to better grasp the algorithm behaviour. 

Equations (23) and (24) in Figure 5 describe this demonstration scenario.  

Figure 6 presents the network schedule for node2. It is also possible to observe the evolution of the 

node’s queue and the queuing time for S2
2.  

This network schedule depicts exactly the algorithm’s behaviour. When the stream given as input for 

the algorithm is S2
2, the algorithm will develop time by simulating the network schedule and produce the 

exact time evolution as depicted in Figure 6, when the activation time to be tested for S2
2 is 0, which is the 

activation time leading to the maximum queuing delay.  
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The algorithm will perform from time 0 to time 30. At time 30, the algorithm will verify that the S2
2 

given as input was scheduled to be sent, and therefore it will exit returning the current time value.  

Using an implementation of the algorithm, we can obtain the resulting queuing times. Table 1 presents 

the queuing times for all messages in this scenario resulting from the algorithm presented (column 

labelled q). The column labelled Q contains the calculated queuing times using the analysis in Section 3. 

We can see that our algorithm for the exact analysis presents tighter results than the non-exact analysis. 

This is expected. 
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Figure 6. Network schedule for demonstration scenario (1). 

Table 1. Queuing times for demonstration scenario (1). 

Node Stream Q 
(time units) 

q  
(time units)

 Node Stream Q q  
(time units) (time units) 

S1
1 8 8  S1

4 8 8 
S2

1 16 9  S2
4 16 9 

S3
1 16 16  S3

4 17 16 
N1 

S4
1 45 40  S4 4 24 16 

S1
2 

N4 

8 8  S5
4 29 27 

S2
2 24 23  S1

5 8 8 N2 
N5 

S3
2 57 35  S2

5 15 15 
S1

3 8 8      N3 
S2

3 45 32      
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5. Discussion and Related Work 

TDMA/SS has the following advantages. First, TDMA/SS does not require sensing-while-transmitting. 

Second, TDMA/SS relies on nodes that are equipped with a real-time clock, but it does not depend on 

them being synchronised; nodes only need to listen for the protocol slot of length TPR to update the 

address_counter. This is a relevant practical aspect that facilitates the acceptance of TDMA/SS for 

small, inexpensive embedded devices with bare hardware resources. Implementations of TDMA/SS only 

require this timer, as opposed to other TDMA protocols that typically need more timers. This was also 

one of the advantages of the design of BuST [13], a token protocol with hard real-time characteristics and 

budget sharing, with the features related to TDMA/SS, Third, TDMA/SS is resilient to crashes if nodes 

are fail-silent. (One way to implement TDMA/SS, as was done in P-NET standard [4], is that a node 

transmitting a protocol slot keeps silent for TPR time units. Then, if a node y crashes, this idle time will 

cause, address_counter to become next(y) after TPR time units, and hence the operation of the other 

nodes are unaffected). 

As already mentioned, a TDMA/SS-like protocol was studied in [5] but it had the drawbacks of 

(i) assuming FIFO scheduling on each node, (ii) lacking an accurate calculation of Ω, and (iii) lacking the 

opportunity to transmit multiple messages per TDMA cycle. 

The TDMA/SS protocol is similar to the ARINC 629 protocol in that ARINC 629 is a TDMA protocol 

which does not need synchronized clocks. Nodes are given time slots in a pre-specified order; they have a 

terminal gap (TG) specifying an idle time interval between nodes (similar to our TPR) and they permit slot 

skipping. Unfortunately, the only available analysis of ARINC 629 [12] is not accurate in the sense that it 

does neither take into account effects like the Φ and the Ω, nor the local scheduling of output queues. 

Scheduling messages in TDMA without slot skipping [1-3] is well studied but, as we have already 

mentioned, they may require long TDMA cycles. Usually they create schedules before run-time. 

However, one recently proposed protocol [14] creates the schedule at run-time in a distributed fashion. 

20 



First, it selects periods (shorter than required) to make sure that periods are harmonic. Then, at run-time, 

when a collision is detected, a winner of the colliding nodes is elected. The winning node will transmit 

and it is assigned an offset so future collisions cannot occur. Such an approach is efficient in the sense 

that no time is wasted on protocol slots. However, synchronized clocks are required. 

The timed token protocol is similar to TDMA/SS, and it has been used in FDDI rings and IEEE 802.5. 

Schedulability analysis techniques and algorithms to assign Hk (similar to our mpck) have been developed 

[15-17]. These protocols differ from TDMA/SS in that they explicitly pass a token while TDMA/SS does 

not. Timed token networks have a target token circulation time. This is similar to our TTDMA, but there is 

one important difference though. If the token circulates faster in one circulation, then this time can be 

used on a node to transmit soft real-time messages (this is called asynchronous). In TDMA/SS however, 

the address_counter will actually change faster, and hence there will be more capacity for hard real-

time traffic. Hence, there are hard real-time message streams that can be scheduled with TDMA/SS but 

that cannot be scheduled with the timed token protocol. The analysis of timed token protocols performed 

in holistic scheduling [10, 11] addresses a problem similar to ours (the Sp in [10] is equivalent to our 

mpcp; in [11] mpck is more restricted, it is assumed to be 1). However, neither [10] nor [11] take the Φ and 

Ω y→k into account or something similar (issues due the fact that this is a distributed system). 

Real-time scheduling on IEEE 802.5 networks was studied in [18]. It uses explicitly message passing 

where a token must circulate and nodes announce their priority before transmitting. That is unlike 

TDMA/SS which only prioritises messages on each node. 

Real-time scheduling on networks with explicit token bus was also studied in [19]. Each node is given 

a budget and if the hard real-time traffic (called synchronous traffic) on a node requests less than the 

budget then the remaining capacity is made available for non-real-time traffic. The analysis of TDMA/SS 

that we present in this paper is different however in that in TDMA/SS, an unused slot makes capacity 

available for hard real-time traffic at another slot and the amount of that capacity made available is 

calculated with our analysis ot TDMA/SS. 
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Implicit EDF is a TDMA MAC protocol proposed for wireless channels [20, 21]. Although its 

operation is very different from TDMA/SS, Implicit EDF shares many of the advantages offered by 

TDMA/SS in that (i) both of them are collision-free yet they do not need to store the entire TDMA 

schedule, (ii) they do not depend on synchronized clocks and (iii) they can operate even in the presence of 

certain node failures (crash failures). One key difference however is that the operation of the TDMA/SS 

MAC protocol does not require nodes to know all messages streams in the system and consequently it is 

easy to add new message streams and/or nodes to the system. In fact, this was one of the main motivation 

for the P-NET standard [4]; a standard that uses TDMA/SS with SMTC. 

An important feature of our analysis of TDMA/SS in this paper is that a node k can have mpck>1. This 

feature (mpck >1) is useful because it reduces the amount of time that the network spends on sending a 

protocol slot. But naturally, this feature begs the question: How should mpc:s be assigned to nodes such 

that all deadlines are met? A simple approach is as follows. Initially assign mpck =1 to each node k. 

Perform a schedulability test and record which nodes had a message stream that missed a deadlines. For 

those nodes, increase mpc by one. As long as there is a deadline miss and TTDMA does not exceed the 

minimum Di of all message streams then continue to perform schedulability tests and increase mpck for 

those nodes that missed a deadline. An interesting aspects of this simple algorithm to assign mpck is that it 

can be performed by replacing the schedulability test by run-time monitoring of deadline misses and this 

makes the algorithm for assigning mpc:s to nodes fully decentralized. 

6. Conclusions and Future Work 

TDMA/SS represents an important class of TDMA networks, implemented in COTS hardware, and it 

is suited for real-time applications. We have presented an analysis of TDMA/SS for DM scheduled output 

queues and also an algorithm that computes exact queuing times for TDMA/SS. The algorithm was based 

on simulation. We left open the questions (i) whether it is possible to formulate exact schedulability 
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conditions as a set of inequalities and (ii) how to perform approximate schedulability [22] analysis for 

TDMA/SS and in that way achieve a polynomial time-complexity. 

References 

[1] H. Kopetz and G. Grunsteidl, "TTP-a protocol for fault-tolerant real-time systems," IEEE Computer, vol. 27, pp. 14-24, 1994. 
[2] L. Dong, R. Melhem, and D. Mossé, "Scheduling Algorithms for Dynamic Message Streams with Distance Constraints in TDMA 

protocol," in 12th Euromicro Conference on Real-Time Systems (ECRTS'00), 2000, pp. 239-246. 
[3] C.-C. Han, K.-J. Lin, and C.-J. Hou, "Distance-constrained scheduling and its applications to real-time systems," IEEE 

Transactions on Computers, vol. 45, pp. 814 -826, 1996. 
[4] IPUO, "The P-NET Standard," International P-NET User Organisation, 1994. 
[5] E. Tovar, F. Vasques, and A. Burns, "Communication Response Time in P-NET Networks: Worst-Case Analysis Considering the 

Actual Token Utilisation," Real-Time Systems Journal, Kluwer Academic Publishers, vol. 22, pp. 229-249, May 2002. 
[6] C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment," Journal of the 

ACM (JACM), vol. 20, pp. 46-61, 1973. 
[7] L. George, N. Rivierre, and M. Spuri, "Preemptive and Non-Preemptive Real-Time UniProcessor Scheduling," INRIA, Technical 

Report RR-2966, September 1996. 
[8] R. I. Davis, A. Burns, R. J. Bril, and J. J. Lukkien, "Controller Area Network (CAN) schedulability analysis: Refuted, Revisited 

and Revised," Real-Time Systems, vol. 35, pp. 239-272, 2007. 
[9] M. Joseph and P. Pandya, "Finding Response Times in a Real-Time System," The Computer Journal, British Computer Society, 

vol. 29, pp. 390-395, October 1986. 
[10] K. Tindell, "Analysis of Hard Real-Time Communications," Real-Time Systems Journal, vol. 9, pp. 147 - 171, 1995. 
[11] M. Spuri, "Holistic Analysis for Deadline Scheduled Real-Time Distributed Systems," INRIA, Technical Report RR-2873, April 

1996. 
[12] N. Audsley and A. Grigg, "Timing analysis of the ARINC 629 databus for real-time application," Microprocessors and 

Microsystems, vol. 21, pp. 55-61, 1997. 
[13] G. Franchino, G. C. Buttazzo, and T. Facchinetti, "BuST: Budget Sharing Token protocol for hard real-time communication," in 

Emerging Technologies & Factory Automation, 2007. ETFA. IEEE Conference on, 2007, pp. 1278-1285. 
[14] T. W. Carley, M. A. Ba, R. Barua, and D. B. Stewart, "Contention-Free Periodic Message Scheduler Medium Access Control in 

Wireless Sensor / Actuator Networks," in 24th IEEE International Real-Time Systems Symposium (RTSS'03), 2003, p. 298. 
[15] S. Zhang and A. Burns, "An Optimal Synchronous Bandwidth Allocation Scheme for Guaranteeing Synchronous Message 

Deadlines with the Timed-Token MAC Protocol," IEEE/ACM Transactions on Networking (TON), vol. 3, pp. 729 - 741, 
December 1995 1995. 

[16] G. Agrawal, "Guaranteeing Synchronous Message Deadlines with the Timed Token Medium Access Control Protocol," IEEE 
Transactions on Computers, vol. 43, pp. 327 - 339, March 1994 1994. 

[17] N. Malcolm and W. Zhao, "The timed-token protocol for real-time communications," IEEE Computer, vol. 27, pp. 35-41, 1994. 
[18] J. K. Strosnider, T. Marchok, and J. Lehoczky, "Advanced Real-time Scheduling Using the IEEE 802.5 Token Ring," in 9th IEEE 

International Real-Time Systems Symposium (RTSS'88), Huntsville, Alabama, USA, 1988, pp. 42-52. 
[19] G. Franchino, G. Buttazzo, and T. Facchinetti, "BuST: Budget Sharing Token Protocol for Hard Real-Time Communication," in 

12th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA 2007), Patras, Greece, 2007. 
[20] M. Caccamo and L. Y. Zhang, "An Implicit Prioritized Access Protocol for Wireless Sensor Networks," in 23rd IEEE 

International Real-Time Systems Symposium (RTSS'02), Austin, Texas, 2002, pp. 39-48. 
[21] T. L. Crenshaw, A. Tirumala, S. Hoke, and M. Caccamo, "A Robust Implicit Access Protocol for Real-Time Wireless 

Collaboration," in 17th Euromicro Conference on Real-Time Systems (ECRTS'05), Palma de Mallorca, Balearic Islands, Spain, 
2005, pp. 177 - 186. 

[22] S. Chakraborty, S. Künzli, and L. Thiele, "Approximate Schedulability Analysis," in 23rd IEEE International Real-Time Systems 
Symposium (RTSS'02), Austin, Texas, 2002. 

 

23 



24 

Appendix A – List of Symbols 

Symbol Meaning 
TMS Time slot corresponding the transmission of one message 

TPR Time slot corresponding to a message signaling that the node will not transmit any more messages during the 
current TDMA cycle 

net A TDMA/SS network 
Nk A node k, of the TDMA/SS network 
Si

k A message stream i at node k 
nsk Number of message streams in node k 
sched_policyk Policy adopted for scheduling messages at node k’s local queue 
msg_queuek Message queue of node k 
mpck Messages per (TDMA) cycle allowed for node k 
Ti

k  Periodicity at which a message related to a stream Si
k is queued 

Di
k Relative deadline of Si

k.  
qi

k Actual or obtained with the exact analysis maximum queuing time of messages belonging to Si
k 

ri
k Maximum response time of messages belonging to Si

k 
Qi

k Upper bound on the queuing time of messages belonging to Si
k  

Ri
k Upper bound on the response time of messages belonging to Si

k 
prev(k) Previous node (obtained by circularly incrementing the current address) 
next(k) Next node (obtained by circularly incrementing the current address) 
hpk(Si

k) Subset of messages streams on node k with higher priority than Si
k 

lpk(Si
k) Subset of messages streams on node k with lower priority than Si

k 
address_counter Variable that keeps track of the node holding the right to transmit  

Φy→k Amount of time which messages from nodes y should arrive earlier in order to delay the response times of the 
messages in node k the most 

Lbpk Length of the busy period of a node k 
TTDMA TDMA cycle duration when no slots are skipped 
Bi

k Blocking factor due to the non-preemptable nature of message transmissions and TDMA cycle 
nssy→k(t, i) Lower bound on the number of skipped slots on node y during a time interval of length t 
sloti

k(Qi
k)  Number of time slots needed during Qi

k by message streams of higher priority than Si
k 

Ω y→k(t) Lower bound on the amount that the window of node y should be shrunk  at the end of time t (in order to avoid 
considering more messages than those that actual cause interference) 

LBql y→k(t) Lower bound on the queue length at node y during a time interval of duration t 
ny

s
→
lot

k
s (t) Lower bound on the number of messages transmitted during a time interval of duration t 

Ly→k(t) Amount of time after the message from Si
k was put in the output queue 

ql y Length of the output queue of node y at time Ly→k 
ntransmittedk Number of messages transmitted during the time window of length Ly→k 
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