

An Ada Framework for QoS-Aware
Applications

Luis Miguel Pinho
Luis Nogueira
Ricardo Barbosa

www.hurray.isep.ipp.pt

Technical Report

TR-050601

Version: 1.0

Date: June 2005

An Ada Framework for QoS-Aware Applications
Luis Miguel PINHO, Luis NOGUEIRA, Ricardo BARBOSA

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {lpinho, luís, rbarbosa}@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
In this paper we present a framework for managing QoS-aware applications in a dynamic, ad-hoc, distributed
environment. This framework considers an available set of wireless/mobile and fixed nodes, which may
temporally form groups in order to process a set of related services, and wherethere is the need to support
different levels of service and different combinations of quality requirements. This framework is being
developed both for testing and validating an approach, based on multidimensional QoS properties, which
provides service negotiation and proposal evaluation algorithms, and for assessing the suitability of the Ada
language to be used in the context of dynamic, QoS-aware systems.

1

An Ada Framework for QoS-Aware Applications

Luís Miguel Pinho, Luis Nogueira, Ricardo Barbosa

Department of Computer Engineering, ISEP, Polytechnic Institute of Porto,
Rua Dr. António Bernardino Almeida, 431, 4200-072 Porto, Portugal

{lpinho,luis,rbarbosa}@dei.isep.ipp.pt

Abstract. In this paper we present a framework for managing QoS-aware
applications in a dynamic, ad-hoc, distributed environment. This framework
considers an available set of wireless/mobile and fixed nodes, which may
temporally form groups in order to process a set of related services, and where
there is the need to support different levels of service and different
combinations of quality requirements. This framework is being developed both
for testing and validating an approach, based on multidimensional QoS
properties, which provides service negotiation and proposal evaluation
algorithms, and for assessing the suitability of the Ada language to be used in
the context of dynamic, QoS-aware systems.

1 Introduction

Quality of Service (QoS) is considered an important user demand, receiving wide
attention in real-time multimedia research [1][2]. However, in most systems, users do
not have any real influence over the QoS they can obtain, since service characteristics
are fixed when the systems are initiated. Furthermore, multimedia applications (and
their users) can differ enormously in their service requirements as well as in the
resources which need to be available to them [3]. These applications present
increasingly complex demands on quality of service, reflected in multiple attributes
over multiple quality dimensions.

At the same time, the use of laptop computers coupled with wireless network
interfaces is growing rapidly. Recent technological development lead to the fusion of
wireless ad-hoc networks, peer-to-peer computing and multimedia content. As
devices move within the range of each others a local ad-hoc network forms
spontaneously, creating a new, highly dynamic and decentralized environment for
multimedia applications.

Such an environment is expected to be heterogeneous, consisting of nodes with
several resource capabilities. For some of those there may be a constraint on the type
and size of applications they can execute with user's acceptable quality of service. For
example, video conferencing systems often use compression schemes that are
effective, but computationally intensive, trading CPU time for limited network
bandwidth. A mobile client with limited CPU and memory capacity, but sufficient
link speed, with nearby more powerful (or less congested) devices, can divide the

2

computational intensive processing into tasks and spread it among different
neighbours.

It is obvious that these requirements for more flexible QoS-aware applications
impact on the available support from the underlying environment (language,
middleware, operating system). In what languages are concerned, Ada has been for a
long time considered suitable for the development of traditional, static, real-time
applications, but is often considered to be limited concerning the support to more
dynamic real-time applications. It is our belief that this latter idea is not true, and,
moreover, that Ada is an enabling technology for supporting QoS-aware type of real-
time applications

Therefore, in this paper we present a framework which is currently being built for
testing and validating a QoS applications support approach which is currently being
specified [4]. This framework is being implemented in Ada, using the currently
available mechanisms, which will allow providing sufficient insight on the suitability
of the language. The rest of this paper is structured as follows. The next section
provides a brief description of the considered model for the system, and the used
approach for QoS requirements representation and service requests. Section 3 presents
an overview of the Ada framework, considering its structure and main functionalities,
while sections 4 and 5 present, respectively, how negotiation and acceptance of
services is performed, and how resource managers are implemented. Finally, section 6
presents some conclusions.

2 System Model

In this work, we consider a system where wireless/mobile nodes may dynamically
enter the range of each other, and of wired infrastructures (even clusters of nodes [5]),
opportunistically taking advantage of the local ad-hoc network that is spontaneously
created, forming a temporary coalition for service execution (Figure 1). Coalition
formation is necessary when a single node cannot execute a specific service, but it
may also be beneficial when groups perform more efficiently when compared to a
single node performance.

Node

Node

Leaving the
network Node Entering the

network

Node

Node Node

Fig. 1. System Overview

Ad-hoc networks, i.e., networks without any fixed network infrastructure (such as
base stations, etc.) are gaining much interest in research as well as in industry. With

3

ad-hoc network mechanisms, clients that are in sufficiently close proximity are able to
communicate directly without the need of further, externally provided, infrastructure.
At first glance, an individual mobile device may not have sufficient capacity and
computation power for an effective integration in a distributed multimedia processing
environment. However, if we exploit the aggregated mobile power instead of single,
individual power and consider the exponential rise of mobile devices and the
continuous developments in wireless technology, then one may conclude that this
collaborative processing can be a valid solution.

This provides a generic model that enables a distributed service allocation, i.e.,
without a central authority distributing the services among nodes. Given a set of
services, a distributed environment must seek the maximization of the associated QoS
constraints. The nodes shall reach efficient service allocation by themselves, seeking a
maximal outcome. This will be achieved via the formation of a temporary group of
individual nodes (coalitions), which, due to its higher flexibility and agility, is capable
of effectively respond to new, challenging, requirements.

It is clear that such a group presents very significant challenges, especially at the
architectural level. Major developments are required in the fields of communications
protocols, data processing and application support. Our goal is to develop the
architecture which enables the creation of a new generation of mobile nodes that can
effectively network together, providing a flexible platform for the support of distinct
network applications. In this model, QoS-aware applications must explicitly request
the service execution form the underlying QoS framework, thus providing explicit
admission for controlling the system, abstracting from existent underlying distributed
middleware and from the operating system. The model itself abstracts from the
communication and execution environments.

2.1 QoS Requirements representation

In [4], QoS requirements are described through a scheme that defines dimensions,
attributes and values, as well as relations that maps dimensions to attributes and
attributes to values:

QoS → {Dim, Attr, Val, DAr, AVr, Deps}

where Dim is the set of QoS dimensions (e.g. Video, Audio), Attr is the set of
attributes identifiers and Val is the set of attribute’s values identifiers. DAr is the
relationship that assigns to each dimension in Dim a set of attributes in Attr, AVr is the
relationship that assigns to each attribute in Attr a specific value in Val and Deps is a
set of relationships defining the dependencies between attributes’ values. Values are
represented by a type (integer, float, enumeration) and domain (discrete, continuous).

As an example of this requirement description, a video streaming application may
define a set of dimensions (and their attributes) that might be associated with a
particular application (the following list is not intended to be exhaustive):

 Dim = {Video Quality, Audio Quality}
 Attr = {color depth, frame rate, sampling rate, sample bits}
 Val = {{1,integer,discrete},{3,integer,discrete},...,
 {[1,...,30],integer,continuous},...}

4

It is clearly infeasible to make the user specify the utility of every quality choice,
for all the QoS dimensions of a particular application. There are simply too many
choices. Instead, a preference order is imposed over the dimensions, its attributes and
their values on user’s service request [4]. While a semantically rich request is
provided, so that the system tries to achieve a service the more closely related to
user’s preferences, a user is actually able to express his preferences in his request.

Suppose that, in a remote surveillance system, video is much more important to the
user than audio. Assuming that for a particular user a grey scale, low frame rate is fine
for video, his request could be as follows:

1. Video Quality
(a) frame rate : [10,...,5], [4,...1]
(b) color depth : 3, 1

2. Audio Quality
(a) sampling rate : 8
(b) sample bits : 8

The relative decreasing order of importance imposed in dimensions, attributes and
values expresses user’s preferences, that is, elements identified by lower indexes are
more important than elements identified by higher indexes. In the example above,
video is more important than audio, and frame rate is more important than color depth
in the Video Quality dimension. In a similar way, the audio sampling rate is more
important than the sampling size. For each of these attributes, a preference order for
the QoS values is as well expressed.

3 The Ada QoS-Aware Framework

Figure 2 presents the structure of the proposed framework. Central to the behaviour of
the framework, is the QoS Provider, which is the responsible for all the process of
both distributed and local resource requests.

Negotiation
Organizer

Local
Provider

 Resource
Manager

Communication Interface

Application

Application Support

Management

QoS
Provider

Fig. 2. Framework Structure

5

The QoS Provider, rather than reserving resources directly, contacts the Resource
Managers to grant specific resource amounts to the requesting task. It is the QoS
Provider which receives the user’s preferences for all the QoS dimensions of a
particular application, which are then distributed among the Resource Managers.

Within the QoS Provider, the Negotiation Organizer is the responsible for the
collaboration of all of the current nodes in the system, by implementing the
negotiation and proposal evaluation algorithms of [4], atomically distributing service
requests, receiving the individual nodes’ proposals for each service and deciding
which node(s) will provide the service. Note that for now we consider the existence of
an atomic broadcast mechanism [6] in the system, thus by guaranteeing that all nodes
will receive the same service requests and proposals in the same order, we guarantee
that the decision will be the same in all nodes of the system.

The Local Provider is responsible for replying to negotiation requests, by making a
proposal using a heuristic algorithm [4] inspired in the local QoS optimization
heuristic of [7]. This module is also responsible for maintaining the state of the
resource allocations and services provided in each node.

The System Manager module will be responsible for maintaining the overall
system configuration, due to the dynamics of nodes entering and leaving the system,
and for detecting coalition operation and dissolution. The Resource Managers are the
modules that manage a particular resource. These modules interface with the actual
implementation in a particular system of the resource controllers, such as the device
driver for the network, the scheduler for the CPU, or by software that manages other
resources (such as memory). It is obvious that, although we consider a collaborative
environment, proper resource usage must be monitored in run time [8], in order for
system resource managers be able to decide based on the actual resource usage of the
system, not only on the resource assumptions of executing services.

User Quality
(High, Medium, Low)

Interactive
User

Video Quality
(Color Depth, Frame Rate)

Audio Quality
(Sample Rate, Sample Bits)

CPU
(Period, Cost)

Memory
(Quantity)

User
Application

Service
Provider

Fig. 3. Resource Managers Layering

One important issue is the ability of resource managers to use each other, in order to
allow systems to be built supporting QoS requirements either from the point of view
of the user (e.g. high quality), of applications (e.g. frame rate) or of the system (e.g.

6

period and cost). Nevertheless, special care must be taken that a service request is not
performed with accumulative resource requests on these different levels.

As an example, a particular system may provide the resource manager layering of
Figure 3. With this layering, an interactive user application could be more friendly
and easier to use by providing only high-level user perceptive quality, whilst other
user applications could be programmed to use application-related QoS constraints.
Finally, service providers would collect the service requirements at the system level.

4 The QoS Provider

Figure 4 presents the structure of the QoS Provider module. New service requests are
made by the communication interface (applications call this interface in order to
guarantee the order of service requests). Applications may request information
concerning the actual QoS values of currently executing (in this node) services. The
module also receives/sends proposals from/to other nodes concerning a service being
negotiated.

QoS
Provider Negotiation

 Organizer Local
Provider

Communication Interface

Organizer
Task

Application Support

Proposals Serialize

Provider
Data

Request New Service

Request
Service Information

Proposals

Proposal

Request New Service Broadcast Service Request
and Proposal

Fig. 4. QoS Provider structure

In order to guarantee that new service requests are serialized in the provider, a
protected object is used (Figure 5). New service requests queue on the New_Service
entry, in order to request for the service. Then, requests are re-queued on
Wait_New_Service, waiting for the end of the negotiation process. Note that while
this process takes place, the barrier in New_Service is closed.

Concerning the proposals (Figure 6), there is no need to serialize access to deliver
a proposal, therefore only mutual exclusion is provided, but an entry is provided for
the Organizer Task to wait for the arrival of the proposals of the other nodes.

7

protected Serialization is
 entry New_Service(Preferences : in QoS_Values_Type;
 Accepted_Values : out QoS_Values_Type;
 Accepted : out Boolean;
 Id : out Service_Id);

 entry Get_Service(Preferences : out QoS_Values_Type);

 procedure Service_Answer(Accepted : in Boolean;
 Proposal : in QoS_Values_Type;
 Id : in Service_Id);
private
 entry Wait_New_Service(Preferences : in QoS_Values_Type;
 Accptd_Val : out QoS_Values_Type;
 Accepted : out Boolean;
 Id : out Service_Id);

 Pref, Acc : QoS_Values_Type;
 Accepted_Service : Boolean;
 Serv_Id : Service_Id;

 New_Service_Request : Boolean := false;
 New_Service_Response : Boolean := false;
 Organizer_Available : Boolean := true;
end Serialization;

Fig. 5. Serialization protected object

protected Proposals is
 procedure Set_Proposal(Node : in SM.Nodes_Type;
 Proposal: in QoS_Values_Type);

 procedure Clean;
 entry Wait_Decide(Accepted_Values : out QoS_Values_Type;
 Accepted : out Boolean;
 Node : out Nodes_Type);
private
 Proposals : Nodes_Proposals;
 Proposed : Nodes_Proposed := (others => false);
 Complete : Boolean := false;
end Proposals;

Fig. 6. Proposals protected object

The Organizer Task (Figure 7) is normally blocked in the Get_Service entry of the
Serialization object. Upon a service request is made, the task atomically broadcasts it
to the system, and requests a proposal to the Local Provider. Note that the broadcast
of the proposal thus not need to be atomic, since there is no necessity of order
between the proposals. The task then blocks waiting for a decision of the Proposal
object. It then informs the Local Provider of the state of the request. Note that since
the decision is the same in all nodes then it is not necessary to broadcast it. The Local
Provider (Figure 8) is a simple mutual exclusion object, protecting the manipulation
of resource managers and services information. Note that Resource Managers must

8

register with the provider upon initiation, in order to be asked for proposals
concerning their particular dimension.

task body QoS_Organizer_Task is
-- declarations

begin
 loop
 Serialization.Get_Service(Preferences);
 Comm.Atomic_Broadcast(Preferences);
 Local.Service_Request(Preferences,

 My_Node_Proposal,
 Id);

 Comm.Broadcast(My_Node_Proposal);
 Proposals.Set_Proposal(This_Node,
 My_Node_Proposal);
 Proposals.Wait_Decide(Decided_Values,
 Accepted,
 Node);
 if Node = This_Node then
 Local.Accepted_Service(Id);
 else
 Local.Rejected_Service(Id);
 end if;
 Serialization.Service_Answer(Accepted,
 Decided_Values,
 Id);
 end loop;
end Qos_Organizer_Task;

Fig. 7. Organizer task

protected Provider_Data is
 procedure Register(Resource : in Manager_Access;
 Dimension : in QoS_Dimensions_Type;
 Old : out Manager_Access);
 procedure Service_Request(Pref : in QoS_Values_Type;
 Prop : out QoS_Values_Type;
 Id : out Service_Id);
 procedure Rejected_Service(Id : in Service_Id);
 procedure Accepted_Service(Id : in Service_Id);
 procedure Terminated_Service(Id : in Service_Id);

 function Get_Service_Parameters(Id : SM.Service_Id)
 return QoS_Values_Type;
 function Get_Resource_Manager(D : in QoS_Dimensions_Type)
 return Manager_Access;

private
 Resources : Resources_Set := (others => null);
 Used_Service_Id : Service_State_Array := (others => Free);
 Services : Service_Array;
end Provider_Data;

Fig. 8. Local Provider protected object

9

5 Resource Managers and Attributes

Resource attributes are supported by providing a tagged abstract type (Figure 9),
which can be extended by resource managers, to define particular resource attributes.
Attributes must implement the abstract function for difference, in order to support the
evaluation of proposals of [4]. An attribute list is also provided for service requests to
be able to specify a set (in decreasing importance order) of attribute values.

type Attribute_Value is abstract tagged null record;

type Attribute_Value_Access is access all
 Attribute_Value'Class;

function Difference(Preference, Proposal : Attribute_Value)
 return Float is abstract;

package Attr_List is new
 List(Attribute_Value, Attribute_Value_Access);

Fig. 9. Attribute_Value tagged type

type Manager_Type(Dim : QoS_Dimensions_Type) is abstract tagged
record
 Dimension: QoS_Dimensions_Type := Dim;
end record;

type Manager_Access is access all Manager_Type'Class;

-- Resource Managers must call register
procedure Register_Manager(Resource : Manager_Access;
 Old : out Manager_Access);

-- Services to implement
-- Depend of the particular Resource Manager
procedure Evaluate_Service(Resource : in Manager_Type;
 Preferences : in Attr_List.List;
 Proposal : out Attr_List.List;
 Id : in Service_Id)
 is abstract;
procedure Accepted_Service(Resource : in Manager_Type;
 Id : in Service_Id)
 is abstract;
procedure Rejected_Service(Resource : in Manager_Type;
 Id : in Service_Id)
 is abstract;
procedure Terminated_Service(Resource : in Manager_Type;
 Id : in Service_Id)
 is abstract;

Fig. 10. Resource Manager tagged type

Managers themselves are extensions of a tagged type (Figure 10), and must
implement the abstract primitive subprograms that are used by the Local Provider to

10

request the evaluation of a service, and to inform of service acceptance, rejection and
termination. The implementation of a particular resource manager must ensure the
consistency of the resource, guaranteeing that after a request is evaluated, it is
considered as granted for other resource requests performed until rejected or
terminated. Note that several resource requests may coexist for the same service
request, due to the layering of resources presented in Figure 3.

As an example of attribute and manager instantiation, Figure 11 presents a
User_Quality resource manager, which maps to the high-level user perception
manager of Figure 3. A single attribute is defined, which is must be mapped by the
User_Quality_Manager to actual values in other Dimensions (such as Video and
Audio quality).

package User_Quality is

 -- Attributes

 type Possible_Values is (High, Medium, Low);

 type User_Value is new Attribute_Value with record
 Value : Possible_Values;
 end record;

 -- Implementation of Difference

 -- Manager

 type User_Quality_Manager is new Manager_Type with record
 -- mapping between User and Audio/Video
 end record;

 -- Implementation of Manager_Type abstract services
 -- This Resource manager will use the managers for
 -- Video Quality and Audio Quality

 Manager : aliased User_Quality_Manager(User);

end User_Quality;

Fig. 11. User perception quality manager

Figure 12 presents an example of how this manager could be used by an application to
request for High quality in what concerns the overall service (in annex, another
example is provided, for the dimensions of Video and Audio quality). Note that if a
service is accepted, it is possible to get the actual obtained QoS values, not only for
the requested dimension, but also in lower-layer dimensions. For instance in Figure
12, upon acceptance, the procedure call

 Attr_List.Get_First(QoS_Accepted(Video).Attributes, User_Accepted);

will provide in User_Accepted an access value to the first video attribute.

11

procedure Create_QoS_Request is

 QoS_Values, QoS_Accepted : QoS_Values_Type;
 Accepted : Boolean;
 Id : Service_Id;
 User_Perception : Attribute_Value_Access;
 User_Accepted : Attribute_Value_Access;

 Quality_Value : QoS_Dimension_Access;

begin

 User_Perception := new User_Value;
 User_Value(User_Perception.all).Value := High;

 Quality_Value := new QoS_Dimension_Values;
 Quality_Value.Importance := 1;

 Attr_List.Insert_First(Quality_Value.Attributes,
 User_Perception);

 QoS_Values := (User => Quality_Value,
 others => null);

 Application_Interface.Request_Service(QoS_Values,
 QoS_Accepted,
 Accepted,
 Id);

 if Accepted = true then
 Attr_List.Get_First(
 QoS_Accepted(Video).Attributes,
 User_Accepted);
 else
 -- if not accepted
 end if;
end Create_QoS_Request;

Fig. 12. Example of requesting service with User Perception value

6 Conclusions

In this paper we presented an overview of a framework which is being implemented
for managing QoS-aware applications in a dynamic, ad-hoc, distributed environment.
This framework is being used both for validating the group formation and processing
approach of [4], but also to assess the suitability of the Ada language to be used in the
context of dynamic, QoS-aware systems.

Currently, the resource managing support, the service negotiation and proposal
processing is already implemented, allowing us to demonstrate that Ada provides the
required mechanisms for the framework purposes. Nevertheless, work must still be
done on the management of the collaborative system as a whole, and on real
experience on actual systems.

12

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful comments
and suggestions. This work was partially supported by FCT, through the CISTER
Research Unit (FCT UI 608) and the Reflect project (POSI/EIA/60797/2004).

References

1. Clemens C. Wust, Liesbeth Steffens, Reinder J. Bril, and Wim F.J.Verhaegh. Qos
control strategies for high-quality video processing. In Proceedings of the 16th
Euromicro Conference on Real-Time Systems, Catany, Italy, June 2004.

2. Christina Aurrecoechea, Andrew T. Campbell, and Linda Hauw. A survey of qos
architectures. Multimedia Systems, 6(3):138{151, 1998.

3. ARTIST (IST-2001-34820). Selected topics in Embedded Systems Design:
Roadmaps for Research. Part III Adaptive Real-Time Systems for Quality of
Service Management, May 2004. Available at http://www.artist-embedded.org/.

4. Luis Nogueira, Luis Miguel Pinho. Dynamic QoS-Aware Coalition Formation. In
13th International Workshop on Parallel and Distributed Real-Time Systems,
Denver, Colorado, USA, April 2005.

5. Michael Ditze, Berta Batista, Eduardo Tovar, Peter Altenbernd, and Filipe
Pacheco. Workload balancing in distributed virtual reality environments. In 1st
Intl. Workshop on Real-Time LANs in the Internet Age, Satellite Event to the 14th
Euromicro Conference on Real- Time Systems, 2002.

6. V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems. In
Distributed Systems, Mullender, S. (Ed.), 2nd Ed., Addison-Wesley. 1993.

7. T. F. Abdelzaher, E. M. Atkins, and K. G. Shin. Qos negotiation in real-time
systems and its application to automated flight control. IEEE Transactions on
Computers, Best of RTAS'97 Special Issue, 49(11):1170{1183, November 2000.

8. Ricardo Barbosa, Luis Miguel Pinho. Mechanisms for Reflection-based
Monitoring of Real-Time Systems. Work-In-Progress Session of the 16th
Euromicro Conference on Real-Time Systems. Catany, Italy, June 2004.

13

Annex. Video and Audio Quality Managers

package Audio_Quality is

 -- Attributes
 type Audio_Attributes is (Sampling_Rate, Sample_Bits);

 type Sampling_Rate_Values is (rate_8, rate_16, rate_24, rate_44);

 type Sample_Bits_Values is (bits_8, bits_16, bits_24);

 type Sampling_Rate_Value is new Attribute_Value with record
 Value : Sampling_Rate_Values;
 end record;
 -- Implementation of Difference

 type Sample_Bits_Value is new RM.Attribute_Value with record
 Value : Sample_Bits_Values;
 end record;
 -- Implementation of Difference

 -- Manager
 type Audio_Quality_Manager is new Manager_Type with record
 -- mapping between Audio and CPU/Memory
 end record;

 -- Implementation of Manager_Type abstract services
 -- This Resource manager will use the managers for CPU and Memory

 Manager: aliased Audio_Quality_Manager(Audio);

end Audio_Quality;

package Video_Quality is

 -- Attributes
 type Video_Attributes is (Color_Depth, Frame_Rate);

 type Color_Depth_Values is (bits_1, bits_8, bits_16, bits_24);

 type Frame_Rate_Values is range 1 .. 30;

 type Color_Depth_Value is new Attribute_Value with record
 Value : Color_Depth_Values;
 end record;
 -- Implementation of Difference

 type Frame_Rate_Value is new Attribute_Value with record
 Value : Frame_Rate_Values;
 end record;
 -- Implementation of Difference

 type Frame_Rate_Range is new Attribute_Value with record
 Low: Frame_Rate_Values;
 High: Frame_Rate_Values;
 end record;
 -- Implementation of Difference

 -- Manager
 type Video_Quality_Manager is new Manager_Type with record
 -- mapping between Video and CPU/Memory
 end record;

 -- Implementation of Manager_Type abstract services
 -- This Resource manager will use the managers for CPU and Memory

 Manager: aliased Video_Quality_Manager(Video);

end Video_Quality;

14

-- Example of use of the Video and Audio Quality Managers

procedure Audio_Video_Managers_Request is

 QoS_Values, QoS_Accepted: QoS_Values_Type;
 Accepted: Boolean;
 Id: Service_Id;
 Attribute_Value: Attribute_Value_Access;
 Video_Values,
 Audio_Values: QoS_Dimension_Access;

begin

 -- Video First

 Video_Values := new QoS_Dimension_Values;
 Video_Values.Importance := 1;

 -- video frame rate
 Attribute_Value := new Frame_Rate_Value;
 Frame_Rate_Value(Attribute_Value.all).Value := 15;

 Attr_List.Insert_First(Video_Values.Attributes, Attribute_Value);

 Attribute_Value := new Frame_Rate_Range;
 Frame_Rate_Range(Attribute_Value.all).Low := 5;
 Frame_Rate_Range(Attribute_Value.all).High := 10;

 Attr_List.Insert_Last(Video_Values.Attributes, Attribute_Value);

 -- video color
 Attribute_Value := new Color_Depth_Value;
 Color_Depth_Value(Attribute_Value.all).Value := bits_8;

 Attr_List.Insert_Last(Video_Values.Attributes, Attribute_Value);

 Attribute_Value := new Color_Depth_Value;
 Color_Depth_Value(Attribute_Value.all).Value := bits_1;

 Attr_List.Insert_Last(Video_Values.Attributes, Attribute_Value);

 -- Audio Second

 Audio_Values := new QoS_Dimension_Values;
 Audio_Values.Importance := 2;

 -- Sampling rate
 Attribute_Value := new Sampling_Rate_Value;
 Sampling_Rate_Value(Attribute_Value.all).Value := rate_8;

 Attr_List.Insert_First(Audio_Values.Attributes, Attribute_Value);

 -- Sample bits
 Attribute_Value := new Sample_Bits_Value;
 Sample_Bits_Value(Attribute_Value.all).Value := bits_8;

 Attr_List.Insert_Last(Audio_Values.Attributes, Attribute_Value);

 -- QoS Values to request

 QoS_Values := (Video => Video_Values,
 Audio => Audio_Values,
 others => null);

 Application_Interface.Request_Service(QoS_Values,
 QoS_Accepted,
 Accepted,
 Id);

end Audio_Video_Managers_Request;

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

