IPP HURRAY!

www.hurray.isep.ipp.pt

Technical Report

A Parallel Programming Model for Ada

Hazem Ali
Luis Miguel Pinho

HURRAY-TR-110902
Version:
Date: 09-13-2011

Technical Report HURRAY-TR-110902 A Parallel Programming Model for Ada

A Parallel Programming Model for Ada
Hazem Ali, Luis Miguel Pinho

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. Anténio Bernardino de Almeida, 431
4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509
E-mail: haali@isep.ipp.pt, Imp@isep.ipp.pt
http://www.hurray.isep.ipp.pt

Abstract

Over the last three decades, computer architects have been able to achieve an increase in performance for single
processors by, e.g., increasing clock speed, introducing cache memories and using instruction level parallelism.
However, because of power consumption and heat dissipation constraints, this trend is going to cease. In recent times,
hardware engineers have instead moved to new chip architectures with multiple processor cores on a single chip. With
multi-core processors, applications can complete more total work than with one core alone.

To take advantage of multi-core processors, parallel programming models are proposed as promising solutions for more
effectively using multi-core processors. This paper discusses some of the existent models and frameworks for parallel
programming, leading to outline a draft parallel programming model for Ada.

© IPP Hurray! Research Group 1
www.hurray.isep.ipp.pt

A Parallel Programming Model for Ada

Hazem Ali
CISTER Research Centre
Polytechnic Institute of Porto, Portugal

haali@isep.ipp.pt

ABSTRACT

Over the last three decades, computer architects have been able to
achieve an increase in performance for single processors by, e.g.,
increasing clock speed, introducing cache memories and using
instruction level parallelism. However, because of power
consumption and heat dissipation constraints, this trend is going
to cease. In recent times, hardware engineers have instead moved
to new chip architectures with multiple processor cores on a
single chip. With multi-core processors, applications can
complete more total work than with one core alone.

To take advantage of multi-core processors, parallel programming
models are proposed as promising solutions for more effectively
using multi-core processors. This paper discusses some of the
existent models and frameworks for parallel programming,
leading to outline a draft parallel programming model for Ada.

Categories and Subject Descriptors

D.3.3 [Programming Languages]: Language Contructs and
Features — Concurrent programming structures, Ada. D.1.3
[Programming Techniques]: Concurrent Programming -
Parallel Programming.

General Terms
Design, Standardization, Languages.

Keywords
Ada, Many-core systems, Parallel programming, Lightweight
threads model

1. INTRODUCTION

Multi-core architectures, integrating several processors on a
single chip, are quickly becoming widespread, even in small
embedded systems. This cheaply available computational power
makes parallel programming more than ever a concern for
software developers, since the sequential programming model
does not scale well for such multi-core systems [1].

The current trend to use multi-core platforms will thus not provide
improvements on the performance of software, and may even
impact its reliability, if programming environments are not also

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGAda’l1, November 6-10, 2011, Denver, Colorado, USA.

Copyright 2011 ACM 978-1-4503-1028-4/11/11...$10.00.

Luis Miguel Pinho
CISTER Research Centre
Polytechnic Institute of Porto, Portugal

Imp@isep.ipp.pt

evolved to account for the new paradigm of naturally parallel
hardware [2]. It is recognized that new (or old) parallel
programming models are needed to take advantage of (large)
parallel platforms, that data structures, algorithms and code
generation tools must be made aware of the underlying
architecture changes, and that programming should be
independent of the number of processors, to shield from likely
hardware evolution. The problem is exacerbated for platforms
with larger number of cores (usually noted as many-core).

It is not a surprise that many research projects and commercial
frameworks have been either proposing new or re-using old
models, specifically targeting the potentially large-scale
parallelism found in multi-cores. Frameworks such as Cilk [3],
Intel's Threading Building Blocks [4], Java Fork/Join [5],
OpenMP [6], Microsoft's Task Parallel Library [7],
StackThreads/MP [8] or Paraffin [9] provide a model where the
programmer divides the application in numerous potentially
parallel computing units', which are then dynamically assigned to
worker threads in the cores by the frameworks’ runtime,
considering the actual load in the system. To deal with the load
balancing of these parallel units in the worker threads (and thus in
the cores), the work-stealing algorithm [10] is currently one of the
most widely-used, although it may not perform better in all cases

[11].

Work-stealing has the advantage of reducing task contention, due
to the support for double-ended queues, with LIFO behaviour
when worker-threads process their own-generated units, and FIFO
behaviour when threads steal from other threads queues. Another
advantage is that as soon as one unit migrates (is stolen) to a new
core, all units generated by it are placed in this core queue, thus
decreasing the need for further stealing. Finally, as threads
execute units in LIFO order, they maximize the probability of
data still being in the cache. Contrarily, stealing is performed in
the other end of the queue, targeting older units, minimizing the
probability of the data being in the cache (of the old wrong core).

This parallel programming model based on potentially parallel
computation units also provides higher-abstraction advantages.
For instance, the programmer can focus on writing functional
code, only explicitly specifying potentially parallel operations,
leaving to the underlying framework the dynamic mapping of
units to threads. This separation of concerns leads to more reliable
code, and more optimized runtimes. Also, it improves
programmer productivity.

! These units may be called lightweight threads, tasks, pJobs,
depending on the context and framework. For consistency and
simplicity in this paper (and to not clash with the Ada notion of
task) we use potentially parallel computation units.

Also, the composability of several different components, all using
this model is easily performed, as these components only create
the units, being all of them scheduled by the underlying runtime.

Obviously, this approach introduces some overhead, both on data
structures needed to manage the computation units and their
mapping to cores, but also on the migration of units (and eventual
impact in caches). However, it is important to note that stealing
only takes place if a particular core is idle. Therefore, the
overhead is not significant, particularly as the number of cores
increases larger than the number of concurrent activities (threads)
of an application.

Considering the above, it is important to assess the use of this
model in Ada. Although multi-core programming support will be
available in the forthcoming revision of the language (Ada 2012)
[12], the programming model of Ada will still be based on the
definition of heavier task units, as it is targeted to environments
where the number of cores is far less than the number of
application tasks.

The structure of the paper is as follows. The next section reviews
some previous attempts to define parallelism in Ada. Section 3
then provides an overview of several current parallel
programming models using potentially parallel computation units.
Afterwards, Section 4 provides and discusses the proposed Ada
model. Finally, some conclusions are presented.

2. PARALLEL PROGRAMMING AND ADA

It is important to note that parallel programming approaches in
Ada were considered several years ago (e.g. [13,14,15]) %. The
work in [13] introduces a parallel keyword, for for loops,
allowing a specific compiler to optimize loop iterations, targeted
to a multiprocessor platform. The work in [14] is similar, as it also
targets the optimization of parallel loops; furthermore, the authors
state that Ada tasks are not the appropriate unit of parallelization
thus proposing a concept of minitasks which can be optimized by
compilers and runtimes aware of this model. It is interesting to
note that [14] already puts forward some of the ideas that are
currently being (again) discussed concerning the use of
tasks/threads for manycores, in particular the excessive context
and initiation overhead which is required to manage tasks in
parallel machines. The solution proposed is in line with the
current move to provide more efficient parallel units.

Contrarily, in [15] the author proposed a model for integrating
parallel dataflow programming with the Ada tasking model,
proposing two extension keywords to standard Ada: parallel
and single. The parallel keyword is used for declaring
explicitly that a set (block) of statements or a for loop will be
executed in parallel. It transforms these into a sequence of task
declarations with a separate task representing each statement or
iteration respectively. On the other hand, the single keyword
is used for declaring single-assignment types (also known as
immutables) for exchanging data and synchronization between
parallel blocks.

After that, the research evolved in [16] by defining a new
programming language called Declarative Ada where parallelism
is implicit. Declarative Ada is a programming language based on

% There is indeed a general trend to look back to the past in all
areas of computers as parallel platforms become widespread.

a Pascal-like subset of Ada. The difference between Declarative
Ada and the previously proposed extension is that all
variables are considered as single-assignment. This allows
implicit parallel execution of programs with synchronization
through run-time dataflow.

Although in Declarative Ada all statements can be executed in
parallel, we believe that it will not be up to the expectations from
the point of view of performance. This comes from the fact that
all parallel executions are mapped to Ada tasks, thus creating
higher overhead during execution that will eliminate any gained
speedup from parallel execution [14] Moreover, this very fine
grain parallelism, which comes from the fact that each statement
is a parallel block, may lead to a mass synchronization overhead
between different parallel blocks. This means degraded overall
performance.

The previous discussion demonstrate the growing need for
constructs or methods that define true parallelism in Ada away
from the well known task model, which should be used for
concurrency. As Robert Harper states: “The first thing to
understand is parallelism has nothing to do with concurrency”
[17]. Parallelism is concerned with efficiency of programs
operating in parallel platforms, and where the output results are
deterministic.

Concurrency, on the other hand, refers to the nondeterministic
execution of applications where expected and unexpected events
must me managed. Such situations are not concerned with
efficiency and performance as much as getting the system to
operate correctly and under control. Concurrent systems can be
implemented in parallel platforms, but can also be in sequential
ones.

The task model of Ada is undoubtedly suitable for concurrent
systems, where each task maps to an application concurrent
activity, that can abort, suspend or resume its execution according
to the system requirements. Orthogonal to this model, parallel
constructs proposed for Ada should adopt a lightweight model,
i.e.,, lightweight computation units used as building blocks,
mapped to a pool of worker (system) tasks/threads with a special
purpose scheduling discipline.

This is the model of a more recent approach to provide parallel
programming support in Ada [9], with support to potential parallel
computation units, with work-sharing, work-seeking and work-
stealing functionality through an external library. Our proposal,
although in the same context, is different, proposing that Ada
revisits its parallel programming model, intending to explore a
language based approach that hides from the programmer the
concrete mapping of the application into the parallel platform
whilst allowing him/her to define the potentially parallel blocks.

3. PARALLEL PROGRAMMING MODELS

In order to propose a parallel programming model for Ada, it is
important to analyze currently used approaches for the design of
parallel programs. In the brief analysis in this paper, the common
example of the Fibonacci function will be used to present the
most relevant features of each approach. Note that although the
iterative version of the Fibonacci function is more efficient than
the recursive version, the recursive version may be a better
solution in parallel platforms, when a large percentage of the time
processors are idle. Furthermore, it is a good example of a simply
parallelizable function.

The first example we present is how to develop the function by
using Ada tasks as the unit of parallelization. Two approaches are
shown. The first approach (Listing 1) creates one task per
function execution, in order to potentially (and naively) try to
maximize parallelism. It is clear that the overhead of task creation
will impair the advantages of the parallelization.

task type Fib (N: Natural) is
entry Result (R: out Natural);
end Fib;
task body Fib is
Res, N1, N2: Natural;
Fib Acc N1, Fib Acc N2 : access Fib;
begin

if Value < 2 then

Res := Value;

else
Fib Acc N1 := new Fib(N - 1);
Fib Acc N2 := new Fib(N - 2);

Fib Acc N1.Result (N1);
Fib Acc N2.Result (N2);
Res := N1 + N2;

end if;

accept Result (R: out Natural) do
R := Res;

end Result;

end Fib;

Listing 1 — Fibonacci Example #1

The second (naive) example (Listing 2) uses the number of cores
information to divide the problem, thus creating one task per core.
The program gets more complex as it is necessary to consider the
relation between the number of cores and the size of the problem,
and it is necessary to keep track of the available tasks. If a task is
not available, then the calculation will be done with a sequential
version of the algorithm.

Note that the size of the problem will not be the same on each
core, thus there will be idle cores while other will be overloaded.
If the programmer attempts to do a load balancing solution, he/she
will end up with redeveloping a complete work-sharing or work-
stealing algorithm.

function Seq Fib (N : in Natural)
return Natural is
begin
if Value < 2 then
return N;
return Seq Fib (N - 1) +
Seqg Fib (N - 2);

end Seq Fib;

task type Fib is

entry Value (N: in Natural);

entry Result (R: out Natural);

end Fib;

protected Task Pool is

procedure Try Get(T: out access Fib;

Val: Natural);

private

Workers: array (1..CPU Count) of Fib;

end Task Pool;

task body Fib is

Val, N1, N2: Natural;

Fib Acc N1, Fib Acc N2 : access Fib;

begin

loop
accept Value (N: in Natural) do
Val := N;
end Value;
if Value < 2 then
Res := Value;
else
-— try parallel of both branches
Task Pool.Try Get (Fib Acc N1,
val - 1);
Task Pool.Try Get (Fib Acc N2,
vVal - 2);
if Fib Acc N1 /= null then
Fib Acc Nl.Result (N1);
else
N1 := Seq Fib (Val - 1);
end 1if;
if Fib Acc N2 /= null then
Fib Acc_N2.Result (N2);
else
N2 := Seq Fib (Val - 2);
end if;
end if;
accept Result (R: out Natural) do
R := N1 + N2;

end Result;

end loop;
end Fib;
protected Task Pool is
procedure Try Get(T: out access Fib;
Val: Natural) is
begin
for I in 1..CPU Count loop
select
Workers (I).Value (Val);
T := Workers(I)’access;
exit;
else
null;
end select;
T := null;
end loop;
end Try Get;
end Task Pool;

Listing 2 — Fibonacci Example #2

The next sub sections present three different frameworks, all
based on creating potentially parallel computation units,
following the technique described in the Introduction. These
frameworks are different, as they follow different approaches: a
library based one; a pre-processor based one, and a language
based one.

3.1 Library-based approaches

The example of a library-based approach is provided using the
Intel's Threading Building Blocks [4], which is a library,
implemented using the C++ Standard Template Library, and that
provides the required classes to design and manage the parallel
computation units, called tasks.

class FibTask: public task {
public:
const long n; long* const sum;
FibTask(long n , long* sum)

n(n), sum(sum) {}

task* execute() {
if(n < 2) {
*sum = n;
} else {
long x, y;
FibTask& a =
*new (allocate child())

FibTask (n-1, &x) ;

FibTask& b =
*new (allocate child())
FibTask (n-2, &y) ;
set ref count(3);
spawn(b);
spawn_and wait for all(a);
*sum = xty;
}

return NULL;

Listing 3 — TBB Example

This code in Listing 3 uses an object of the class FibTask,
which inherits from the special class task, to do the actual work. It
starts by creating two new task objects to compute n-1 and n-2,
and then spawns these tasks (the last one is a spawn and wait
which will cause the main task to wait for the two children). Note
that these tasks are not similar to Ada tasks, but lightweight
computation units which will be executed by runtime worker
threads.

The work of [9] proposes a similar approach for Ada, where a
library of generics is proposed to allow for common parallel
patterns in Ada programs.

3.2 Pre-processer based approaches

The next example presents the same function using the OpenMP
[6] specification, a pre-processor based approach. OpenMP is a
specification produced by an industry consortium, based on
directives that allow the pre-processor or the compiler to
automatically inject the code required to execute the program on
top of the parallel runtime.

int fib(int n)
{
if (n < 2) return n;

int x, y;

#pragma omp task shared(x)
x = fib(n - 1);

#pragma omp task shared(y)
y = fib(n - 2);

#pragma omp taskwait

return x+y;

Listing 4 — OpenMP Example

The example in Listing 4 provides two of these directives. The
first, which is used before both recursive calls to the £ib function

notes the pre-processor that the following block of code can be
executed in parallel. Thus, fib(n - 1) and
fib(n - 2) can be executed by two parallel threads. The final
directive causes the main task to wait for the end of the tasks that
it has created. The shared (x) information informs the compiler
that variable x will be accessed by different threads, therefore
exclusion algorithms should be used.

The work in [9] also provides a brief proposal how Ada could
have a similar approach, by using a set of pragmas, with the
compiler converting the code to use the generic libraries, thus
hiding more complex programming.

3.3 Language based approaches

The final example presents the language based approach of Cilk
Plus [18], an evolution of Cilk [3] / Cilk++ [19], that provides a
very simple and small set of linguistic extensions to C++ to
support parallel applications, on top of libraries and runtimes
providing work-stealing capabilities. Because it is a small
extension, parallelizing existent code is a very easy task.

int fib(int n)
{
if (n < 2) return n;

int x, vy;

x = cilk spawn fib(n-1);

fib(n-2);

=
Il

cilk_sync;

return x+y;

Listing 5 — Cilk Example
The cilk spawn keyword in Listing 5 performs the same
functionality of the omp task directive in the previous sub
section, noting the compiler that fib (n - 1) can execute in
parallel. cilk sync is equivalent to omp taskwait.

4. A PROPOSAL FOR ADA

In this proposal for Ada, the goal is to maintain the structure of
Ada programs, but allowing the programmer to specify code
which is potentially parallel, which then the runtime can
dynamically during runtime either execute sequentially, or
parallelize. The followed approach is a language-based one, as the
authors consider it to be more appropriate to the Ada philosophy
of supporting concurrency directly at the language level.

In this preliminary work, three constructs are proposed:
- Parallelizable blocks
- Parallelizable functions

- Parallelizable for loops

The proposal introduces two new keywords: parallel, which
specifies potentially parallel operations, and future, which
specifies values which are calculated asynchronously.

4.1 Parallelizable blocks

Ada’s block construct is a natural candidate for declaring
potentially parallel code, as it encloses a sequence of statements
in a single statement that can be placed anywhere in an Ada
program. Furthermore, the variables in the declarative part can be
created in the actual core of execution, similar to private variables
in OpenMP, allowing for a better utilization of the local caches.
Listing 6 provides the structure of the parallel block, which is
identified with the parallel keyword.

-- not legal Ada
declare
Local var : ...;
Local copy : ... := Global var;

parallel begin

end parallel;
Listing 6 — Proposal for a parallel block

Nevertheless, it is important that these “parallel blocks” do not
update global variables. This can be allowed, but programmers
must understand that the behaviour and performance may be the
same as variables being assessed by different tasks in different
threads (and different processors), so protected objects should be
used. Read only variables may be copied by the programmer in
the declarative part, or may be implicitly copied by the compiler.

Since these parallel blocks execute asynchronously with the
following code, it is important to determine how the results of the
block are used, and it must be possible for the main program to
wait for them to be available. A potential solution is to use futures
[20], variables which are a placeholder for a future result.
Synchronization is only required when the value is actually used.
Obviously, for a future to be used, its scope must be enclosing of
the parallel block (Listing 7).

-- not legal Ada

Future V: future ...;
begin
declare
Local var : ...;

parallel begin

-- code that computes Future V

end parallel;

-— asynchronous execution

Do Something Else;

X := Future V; -- The result of the
-- computation is required
-- Program will wait for
-— end of parallel block
Listing 7 —parallel block example

4.2 Parallelizable functions

A second construct presented in this paper is a simple way for the

programmer to specify that a function can execute in parallel.

Therefore, when a call to the function is performed, the

underlying runtime can decide to parallelize the call, if there are
enough available cores.

For instance, the example in Listing 8 maps the parallel Fibonacci
function, as presented in the previous section, with the parallel
function construct.

-- not legal Ada
parallel function Fibonacci (
Value in Natural)
return future Natural is
nl, n2: Natural;
begin
if value < 2 then
return Value;
nl := Fibonacci (Value - 1);

n2

Fibonacci (Value - 2);
return nl + n2;
end parallel Fibonacci;

Listing 8 — Proposal for a parallel function

Note the use of the parallel keyword in the function signature
3 and the specification of the return value as a future, as the
function may be executed asynchronously, thus the calling code
must wait for its completion when the return value is required
(Listing 9).

-- not legal Ada

Fib Res: future Natural;

begin
Fib Res := Fibonacci (10);
-- code in parallel to the
-- fibonacci function call
X := Fib Res; -- The result of the

? Previously we had considered the parallel keyword to be
placed after is, just before the declaration block, or before
begin, as in parallel blocks. However, it was later decided to
place it in the beginning to be able to more easily define
potential parallel functions also at declaration. Aspects were
also considered, but using function X with Parallel
does not convey the correct idea.

-- computation is required
-- Program will wait for
-- end of parallel funtion

Listing 7 —parallel block example

4.3 Parallelizable for loops

The last construct that can be paralyzed is the for loop. Note
that in this case, it is not mandatory that each iteration of the loop
is executed in parallel. Efficient runtimes may partition the data
set into blocks, and assign each block to a potentially parallel unit
(an approach similar to TPL’s Parallel.For [7]). Listing 10
provides an example of incrementing all elements of an array.

-— not legal Ada

for I in Buffer'Range parallel loop
Buffer (I) := Buffer(I) + 1;

end parallel loop;

Listing 10 — Proposal for a parallel loop

A more complex approach is required if the for loop is performing
an aggregation (loop iterations are not independent). For example,
Listing 11 provides and example of a sequential for loop,
performing the sum of an array. Obviously, this cannot be
parallelized with the same approach as in Listing 9.

Sum := 0;

for I in Buffer'Range loop
Sum := Sum + Buffer (I);

end loop;

Listing 11 — Sequential Sum loop

The parallelization of this type of loops is only advantageous if
there is the capability to do partial sums for array blocks and then
performing an aggregate sum in the end. For that, the change to
the structure of the for loop needs to be more complex.

Note that it is not possible to delegate to the programmer the
definition of blocks and partial arrays, as it may be the underlying
runtime that determines during the execution the number and size
of blocks. But it is necessary for the program to be able to reason
in terms of block ranges and partial results. A solution (Listing
12) could be to create specific attributes to arrays, which could be
used to know the range of the current block (Partial First

Partial Last), and to allow variables to have a
Partial attribute referring to a local copy in each parallel
block. After the end of the parallel for, these local copies
could be available in an array, accessible by the
Partial Array attribute.

-- not legal Ada
Sum := 0;
for I in Buffer'Range parallel loop
for J in Buffer’Partial First
Buffer’Partial Last loop
Sum’ Partial := Sum’Partial +

Buffer (J);

end loop;
end parallel loop;

for I in Sum’Partial Array loop
Sum := Sum + Buffer’Partial (I);

end loop;

Listing 12 — Proposal for a parallel loop with aggregation

Note that the code after the parallel for loop waits for all
parallel iterations to terminate, before being able to execute.

4.4 Discussion

The work presented in this paper is still preliminary as there are
several issues which need to be considered. For instance, the
interaction of parallel computations and the exception model of
Ada is complex, as parallel computation may be performed in
worker threads, thus in a context which is not of the enclosing
task. Also exiting from blocks or loops in recursive parallel
computations must take into account the potential need to abort
other computations being executed in other threads.

Nevertheless, the three proposed constructs for parallelism
mentioned in the previous sections (parallelizable blocks,
functions and for-loops), can be the basis for creating a parallel
programming model in Ada. In addition, the future keyword can
play an important role in synchronization, acting as a join
function for different parallel computations that need to meet at
some point of execution.

Another area of importance to the design of parallel Ada
programs is the data-sharing model. It is interesting to note that
asynchronous message passing between parallel code is more and
more considered to be an option for highly parallel programs,
instead of data-sharing. Another area which needs to be
considered is the use of non-blocking data structures or software
transactions instead of lock-based data sharing.

Finally, the incorporation in the Ada runtime model of the support
to the parallelizable computational units is also of paramount
importance. It is thus clear that the definition of the semantics of
this model is indeed a challenging (but potentially parallel) task,
considering the interaction with all Ada features.

Nevertheless, the provided examples are sufficient to outline how
the model could be implemented within the Ada language model
(the code still looks Ada), and it is a starting point to foster a
discussion on this issue. It is the opinion of the authors that the
Ada community must start considering that for the foreseen future
platforms (tens or hundreds of cores), the available task model
may not scale. The area of programming models for parallel
computing is (once again) with immense activity, and Ada should
define its model. Both the work presented in this paper, and the
generics/pragma implementation of [9] are two directions that can
be considered.

5. CONCLUSION

The current trend to increase processing power by manufacturing
chips including multiple processor cores has popularised the
ability to execute concurrent software in parallel. This tendency
for even larger number of processor cores will further impact the
way systems are developed, as software performance must rely on

efficient techniques to design and execute concurrent software in
parallel.

This paper discusses some existent approaches to parallel
programming using the lightweight thread model, where the
programmer specifies a set of potentially parallel computation
units, which are then dynamically mapped by the runtime to a set
of worker threads, and proposed a draft of how the Ada language
could be augmented to support such model.

6. ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers for their
valuable comments to improve the paper.

This work was supported by the VIPCORE project, ref. FCOMP-
01-0124-FEDER-015006, funded by FEDER funds through
COMPETE (POFC - Operational Programme ‘Thematic Factors
of Competitiveness’) and by National Funds (PT) through FCT -
Portuguese Foundation for Science and Technology, and the
ARTISTDESIGN — Network of Excellence on Embedded
Systems Design, grant ref. ICT-FP7-214373.

7. REFERENCES

[1] H. Sutter and J. Larus, “Software and the concurrency
revolution,” Queue, vol. 3, pp. 54—-62, September 2005.

[2] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P.
Husbands, K. Keutzer, D. A. Patterson, W. L. Plishker, J.
Shalf, S. W. Williams, and K. A. Yelick. The landscape of
parallel computing research: A view from berkeley.
Technical Report UCB/EECS-2006-183, EECS Department,
University of California, Berkeley, Dec 2006.

[3] M. Frigo, C. E. Leiserson, and K. H. Randall. The
implementation of the cilk-5 multithreaded language.
SIGPLAN Not., 33:212-223, May 1998

[4] Intel. Thread Building Blocks,
http://threadingbuildingblocks.org/. Last access September
2011.

[5] D. Lea. A java fork/join framework. In Proceedings of the
ACM 2000 conference on Java Grande, JAVA '00, pages 36-
43, New York, NY, USA, 2000. ACM.

[6] A.Marowka. Parallel computing on any desktop. Commun.
ACM, 50:74-78, September 2007.

[7]1 Microsoft. Task parallel library,
http://msdn.microsoft.com/en-us/library/dd460717.aspx. Last

access September 2011.

[8] K. Taura, K. Tabata, and A. Yonezawa. Stackthreads/mp:
integrating futures into calling standards. ACM SIGPLAN
Notices, 34(8):60-71, 1999.

[9] B. Moore, “Parallelism generics for Ada 2005 and beyond”,
SIGAda'10 Proceedings of the ACM SIGAda annual
conference, October 2010.

[10] R. D. Blumofe and C. E. Leiserson. Scheduling
multithreaded computations by work stealing. J. ACM,
46:720-748, September 1999.

[11] Moore, B., “A comparison of work-sharing, work-seeking,
and work-stealing parallelism strategies using Paraffin with
Ada 2005, Ada User Journal, Vol 32, N. 1, March 2011.

[12] A. Burns and A. J. Wellings, “Dispatching Domains for
Multiprocessor Platforms and their Representation in Ada,”
15th International Conference on Reliable Software
Technologies - Ada-Europe 2010, Valencia, Spain, June 14-
18, 2010.

[13] H. G. Mayer, S. Jahnichen, “The data-parallel Ada run-time
system, simulation and empirical results”, Proceedings of
Seventh International Parallel Processing Symposium, Aprl
1993, Newport, CA , USA , pp. 621 — 627

[14] M. Hind , E. Schonberg, “Efficient Loop-Level Parallelism
in Ada”, TriAda 91, October 1991

[15] J. Thornley, “Integrating parallel dataflow programming with
the Ada tasking model”. In Proceedings of the conference on
TRI-Ada '94 (TRI-Ada '94), Charles B. Engle, Jr. (Ed.).
ACM, New York, NY, USA, 417-428, 1994.
DOI=10.1145/197694.197742
http://doi.acm.org/10.1145/197694.197742

[16] J. Thornley, “Declarative Ada: parallel dataflow
programming in a familiar context". In Proceedings of the

1995 ACM 23rd annual conference on Computer

science (CSC '95), C. Jinshong Hwang and Betty W. Hwang
(Eds.). ACM, New York, NY, USA, 73-80, 1995.
DOI=10.1145/259526.259540
http://doi.acm.org/10.1145/259526.259540

[17] R. Harper, “Parallelism is not concurrency”, Ropert Harper
Blog, http://existentialtype.wordpress.com/
2011/03/17/parallelism-is-not-concurrency/, Last access
September 2011.

[18] Intel, Cilk Plus, http://software.intel.com/en-us/articles/intel-
cilk-plus/, Last access September 2011

[19] C. Leiserson, “The Cilk++ concurrency platform”,
Proceedings of the 46th Annual Design Automation
Conference , ACM New York, USA, 2009.

[20] H. Baker, C. Hewitt, "The Incremental Garbage Collection
of Processes". Proceedings of the Symposium on Artificial
Intelligence Programming Languages, SIGPLAN Notices 12,
August 1977.

