
 CISTER Research Centre/INESC-TEC
ISEP, Polytechnic Institute of Porto

Rua Dr. Antº Bernardino de Almeida, 431
4200-072 PORTO Portugal

tel: +351-228340502
fax: +351-228340509

http://www.cister.isep.ipp.pt
cister-info@isep.ipp.pt

•  Composable and independent development of the monitors and
monitored applications:

Different components of a same system are usually
developed by different teams or companies. Therefore, their
integration should not impact their individual properties.
Similarly, the monitors should not impact the properties of
the monitored application.

•  Space and time partitioning:
Partitioning ensures that a fault in the monitored application
cannot propagate to the monitors, which are supposed to
detect it.

•  Simplicity:
To accelerate the development and ease the certification.

•  Efficiency and responsiveness:
To detect and react to an anomaly as soon as it happens.

A Novel Run-Time Monitoring
Architecture

Geoffrey Nelissen, David Pereira and Luís Miguel Pinho
{grrpn, dmrpe, lmp}@isep.ipp.pt

Rationale:
•  Computing architectures become more and more complex and

sometimes unpredictable.
•  Verification techniques showed their limit, essentially when timing

properties, available only at run-time, are involved.
•  Testing improves the confidence but does not prove the

correctness of the system in all possible situations.

CONCERTO project ARTEMIS/0003/2012 - JU grant nr. 333053,
and EMC2 project ARTEMIS/0001/2013 - JU grant nr. 621429. Co-financed by:

Instrumentation

System

Monitors

Handlers

Observe

Verdict

Feedback

Specifications

Implement

Run-time environment

There exists two different implementations of run-time monitoring in
the state-of-the-art:

2.   Communication through buffers:
•  All the tasks write events in a shared buffer.
•  A dispatcher reads the events saved in the buffer and sends

them to the monitors requiring them.

while(true) {
 …
 buffer2.write(y);
 Call_Mon1(writeBuf2);
 …
 WaitNextPeriod();
}

while(true) {
 …
 Call_Mon1(readBuf1);
 buffer1.read(x);
 Call_Mon1(readBuf2);
 buffer2.read(y);
 …
 WaitNextPeriod();
}

while(true) {
 …
 buffer1.write(x);
 Call_Mon1(writeBuf1);
 …
 WaitNextPeriod();
}

Task 1 Task 2 Task 3

Tasks

Tasks

Buffer

Monitor 1

Monitor 2

Monitor 3

D
is

pa
tc

he
r

Reads

•  Uses one buffer per event type.
•  Only one task can write in a given buffer. The write access is

granted by an “event writer”.
•  Multiple monitors can read events from the same buffer using

“event readers”.
•  A monitor is implemented as a periodic task.

Run-Time Environment

Event Buffer 1

Event Buffer 2

Event Buffer 3

Event Buffer n

Task t

Task 1

Running
on

Monitor m

Monitor 1

Running
on

Pushes
Events

Pops
Events

Handler

Handler

Triggers

Triggers

Acts upon

Acts
upon

...

Event writer

Event reader

...

...

1.  Code Injection:
•  The monitoring code is directly called by the application code

•  Limitations:
•  Impact the execution time of the monitored tasks

à no composability;
•  The monitor becomes a shared resource. Several tasks

accessing a same monitor can be blocked by each other
à no time partitioning;

•  A failure in the task may propagate to the monitor
à no space partitioning.

•  Advantage: The buffer isolates in space the monitors from the
monitored tasks.

•  Limitations:
•  The buffer is a shared resource. Tasks writing in the buffer

may be blocked by each other à no time partitioning;
•  The dispatcher is a bottleneck, which limits the parallelism.

Run-time verification as a solution:
•  Add monitors in the system that

check at run-time if specifications
are respected.

•  In case of detected anomalies, a
counter-measure can be activated
àplay the role of a safety-net.

•  Advantages:
•  Buffers isolate in space the monitors from the monitored tasks.
•  No synchronization mechanism is required à no extra blocking

times.
•  Composable and independent development of the monitors.
•  The monitor responsiveness can be configured by modifying its

period.
•  Limitation: The monitors must re-order events stored in different

buffers.

•  The run-time monitoring architecture has been implemented in Ada
•  A new specification language for safety critical embedded systems

is being designed.
•  An automatic correct-by-construction monitor generation tool is

under development.

