

A Complex Protocol Layer as a linux User-
Space Process

António Barros
Filipe Pacheco
Luis Miguel Pinho

www.hurray.isep.ipp.pt

Technical Report

TR-061006

Version: 1.0

Date: October 2006

A Complex Protocol Layer as a Linux User-Space Process
António BARROS, Filipe PACHECO, Luís Miguel PINHO

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: {amb, ffp, lpinho }@dei.isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract
With the current complexity of communication protocols, implementing its layers totally in the kernel of the
operating system is too cumbersome, and it does not allow to fully use the capabilities which are only
available in user space processes. However, building protocols as user space processes must not impair the
responsiveness of the communication. Therefore, in this paper we present a layer of a communication
protocol, which, due to its complexity, was implemented in a user space process. This layer must
communicate with the lower layers of the protocol, which for responsiveness issues are implemented in the
kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing
requirements.

A Complex Protocol Layer as a linux User-Space Process

António Barros, Filipe Pacheco, Luis Miguel Pinho

Department of Computer Engineering, ISEP, Polytechnic Institute of Porto,

Rua Dr. António Bernardino Almeida, 431, 4200-072 Porto, Portugal

{abarros, ffp, lpinho}@dei.isep.ipp.pt

Abstract

 With the current complexity of communication

protocols, implementing its layers totally in the kernel

of the operating system is too cumbersome, and it does

not allow use of the capabilities only available in user

space processes. However, building protocols as user

space processes must not impair the responsiveness of

the communication. Therefore, in this paper we present

a layer of a communication protocol, which, due to its

complexity, was implemented in a user space process.

Lower layers of the protocol are, for responsiveness

issues, implemented in the kernel. This protocol was

developed to support large-scale power-line

communication (PLC) with timing requirements.

1. Introduction

Using power lines for communication is not a new

idea [1]. Use a already deployed infrastructure eases

communication costs, not only for energy providers, but

also for user applications. Nonetheless, communication

technology must be adapted to this peculiar medium [2].

Fig. 1 – General REMPLI Architecture

One of the goals of the REMPLI (Real-time Energy

Management over Power-Lines and Internet) project [3]

is to implement an infrastructure (Fig. 1) for real-time

communication, in order to remotely access monitoring

and control equipment [2]. Within the power lines, a

two-level hierarchical system is used. New protocols

where developed with special consideration given to

path failure management, redundant paths, data

fragmentation and real-time traffic processing using

knowledge from MANETs (Mobile Ad-hoc Networks)

and Wireless Networks [5] research.

In the REMPLI architecture, the end-to-end

application services are provided over an already

existing master-slave Medium Access Control (MAC)

[4]. The base network only encompasses a single PLC

network level, and so the implemented system provides

the end-to-end communication and routing services.

This paper presents the implementation challenges of

the protocol layer and it is organized has follows. In the

next section, we present the services already provided by

the base network. Then, in section 3, we summarize the

architecture of the protocol layer that is used for queuing

and routing within the PLC system. Section 4 presents

the target hardware platform and section 5 details the

implementation aspects of the Transport Layer in this

platform. Finally, section 6 presents the status of the

implementation and the planned test strategies.

2. The REMPLI Network Layer Services

2.1. The Power Line Communication System
Power line grids divided in several voltage groups:

higher voltage for power transportation over large

distances, and lower voltages for power distribution on

smaller areas. The REMPLI Project aims at the last two

levels of this distribution grid. On the low-level end, we

have the REMPLI Nodes. Between the two voltage

levels, there is a transformer for voltage conversion (and

power transmission) and a REMPLI Bridge for data

forwarding. On the entry side of the medium voltage

network, the REMPLI Access Point (AP) interconnects

the PLC system and a broadband backbone (already

available in most of these facilities).

For the device-to-device communication, the

REMPLI system uses a time-division-multiplex

Master/Slave communication protocol [4]. Requests are

time-interleaved by the Network Layer (NL): a request is

sent in one slot and the response is received n slots

afterwards with n fixed in each network and with typical

values of 3 or 4. Multi-master is also supported, for

example: the first 2 time slots used by the first Master

PLC

PLC

TCP/IP
App Server App Server

AP

Bridge Bridge

Node

AP

Node

Node Node

1-4244-0777-X/06/$20.00 ©2006 IEEE

and the other 2 time slots for the second Master. The

data payload of each slot is fixed and typical values for

raw data payload (i.e. including the base network own

headers) are 64 and 128 bytes. Increasing the data length

decreases header overhead and increases the error

probability, decreasing the length enables more

messages per period.

2.2. Services available to Applications
From the point of view of applications that use the

Transport Layer (Fig. 2), each AP will have direct

connection with several devices (Bridges and Nodes).

Fig. 2 – Application’s view of the system

In this document, we use “Unique Serial Numbers” to

identify each device on the text: i.e. “Node 203” means

“Node with the Unique Serial Number 203”.

Applications calls use Node Addresses; a configuration

table converts “Node Addresses” to “Unique Serial

Number”. In the example network of Fig. 2, applications

in either AP may issue requests to any of the network

devices. Delays and available bandwidth will vary for

each AP – Device combination.

From the applications point of view there are only

two classes of devices in the network: “Access Points”

and “Bridges/Nodes”. The main services that may be

issued from the AP side are [2]: Unicast Request with

response; Unicast Request without response. From the

Node/Bridge side: Respond to Request; Send Alarm.

The Unicast Request without Response service sends

data to a particular device without confirmation of

delivery. The Unicast Request with Response service is

similar but the node/bridge must issue a data response.

The node/bridge uses the Response to Request service to

send this data. Only one response may be issued for each

request.

The Send Alarm service is issued by a node/bridge to

deliver data to; at least, one of the available APs, this

delivery will be confirmed to the node/bridge.

All the data services may transmit large data blocks

(up to 32MB) although time-critical applications will

usually use very small data blocks (up to 100 bytes).

3. The Transport Layer Architecture

The REMPLI Transport Layer is built by four inter-

connected modules as presented in Fig 3.

The RCI Manager (RCIM) module distributes

messages between the Queue Manager / Transport Route

Manager and the Applications themselves using the

REMPLI Communication Interface (RCI).

The Network Layer Interface (NLI) module

distributes messages between the Queue Manager /

Transport Route Manager and the NL doing parameter

conversion when needed.

Fig. 3 – REMPLI internal architecture

The Queue Manager (QM) module manages all the

packet data information. Tasks like queue generation,

disposal, fragmentation and transport system header

processing are done at this module. This module also

multiplexes requests from the Applications and the

Transport Route Manager to the Network Layer

Interface data transmission services. All the header

information needed for these services has been reduced

to just 2 bytes. Since the usable data length of the NL is

not an integer multiple of a fixed value Bridges have a

complex task to forward data

Fig. 4 – Route cost/delay calculation

The Transport Route Manager (TRM) module

handles not only the scheduling tasks but also when

internal Transport Layer communication is needed. TRM

takes care of the system start-up (including device plug-

and-play operation) and automatic route discovery.

When a new data request is queued in the QM the TRM

will produce a route (including a null route if no path

available). The TRM will also instruct the QM when to

served a queue. For simplicity all fragments of a

particular request (and response, if applicable) are routed

using the same path. Routing decisions are taken on the

AP once per request. The AP scheduler estimates the

cost of each route to make the routing decision (Fig 4)

using AP/Bridge Link Transmission Cost; Bridge/Node

Link Transmission Cost and Bridge queue status.

Link
Cost

Link
 Cost

Queue
Cost

 Link

 Cost

Link
Cost

AP01

 Bridge102

Node203

 Bridge104
Queue

Cost

Transport
Layer RCIM

QM TRM

NLI

Network
Layer
(kernel)

Applications

Queue
Units

Route
Tables

Application De/Mux

Config. App. App. A App. B

Master Unit Slave Unit
Tx Queue: Hi Low Tx Queue: Hi Low

Only in Access Points
and Bridges

Only in Nodes
and Bridges

Transport
Layer

1205

Node Addr (App)

AP01

Bridge102

AP03

Bridge104 Node201 Node203 Node205

Unique Serial Number

1203 1201 1104 1102

4. The HyNet System Hardware

The prototype REMPLI embedded processor board is

based on the HyNet32XS [8]. This is a 32-bit RISC/DSP

microprocessor that integrates components for Ethernet,

USB 1.1, CAN-Bus, ATM and UART interfacing

(including M-BUS metering devices). The DSP

interfacing allows easy integration with the PLC modem,

based on the single-chip DCL-2 PLC [7].

The board has 32 MB flash memory and 64 MB of

DRAM. The Operating System is a processor-specific

uClinux (www.uclinux.org) port, a lightweight UNIX

version that is also available for other embedded devices.

The software for this system is written in C language and

is built and linked using a uClibc (www.uclibc.org) tool-

chain ported specifically for this processor board. uClibc

is a libc library, designed for embedded systems.

5. Embedded Software Implementation

The REMPLI Transport Layer (TL) is implemented

as a multi-threaded single process. The TL is loaded to

user-space during the boot procedure. The four major

components described in section 3 – RCIM, QM, TRM

and NLI – execute in their own thread, on the same

process, allowing tighter integration. The behavior of

these components was tested on a simulation system

using OMNeT++ (www.omnetpp.org), a discrete-event

simulation system for Windows and UNIX platforms.

5.1. TL Internal Messages
The four TL components interact exclusively by

exchanging messages. So a high amount of internal

traffic is expected. A message exchanged by two

components can transport parameters and payload data.

Parameters are used to select proper processing of the

received message. Payload data is variable size data that

should travel unmodified until its final destination.

Messages can take several different paths inside the

TL, according to its kind and system status. A unique TL

message structure was defined and each message

contains the complete suite of parameters required. The

structure also contains a pointer to, and the length of, the

data payload. This fixed-size structure results in memory

overhead since most parameters are unused in most

messages, but this is rewarded by faster data processing

and transport. The message structure is not moved nor

resized during its lifetime: TL component use the

address of the structure to access or change message

parameters. A component can pass the changed message

to another component without requiring new memory

allocation of the message.

Messages flow between components via linked lists

using dynamic memory. Each component has an

associated receiving message indication list, working as

a FIFO mailbox, as represented in Fig. 5. Components

communicate by posting message indications on other

components’ mailbox.

Fig. 5 – REMPLI TL architecture: components
and message queues.

5.2. Message operability library
A library was developed for TL internal message

operability including services to create, operate,

transport, destruct and schedule messages.

Message creation involves allocating memory for a

clean message header.

The library contains functionalities to define each

parameter. Each ‘set’ functionality has a ‘get’

counterpart that allows a TL component to read message

parameters and data.

Attaching a payload block to a message can be done

in two different manners: by copy or by reference.

Copy is used when the data resides on a static location

or the original data is to be preserved. The library

allocates new memory and copies the data.

Reference is used if the payload data is already in a

dynamic memory block and so the pointer is set directly.

In order to keep data integrity a payload block can

only be part of one message; and once the payload block

is attached to the message, it will be destroyed with the

message (or freed when replaced by another payload).

Any TL component can collect messages from its

respective mailbox and send messages to another

component’s mailbox. Data integrity is kept with one

mutex per mailbox. The mailbox message collector and

the message sender share a mutex. The component

thread sleeps while the mailbox is empty. When the

component gains access to its non-empty mailbox, one

message is removed for processing and the component

code executed. To send a message to another component

mutex access is required prior to adding the message to

the destination mailbox. Mailbox mutexes are locked for

a very short time: the necessary time to remove an item

or to add a new item. Components do not have direct

access to mailbox mutexes.

Transport
Layer

REMPLI
DeMux
Processor

RCIM

NL Device Driver
Processor

Commands Notifications

Slave Master

TCP Socket

Device
Driver

QM

TRM

NLI

When a message has accomplished its purpose, it

should be eliminated. The memory allocated for the

header and possible payload is then freed.

TL components may need to use timed messages to

support timeout operations and repeated timed

operations. Timed messages are set using a special

message call. This call generates a new thread that will

sleep for the defined period, after which will send the

message back to the issuer’s mailbox to be processed

like any other message (including FIFO order).

5.3. Higher-level messages
The TL communicates with DeMux using TCP

sockets. Each message is composed of a header, a

payload and an end-of-block field. Message headers are

defined in a unique fixed-size structure, and identify the

nature of the message and the payload length. The

payload is variable-length and treated like an opaque

block by the TL in most situations.

Two kinds of messages are exchanged in the TCP

connection: Commands and Notifications. Command

messages are issued by the DeMux and must have a

Success/Error reply from the TL. Several commands

may be generated by the Demux before the respective

replies are received. The TL also allows more than one

TCP channel for Command/Reply messages. A pair of

threads manages each channel at the TL side. One thread

deals the incoming messages and translates them to the

RCIM Mailbox. The other thread picks messages from

the Demux Processor mailbox and sends the replies.

Internal TL messages have a parameter used by the

DeMux to match replies with commands and another

parameter that identifies which TCP channel to use.

Notification messages are originated by the TL to

report any event, or received data. A single channel is

used for these messages. When a Notification message is

to be delivered to the DeMux it will be handled by the

Notification channel thread without any handshake

mechanism.

5.4. Lower-level messages
The NL interface is specified as two Linux device

drivers, one for Master NL and other for Slave NL.

An AP has one Master NL Linux device driver. A

Node has also one Linux device driver, but with Slave-

specific messages. For these devices, the TL employs

two threads. One thread acquires data from the NL and

generates a TL internal message in the NLI’s mailbox.

The second thread acts the opposite way, processing and

delivering a message to the NL.

A REMPLI Bridge connects to two networks, so it

requires two Linux device drivers: one for the Master

and another for the Slave. Three threads are required in a

Bridge: two acquire data from each of the device drivers

and the third thread will distribute the outgoing data by

the two device drivers, selecting the appropriate device

according to the message type.

6. Implementation tests

Implementation tests are now being carried on a

testbed located at iAd GmbH facilities. This testbed

includes multiple prototype boards connected over a

PLC network. There are alternative physical layouts of

the testbed for direct-connection test and bridged

network testing. Apart from the physical layout changes

that have to be done on-site, all the debugging can be

done remotely over SSL connection including powering

the devices. A battery of tests is already defined to test

the integration between the diverse layers of REMPLI

and was run on the simulation system. Tests carried out

until now show that the TL is working as expected in the

final hardware. Issues solved included limitations on

local stack and some restrictions on the C compiler.

7. Conclusions

An end-to-end communication system was devised over

a master-slave MAC that overcomes the inherent

dynamic topology of PLC. This system provides queuing

and routing mechanism as well as other accessory

services. This paper presented an implementation-

oriented view of the mid-level protocol layer that is

being implemented for a two-level PLC architecture.

The REMPLI project is now in the integration phase

and field trials will begin soon.

References

[1] M. Lobashov, G. Pratl, T. Sauter, “Implications of

Power-line Communication on Distributed Data

Acquisition and Control System”, IEEE Conference on

Emerging Technologies and Factory Automation,

Lisbon, Portugal, 2003.

[2] A. Treytl, T. Sauter, G. Bumiller, “Real-time Energy

Management over Power-lines and Internet”, Symposium

of Power-Line Communication and its Applications,

Zaragoza, Spain, 2004.

[3] Real-time Energy Management over Power-Lines and

Internet, NNE5-2001-00825, http://www.rempli.org

[4] G. Bumiller, M. Sebeck, “Complete Power-Line Narrow

Band System for Urban-Wide Communication”,

Symposium of Power-Line Communication and its

Applications, Malmö, Sweden, 2001.

[5] F. Pacheco, L. M. Pinho, E. Tovar. “Queuing and

Routing in a Hierarchical Powerline Communication

System”, IEEE Conference on Emerging Technologies

and Factory Automation, Catania, Italy, 2005.

[6] D.B. Johnson, D.A. Maltz, Y-C. Hu, “The Dynamic

Source Routing Protocol for Mobile Ad Hoc Networks

(DSR)”, Internet Draft, IETF MANET Working Group,

April 2003.

[7] Datasheet of the DLC-X family. iAd GmbH, 2001.

[8] Datasheet – HyNet32XS, Hyperstone AG, 2003.

