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Abstract 
With the current complexity of communication protocols, implementing its layers totally in the kernel of the 
operating system is too cumbersome, and it does not allow to fully use the capabilities which are only 
available in user space processes. However, building protocols as user space processes must not impair the 
responsiveness of the communication. Therefore, in this paper we present a layer of a communication 
protocol, which, due to its complexity, was implemented in a user space process. This layer must 
communicate with the lower layers of the protocol, which for responsiveness issues are implemented in the 
kernel. This protocol was developed to support large-scale power-line communication (PLC) with timing 
requirements. 
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Abstract 

 With the current complexity of communication 

protocols, implementing its layers totally in the kernel 

of the operating system is too cumbersome, and it does 

not allow use of the capabilities only available in user 

space processes. However, building protocols as user 

space processes must not impair the responsiveness of 

the communication. Therefore, in this paper we present 

a layer of a communication protocol, which, due to its 

complexity, was implemented in a user space process. 

Lower layers of the protocol are, for responsiveness 

issues, implemented in the kernel. This protocol was 

developed to support large-scale power-line 

communication (PLC) with timing requirements. 

1. Introduction 

Using power lines for communication is not a new 

idea [1]. Use a already deployed infrastructure eases 

communication costs, not only for energy providers, but 

also for user applications. Nonetheless, communication 

technology must be adapted to this peculiar medium [2].  

 

Fig. 1 – General REMPLI Architecture 

One of the goals of the REMPLI (Real-time Energy 

Management over Power-Lines and Internet) project [3] 

is to implement an infrastructure (Fig. 1) for real-time 

communication, in order to remotely access monitoring 

and control equipment [2]. Within the power lines, a 

two-level hierarchical system is used. New protocols 

where developed with special consideration given to 

path failure management, redundant paths, data 

fragmentation and real-time traffic processing using 

knowledge from MANETs (Mobile Ad-hoc Networks) 

and Wireless Networks [5] research. 

In the REMPLI architecture, the end-to-end 

application services are provided over an already 

existing master-slave Medium Access Control (MAC) 

[4]. The base network only encompasses a single PLC 

network level, and so the implemented system provides 

the end-to-end communication and routing services. 

This paper presents the implementation challenges of 

the protocol layer and it is organized has follows. In the 

next section, we present the services already provided by 

the base network. Then, in section 3, we summarize the 

architecture of the protocol layer that is used for queuing 

and routing within the PLC system. Section 4 presents 

the target hardware platform and section 5 details the 

implementation aspects of the Transport Layer in this 

platform. Finally, section 6 presents the status of the 

implementation and the planned test strategies. 

2. The REMPLI Network Layer Services  

2.1. The Power Line Communication System 
Power line grids divided in several voltage groups: 

higher voltage for power transportation over large 

distances, and lower voltages for power distribution on 

smaller areas. The REMPLI Project aims at the last two 

levels of this distribution grid. On the low-level end, we 

have the REMPLI Nodes. Between the two voltage 

levels, there is a transformer for voltage conversion (and 

power transmission) and a REMPLI Bridge for data 

forwarding. On the entry side of the medium voltage 

network, the REMPLI Access Point (AP) interconnects 

the PLC system and a broadband backbone (already 

available in most of these facilities). 

For the device-to-device communication, the 

REMPLI system uses a time-division-multiplex 

Master/Slave communication protocol [4]. Requests are 

time-interleaved by the Network Layer (NL): a request is 

sent in one slot and the response is received n slots 

afterwards with n fixed in each network and with typical 

values of 3 or 4. Multi-master is also supported, for 

example: the first 2 time slots used by the first Master 
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and the other 2 time slots for the second Master. The 

data payload of each slot is fixed and typical values for 

raw data payload (i.e. including the base network own 

headers) are 64 and 128 bytes. Increasing the data length 

decreases header overhead and increases the error 

probability, decreasing the length enables more 

messages per period. 

2.2. Services available to Applications 
From the point of view of applications that use the 

Transport Layer (Fig. 2), each AP will have direct 

connection with several devices (Bridges and Nodes). 

 

Fig. 2 – Application’s view of the system 

In this document, we use “Unique Serial Numbers” to 

identify each device on the text: i.e. “Node 203” means 

“Node with the Unique Serial Number 203”. 

Applications calls use Node Addresses; a configuration 

table converts “Node Addresses” to “Unique Serial 

Number”. In the example network of Fig. 2, applications 

in either AP may issue requests to any of the network 

devices. Delays and available bandwidth will vary for 

each AP – Device combination.  

From the applications point of view there are only 

two classes of devices in the network: “Access Points” 

and “Bridges/Nodes”. The main services that may be 

issued from the AP side are [2]: Unicast Request with 

response; Unicast Request without response. From the 

Node/Bridge side: Respond to Request; Send Alarm. 

The Unicast Request without Response service sends 

data to a particular device without confirmation of 

delivery. The Unicast Request with Response service is 

similar but the node/bridge must issue a data response. 

The node/bridge uses the Response to Request service to 

send this data. Only one response may be issued for each 

request. 

The Send Alarm service is issued by a node/bridge to 

deliver data to; at least, one of the available APs, this 

delivery will be confirmed to the node/bridge.  

All the data services may transmit large data blocks 

(up to 32MB) although time-critical applications will 

usually use very small data blocks (up to 100 bytes). 

3. The Transport Layer Architecture 

The REMPLI Transport Layer is built by four inter-

connected modules as presented in Fig 3.  

The RCI Manager (RCIM) module distributes 

messages between the Queue Manager / Transport Route 

Manager and the Applications themselves using the 

REMPLI Communication Interface (RCI). 

The Network Layer Interface (NLI) module 

distributes messages between the Queue Manager / 

Transport Route Manager and the NL doing parameter 

conversion when needed. 

Fig. 3 – REMPLI internal architecture 

The Queue Manager (QM) module manages all the 

packet data information. Tasks like queue generation, 

disposal, fragmentation and transport system header 

processing are done at this module. This module also 

multiplexes requests from the Applications and the 

Transport Route Manager to the Network Layer 

Interface data transmission services. All the header 

information needed for these services has been reduced 

to just 2 bytes. Since the usable data length of the NL is 

not an integer multiple of a fixed value Bridges have a 

complex task to forward data 

 

Fig. 4 – Route cost/delay calculation 

The Transport Route Manager (TRM) module 

handles not only the scheduling tasks but also when 

internal Transport Layer communication is needed. TRM 

takes care of the system start-up (including device plug-

and-play operation) and automatic route discovery. 

When a new data request is queued in the QM the TRM 

will produce a route (including a null route if no path 

available). The TRM will also instruct the QM when to 

served a queue. For simplicity all fragments of a 

particular request (and response, if applicable) are routed 

using the same path. Routing decisions are taken on the 

AP once per request. The AP scheduler estimates the 

cost of each route to make the routing decision (Fig 4) 

using AP/Bridge Link Transmission Cost; Bridge/Node 

Link Transmission Cost and Bridge queue status. 
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4. The HyNet System Hardware 

The prototype REMPLI embedded processor board is 

based on the HyNet32XS [8]. This is a 32-bit RISC/DSP 

microprocessor that integrates components for Ethernet, 

USB 1.1, CAN-Bus, ATM and UART interfacing 

(including M-BUS metering devices). The DSP 

interfacing allows easy integration with the PLC modem, 

based on the single-chip DCL-2 PLC [7]. 

The board has 32 MB flash memory and 64 MB of 

DRAM. The Operating System is a processor-specific 

uClinux (www.uclinux.org) port, a lightweight UNIX 

version that is also available for other embedded devices. 

The software for this system is written in C language and 

is built and linked using a uClibc (www.uclibc.org) tool-

chain ported specifically for this processor board. uClibc 

is a libc library, designed for embedded systems. 

5. Embedded Software Implementation 

The REMPLI Transport Layer (TL) is implemented 

as a multi-threaded single process. The TL is loaded to 

user-space during the boot procedure. The four major 

components described in section 3 – RCIM, QM, TRM 

and NLI – execute in their own thread, on the same 

process, allowing tighter integration. The behavior of 

these components was tested on a simulation system 

using OMNeT++ (www.omnetpp.org), a discrete-event 

simulation system for Windows and UNIX platforms. 

5.1. TL Internal Messages 
The four TL components interact exclusively by 

exchanging messages. So a high amount of internal 

traffic is expected. A message exchanged by two 

components can transport parameters and payload data. 

Parameters are used to select proper processing of the 

received message. Payload data is variable size data that 

should travel unmodified until its final destination. 

Messages can take several different paths inside the 

TL, according to its kind and system status. A unique TL 

message structure was defined and each message 

contains the complete suite of parameters required. The 

structure also contains a pointer to, and the length of, the 

data payload. This fixed-size structure results in memory 

overhead since most parameters are unused in most 

messages, but this is rewarded by faster data processing 

and transport. The message structure is not moved nor 

resized during its lifetime: TL component use the 

address of the structure to access or change message 

parameters. A component can pass the changed message 

to another component without requiring new memory 

allocation of the message. 

Messages flow between components via linked lists 

using dynamic memory. Each component has an 

associated receiving message indication list, working as 

a FIFO mailbox, as represented in Fig. 5. Components 

communicate by posting message indications on other 

components’ mailbox. 

 

Fig. 5 – REMPLI TL architecture: components 
and message queues. 

5.2. Message operability library 
A library was developed for TL internal message 

operability including services to create, operate, 

transport, destruct and schedule messages. 

Message creation involves allocating memory for a 

clean message header.  

The library contains functionalities to define each 

parameter. Each ‘set’ functionality has a ‘get’ 

counterpart that allows a TL component to read message 

parameters and data.  

Attaching a payload block to a message can be done 

in two different manners: by copy or by reference. 

Copy is used when the data resides on a static location 

or the original data is to be preserved. The library 

allocates new memory and copies the data. 

Reference is used if the payload data is already in a 

dynamic memory block and so the pointer is set directly. 

In order to keep data integrity a payload block can 

only be part of one message; and once the payload block 

is attached to the message, it will be destroyed with the 

message (or freed when replaced by another payload). 

Any TL component can collect messages from its 

respective mailbox and send messages to another 

component’s mailbox. Data integrity is kept with one 

mutex per mailbox. The mailbox message collector and 

the message sender share a mutex. The component 

thread sleeps while the mailbox is empty. When the 

component gains access to its non-empty mailbox, one 

message is removed for processing and the component 

code executed. To send a message to another component 

mutex access is required prior to adding the message to 

the destination mailbox. Mailbox mutexes are locked for 

a very short time: the necessary time to remove an item 

or to add a new item. Components do not have direct 

access to mailbox mutexes. 

Transport  
Layer 

REMPLI  
DeMux 
Processor 

RCIM 

NL Device Driver 
Processor 

Commands Notifications 

Slave Master 

TCP Socket 

Device 
Driver 

QM 

TRM 

NLI 



When a message has accomplished its purpose, it 

should be eliminated. The memory allocated for the 

header and possible payload is then freed.  

TL components may need to use timed messages to 

support timeout operations and repeated timed 

operations. Timed messages are set using a special 

message call. This call generates a new thread that will 

sleep for the defined period, after which will send the 

message back to the issuer’s mailbox to be processed 

like any other message (including FIFO order). 

5.3. Higher-level messages 
The TL communicates with DeMux using TCP 

sockets. Each message is composed of a header, a 

payload and an end-of-block field. Message headers are 

defined in a unique fixed-size structure, and identify the 

nature of the message and the payload length. The 

payload is variable-length and treated like an opaque 

block by the TL in most situations. 

Two kinds of messages are exchanged in the TCP 

connection: Commands and Notifications. Command 

messages are issued by the DeMux and must have a 

Success/Error reply from the TL. Several commands 

may be generated by the Demux before the respective 

replies are received. The TL also allows more than one 

TCP channel for Command/Reply messages. A pair of 

threads manages each channel at the TL side. One thread 

deals the incoming messages and translates them to the 

RCIM Mailbox. The other thread picks messages from 

the Demux Processor mailbox and sends the replies. 

Internal TL messages have a parameter used by the 

DeMux to match replies with commands and another 

parameter that identifies which TCP channel to use. 

Notification messages are originated by the TL to 

report any event, or received data. A single channel is 

used for these messages. When a Notification message is 

to be delivered to the DeMux it will be handled by the 

Notification channel thread without any handshake 

mechanism. 

5.4. Lower-level messages  
The NL interface is specified as two Linux device 

drivers, one for Master NL and other for Slave NL.  

An AP has one Master NL Linux device driver. A 

Node has also one Linux device driver, but with Slave-

specific messages. For these devices, the TL employs 

two threads. One thread acquires data from the NL and 

generates a TL internal message in the NLI’s mailbox. 

The second thread acts the opposite way, processing and 

delivering a message to the NL. 

A REMPLI Bridge connects to two networks, so it 

requires two Linux device drivers: one for the Master 

and another for the Slave. Three threads are required in a 

Bridge: two acquire data from each of the device drivers 

and the third thread will distribute the outgoing data by 

the two device drivers, selecting the appropriate device 

according to the message type. 

6. Implementation tests 

Implementation tests are now being carried on a 

testbed located at iAd GmbH facilities. This testbed 

includes multiple prototype boards connected over a 

PLC network. There are alternative physical layouts of 

the testbed for direct-connection test and bridged 

network testing. Apart from the physical layout changes 

that have to be done on-site, all the debugging can be 

done remotely over SSL connection including powering 

the devices. A battery of tests is already defined to test 

the integration between the diverse layers of REMPLI 

and was run on the simulation system. Tests carried out 

until now show that the TL is working as expected in the 

final hardware. Issues solved included limitations on 

local stack and some restrictions on the C compiler.  

7. Conclusions 

An end-to-end communication system was devised over 

a master-slave MAC that overcomes the inherent 

dynamic topology of PLC. This system provides queuing 

and routing mechanism as well as other accessory 

services. This paper presented an implementation-

oriented view of the mid-level protocol layer that is 

being implemented for a two-level PLC architecture. 

The REMPLI project is now in the integration phase 

and field trials will begin soon. 
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